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Abstract—The discrete fractional Fourier transform (FrFT)
has been suggested to enhance performance over DFT-based
multicarrier systems when transmitting over doubly-dispersive
channels. In this paper, we propose a novel low-complexity
equaliser for inter-symbol and inter-carrier interference aris-
ing in such multicarrier transmission system. Due to a lower
spreading in the FrFT-domain compared to the DFTchannel
matrix as compared to the DFT domain, the equaliser can
approximate the fractional-domain channel matrix by a band
matrix. Further, we utilise the least squares minres (LSMR)
algorithm in the calculation of the equalisation, which exhibits
attractive numerical properties and low complexity. Simulation
results demonstrate the superior performance of the proposed
LSMR equaliser over benchmark schemes.

Index Terms—Multicarrier transmission, fractional Fourier
Transformation, doubly dispersive channel, low complexity equal-
isation.

I. INTRODUCTION

The popularity of multicarrier systems such as orthogonal

frequency division multiplexing (OFDM) is based on the abil-

ity to cancel inter-symbol-interference (ISI) without explicit

knowledge of channel state information (CSI). In the case of a

stationary channel, the channel effect on the received symbols

can therefore be mitigated by a single equaliser coefficient

per carrier. However, OFDM does not perform well if the

system is not synchronised or if the channel changes during

the transmission of one OFDM symbol. In such a time-varying

scenario, OFDM suffers from inter-carrier-interference (ICI),

resulting in the need for equalisation [1–3].

The inclusion of an equaliser increases complexity in terms

of receiver processing and requires the estimation of the

channel matrix including all subcarrier gains as well as all

ICI-generating terms. The main advantage of OFDM to permit

simple processing with only per-carrier single-tap equalisers

is therefore negated. In fact, the complexity and CSI require-

ments may be sufficiently high to favour optimal filter bank

based methods with superior performance over OFDM [4, 5].

Recently, the standard DFT/FFT in OFDM systems has

been replaced by discrete versions of the fractional Fourier

transform (FrFT) [6–9]. While the FrFT, unlike the DFT in

classical OFDM, does not diagonalise the circulant channel

matrix found in the case of transmission over stationary

channels, it concentrates the coefficients near the diagonal. In

doubly-dispersive channels, the channel matrix of a classical

DFT-OFDM system is no longer diagonal and coefficients can

spread far, while the matrix of the FrFT system still retains

most of its energy near the diagonal. As a result, performances

for FrFT systems have been reported to be superior to classical

OFDM in doubly-selective channels [6–9].

Various DFT-domain equalisation methods have been pro-

posed in the context of OFDM, including zero-forcing (ZF)

and minimum mean-square error (MMSE) schemes [10] as

well as successive interference cancellation (SIC) [11]. In

all these schemes the equaliser complexity can be reduced

by exploiting the approximate band structure of the resulting

channel matrix [10, 12]. ICI equalisers in [13, 14] apply

the LSQR algorithm [15, 16] which offers a low complexity

approach to solve linear systems.

In this paper, we focus on FrFT-OFDM systems in doubly-

dispersive channels, and apply low-cost equalisation schemes

developed for classical OFDM systems such as in [17]. We

propose a band matrix approximation, which exploits the

increased energy concentration of the channel matrix within

the FrFT as compared to a classical OFDM system. Further,

our low cost equaliser uses a very recently proposed least

squares minres (LSMR) approach [18], which is an iterative

algorithm that promises better numerical stability and faster

convergence compared to LSQR.

The remainder of this paper is organised as follows. In

Sec. II we review the FrFT and the overall FrFT-OFDM system

model. In Sec. III we describe the proposed ICI equalisation

method using the LSMR algorithm. Simulation results are

provided in Sec. IV that compare the performance of the new

structure to existing methods. Sec. V concludes the paper.

II. FRFT-OFDM SYSTEM MODEL

A. The fractional Fourier transform and its Discretisation

The FrFT is the generalised formula for the Fourier trans-

form that maps a function into an intermediate domain be-

tween time and frequency, and may be interpreted as a rotation

operator in the time-frequency plane. This property makes the

FrFT especially suited for the processing of linear frequency

modulated (LFM) or chirp-like signals. The FrFT of order a
of an arbitrary function x(t), with an angle α = aπ/2, a ∈ R,

is defined as [19]

Xα(u) =

ˆ

∞

−∞

x(t)Kα(t, u)dt . (1)
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Figure 1. FrFT-based OFDM system, whereby the DFrFT replaces the DFT in a classical OFDM setup [6]. The proposed system features a low-cost equaliser
matrix Wn.

The transform kernel Kα(t, u) is given by

Kα(t, u) =











Aαeωα α 6= nπ

δ(t − u) α = n2π

δ(t + u) α + π = n2π

, (2)

where Aα =
√

1−j cot α
2π and ωα = j t2+u2

2 cot α− jut csc α.

The inverse FrFT (IFrFT) can be expressed as

x(t) =

ˆ

∞

−∞

Xα(u)Kα(t, u)du . (3)

With (2), the FrFT can be seen as a description of x(t) within
a basis formed by orthonormal LFM functions in the u or

fractional Fourier domain. The time and frequency domains

can be considered as special cases when a = 0 and a = 1,
respectively.

Different discretations of (1) and (3) have been proposed,

varying in accuracy and complexity. In our work, we select

the discrete FrFT (DFrFT) proposed in [19] to ensure that

the transform kernel of the DFrFT and its inverse transform

are orthogonal and reversible. The DFrFT formula of a data

segment x[n] is defined as

Xa[k] =

N/2
∑

n=−N/2

x[n]Ka[n, k] , (4)

or in vector notation

ya =











Xa[0]
Xa[1]

...

Xa[N − 1]











= Fa











x[0]
x[1]
...

x[N − 1]











= Fax . (5)

The N-point DFrFT matrix Fa is unitary, therefore admitting

a straightforward inverse discrete FrFT (IDFrFT) as x =
FH

a ya = F−aya, where (·)H denotes Hermitian transpose.

B. FrFT-Based OFDM System

A conventional OFDM systems applies an inverse discrete

Fourier transform (IDFT) matrix to a data vector sn and intro-

duces a cyclic prefix (CP) of length L prior to multiplexing the

OFDM symbol across a dispersive channel h[n, ν] corrupted
by additive white Gaussian noise v[n]. After demultiplexing

the received signal and removal of the cyclic prefix, a DFT

matrix reconstructs the transmitted data vector ŝn. In a DFrFT-

based OFDM system, the DFT matrix is replaced by a DFrFT

matrix Fa [6, 20] as shown in Fig. 1.

The multiplexed signal rn = Hnsn +vn after cyclic prefix

removal in Fig. 1 is characterised by a system matrix with

elements

[Hn]i,j =

{

h[n − L + i, i − j] i ≥ j,
h[n − L + i, L + i − j − 1] i < j.

(6)

In stationary conditions, Hn is circulant, and can be decoupled

by Fa with a = ±1, whereby the case a = 1 represents the

conventional OFDM system.

We additionally introduce a binary matrix P ∈ ZN×Na ,

which assigns a data vector dn ∈ CNa to N subcarriers, of

which only Na are active according to

P =
[

0Na×(N−Na)/2 INa
0Na×(N−Na)/2

]T
, (7)

where 0L×M is an L×M matrix with zero entries, and IL an

L × L identity matrix. The equaliser matrix Wn ∈ CNa×Na

in the receiver operates on the input

r̃n = PHFaHnF−aPdn + PHFavn

= Cn,adn + ṽn , (8)

with a system matrix Cn,a ∈ CNa×Na . The purpose of the

binary matrix P is not only to help lower out-of-band emis-

sions, but also to eliminate components that would otherwise

appear in the upper right and lower left corners of Cn,a [10].

III. LOW COST EQUALISATION

A. MMSE and ZF Equalisation

Assuming perfect knowledge of the channel matrix Hn, the

approach in [12] can be extended to the system in Fig. 1. In

the ideal case, a linear block MMSE equaliser is defined based

on the system matrix Cn,a. Below, we restrict the calculation

of Wn to the first Q sub- and super-diagonals of Cn,a by

means of a binary masking matrix M with elements

[M]ij =

{

1 0 ≤ |i − j| ≤ Q,
0 Q < |i − j| < Na.

(9)

The shape of this matrix as shown in Fig. 2 is imprinted on the

masked matrix Bn = M ⊙ Cn, where ⊙ represents element-

wise multiplication. Based on the masked matrix, analogously

to [12] the MMSE equaliser can be defined as

Wn,MMSE = BH
n (BnBH

n + γ−1I)−1 , (10)

where γ is the signal to noise ratio (SNR) at the input to the

equaliser, assuming corruption by white Gaussian noise. The

matrix inversion in (10) requires O(N3
a ) flops which is not

practical for high values of Na, such as found in digital video

broadcast standards [21].
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Figure 2. Structure of the modified channel matrix Cn,a, where only
the shaded areas, consisting of the first Q off-diagonals, are retained for
processing.

The zero-forcing (ZF) equaliser Wn,ZF can be calculated

from (10) for the special case

Wn,ZF = Wn,MMSE|γ→∞ . (11)

Similar to (10), the matrix inversion implicit in (11) is of order

O(N3
a ).

B. Low Cost Approaches

The masking of the channel matrix Cn,a by M in (9) is

justified since the equivalent channel matrix in the fractional

domain is approximately banded [6]. With Bn restricted to Q
off-diagonal terms, the product BnBH

n is also banded with a

structure similar to that in Fig. 2, but with a maximum of 2Q
off-diagonal terms above and below the main diagonal.

This band structure has previously been exploited for similar

OFDM equalisation schemes using LDLH [17] or LSQR [14]

factorisations of the Hermitian term Gn = BnBH
n + γ−1I.

Here, we utilise the sparsity of Gn to invoke a very recently re-

ported iterative least squares minres (LSMR) approach in [18],

which claims to offer lower complexity, higher numerical

stability, and faster convergence than the LSQR method.

C. Complexity Consideration

Although the MMSE outperforms other linear equalis-

ers [11], the matrix inversion in (10) requires a substantial

number of O(N3
A) flops [17], which is forbidding for large

Na. By appling an LDLH factorisation to Gn in calculating

either MMSE of ZF solutions in (10) and (11), the number

of complex operations compared to standard matrix inversion

methods such as Gaussian elimination [16] can be reduced to

(8Q2 + 22Q + 4)NA complex operations [17].

The LSMR implementation of either MMSE or ZF solution

requires O(NA(Q + 1)) flops at each iteration, leading to a

total of O(NA(Q + 1)I) flops if the number of iteration steps

is limited to I [18]. The cost and storage requirement per

iteration step is listed in Tab. I, allowing a comparison to the

iterative LSQR approach. From the table, it is clear that LSQR

has similar storage requirements and complexity than LSMR,

but the latter can achieve the same accuracy of inversion with

a considerably lower number of iterations, hence leading to

an overall saving in complexity. From Tab. I it is clear that

both LSQR and LSMR have a considerably lower complexity

than e.g. direct matrix inversion or even matrix inversion via

an LDLH factorisation.

Table I
COMPUTATION AND STORAGE REQUIREMENTS FOR LSQR AND LSMR

ALGORITHMS.

Vector Storage Matrix Storage Computations per iteration

LSMR 4×NA 2 (NA × NA) ≈O(NA(Q + 1))
LSQR 3×NA 2 (NA × NA) O(NA(Q + 1))
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Figure 3. Uncoded BER performance comparison between FrFT-OFDM
and FFT-OFDM with Q = 5, using both standard inversion and the LSMR
algorithm to implement an MMSE design.

In the next section, we will compare the different com-

putational methods, whereby MMSE and ZF solutions, unless

explicitly connected with either LSQR or LSMR, are assumed

to be computed by an LDLH factorisation.

IV. SIMULATIONS AND RESULTS

The uncoded BER performance of the proposed FrFT-

OFDM with LSMR equalisation is investigated below by

means of simulation. We assume an FrFT-OFDM system with

N = 128 subcarriers, Na = 96 active subcarriers, cyclic prefix

length L = 8, and QPSK modulation. The transmission is

simulated over Rayleigh fading channels with an exponential

power delay profile and root-mean-square delay spread of 3
sampling periods. The temporal variation of the channel is

governed by a Doppler spread ΩD = 0.15∆Ω, where ∆Ω is

the normalised subcarrier spacing. Simulations are performed

over 104 randomly drawn channels, each simulated for one

block period.

In Fig.3, we compare the FrFT-OFDM with the classic

OFDM using an equaliser restricted to operating on the first

Q = 5 off-diagonal elements of a perfectly known channel ma-

trix. The performance of all systems levels out for high Eb/No

due to the error in omitting off-diagonals greater than Q = 5.
Since in the FrFT case most of the energy within the channel

matrix is concentrated around the main diagonal, it can achieve

a better performance than FFT-based OFDM systems despite

a very similar complexity. The approached labelled MMSE

represent a standard inversion of the approximate channel

matrix Cn,a, while the LSMR approach implements an MMSE

design but with the reduced complexity of the iterative LSMR

algorithm [18].
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Figure 4. Uncoded BER Comparison for FrFT-OFDM based on a ZF
inversion of Cn,a with Q = 5 using standard inversion (ZF), LSQR, and
LSMR approaches.

Concentrating on the FrFT-OFDM system, we demonstrate

different approaches of the ZF design, including a standard

inversion method, as well as LSQR and LSMR approaches to

iteratively solve the inversion. Performance characteristics for

the three systems are shown in Fig. 4. The standard matrix

inversion for the ZF design is prone to numerical instabilities

if the matrix Cn,a is ill-conditioned. This results in a relatively

poor ZF design using the plain matrix inversion approach.

Both LSQR and LSMR exhibit significantly improved stability,

whereby the LSMR method achieves a small advantage due

to its compatibility with sparse and ill-conditioned systems.

Three different MMSE equalisers for the proposed FrFT-

OFDM system are assessed in Fig. 5. Due to regularisation,

the instability in the case of direct inversion is less problematic

than for the ZF case shown in Fig. 4, and all three approaches

— direct inversion, as well as LSQR and LSMR solutions

to the regularised problem — perform almost identically. The

difference lies in the complexity, whereby both LSQR and

LSMR are reduced complexity methods, with LSMR requiring

a lower number of iterations to reach the same accuracy of the

LSQR approach.

V. CONCLUSIONS

We have considered an FrFT-based multicarrier system

akin to OFDM, whereby the FrFT replacement of the FFT

has distinct advantages when operating in doubly-dispersive

channels. There, the FrFT has coefficients that remain largely

localised around the main diagonal, while for DFT-OFDM the

diagonalisation quickly degrades in Doppler scenarios due to

energy leakage across the channel matrix.

Against this background, we have compared a number of

equalisation strategies, whereby iterative techniques based on

the LSQR or LSMR algorithms offer significant advantages

over standard inversion. Specifically, for ZF designs both

LSQR and LSMR offer a considerably enhanced performance

due to numerical robustness, with a slight advantage to LSMR.

In MMSE designs, all equalisation approaches perform lin-

early, but the proposed approach offers particularly low com-
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Figure 5. Uncoded BER Comparison for FrFT-OFDM based on an MMSE
equalisation of Cn,a with Q = 5 using standard regularised inversion
(MMSE), LSQR, and LSMR approaches.

plexity because of its faster convergence and lower number of

iterations required.
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