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A comment on pulsatile pipe flow

S. McGINTY and S. McKEE

Department of Mathematics,
University of Strathclyde, Glasgow, G1 1XH , Scotland.
smeck@maths.strath.ac.uk

This article is concerned with analytic solutions of flows in cylindrical and annular pipes
subject to an arbitrary time dependent pressure gradient and arbitrary initial flow.

Consider unsteady flow within a circular pipe driven by a time-dependent pressure
gradient. The flow is unidirectional with u(r,t) in the axial direction satisfying
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with

u(a,t) =0 ; w(0,t) bounded, all t. (2)
Here v, p and a are respectively the kinematic viscosity, the density and the pipe radius
and pg(t) = —0p/dz, with —0p/Oz the pressure gradient (z is the axial direction). This
problem has a long history dating back to Sexl (1928), Lambossy (1952), Womersley
(1955 a,b) and Uchida (1956). Other authors who have worked on closely related problems
including pressure gradients which are impulses, exponentially decreasing functions etc.
include Syzmanski (1932), Ito (1953), Lance (1956), Sanyal (1956), Verma (1960) and
Smith (1997). Drazin and Riley (2006) provide the solution
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where, here,
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which is essentially the form given by Sexl (1928), Uchida (1956) and Womersley (1955a).
This form is ubiquitous in the literature and yet it is unsatisfactory as it assumes a very
specific initial condition. The problem one wishes to solve is (1) with (2) together with
an arbitrary initial condition, let us say

u(r,0) = f(r). (5)

In fact it is relatively straightforward (see Appendix) to write down a solution to (1)
subject to (2) and (5):
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where oy, n = 1,2, .., are the countably infinite roots of Jo(ana) = 0.
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The volume flow rate is given by
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We observe immediately that we have a solution for any initial flow and time-dependent
pressure gradient, with no possible singularities: J 1(ana) is never zero since the zeros of
Jo(2) and J1(z) interlace. We note that when the flow is initially quiescent, we obtain the
same expression for the flow as Szymanski (1932) and, additionally, if dp /0z = constant,
then as ¢ — oo we retrieve Poiseuille flow, since

a? —r? = 8 Z MJO(Q"T) (8)
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Of course, because of the generality of the above expressions, flows subject, to impulsive
pressure gradients and gradients subject to exponential decay, for example, are easily
derived from (6): indeed, the solution obtained by Ito (1953) for a linear pressure gradient
can be shown to be a special case of (6).

We may also consider flow in an annular region subject to an arbitrary time-dependent
pressure gradient where the outer radius is @ while the inner radius is b (b < a). We
obtain
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where
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where here «,, are the countably infinite zeros of Volana) = 0. The corresponding volu-
metric flow rate is
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It is straightforward to show that as b — 0 expressions (9) and (10) reduce to (6) and
(7) respectively.

Appendix ,
The eigenfunctions of the related homogeneous problem satisfy
- (ﬂﬁg)) +oPre(r) = 0, (A1)
#(a) =0 (A2)
and admit the general solution
8(r) = AJo(ar) + BYo(ar). (A3)

Boundedness and the no slip condition them imply, respectively, that B = ( and

Jo(aa) =0, (A4)
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yielding, through superposition, the general solution

u(r, t) = ian(t)%(m,/r'). (A5)

n=1

With f(r) =377, an(0)Jo(a,r) we deduce, using orthogonality, that
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Substitution of (A 5) into the inhomogeneous problem results in

> {d%{-(f—) + l/aian(t)} Jolanr) = g(t). (A7)
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From orthogonality we deduce that
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giving rise to the solution (6) provided in the main text. The derivation of (9) is similar
except that the orthogonal functions employed are Vo (ay,r).
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