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REALISTIC COMPUTABLE ERROR BOUNDS FOR THREE
DIMENSIONAL FINITE ELEMENT ANALYSES IN LINEAR
ELASTICITY*

MARK AINSWORTH! AND RICHARD RANKIN?

Abstract. We obtain a computable estimator for the energy norm of the error in piecewise
quadratic finite element approximations of linear elasticity in three dimensions. We show that the
estimator provides guaranteed upper bounds on the energy norm of the error as well as (up to a
constant and data oscillation terms) local lower bounds.

1. Introduction. Error estimators for linear elasticity problems go back at
least as far as [16] with many more estimators being subsequently obtained for
two dimensional linear elasticity [7,8,11,12, 18,19, 24] and three dimensional linear
elasticity [10-13,17,20,24]. However, the majority of estimators obtained are not
actually computable since they involve either (a) generic unknown constants [7, 10—
12,24], or (b) the solution of (local) infinite dimensional problems (which cannot
be solved exactly) [8,13,19,20]. Upper bounds can be obtained at the expense of
the solution of a global finite element problem [17]. However, the only locally com-
putable guaranteed error estimators for two dimensional linear elasticity problems,
of which we are aware, are those in [4, 18].

A vital part of the analysis in both [4, 18] is the construction of a suitable field
gk whose normal components and divergence have certain properties. In [18] this
field was constructed using the Arnold and Winther finite element [6] whilst in [4]
the Arnold, Douglas and Gupta finite element [5] was used. In the current work
we extend this result to three dimensional domains in the context of approximation
on meshes comprised of tetrahedra. The computation of the estimator involves
computations over patches of elements sharing a vertex, with the computation of
the three dimensional version of the field g x constructed using a three dimensional
analog of the Arnold, Douglas and Gupta element. We show that, if one wishes to
avoid additional post-processing steps as in [18], then one is obliged to make use of
so-called “macro-element” techniques and we believe the one presented here is the
simplest one available.

Our estimator takes account of so-called “data oscillation” error at the expense
of requiring an upper bound on the Korn’s inequality on each element or on the
domain itself. Suitable bounds in the two dimensional case were given in [14].
However, as far as we are aware, there is no three dimensional analog of the two
dimensional result given in [14]. Of course, if the load data is piecewise affine
(which is often the case in many stress analyses performed using finite elements),
then there is no need for a bound on the constant in Korn’s inequality, and our
estimator provides a guaranteed upper bound on the energy norm of the error.
We illustrate the performance of the estimator for a simple three dimensional test
problem and show that the upper bound is both realistic, and suitable for driving
an adaptive solution algorithm.

2. Preliminaries.

2.1. Model problem. Let A > 0 and g > 0 be given. Let Q be a polyhedral
domain whose boundary I' is partitioned into disjoint sets I'p and I'y on which the
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displacement and tractions are prescribed respectively. Let the spaces

Ly (Q) = {v : ||1)H%2(Q) = /91)2 de < oo}

and

H'(Q) = {v . ve Ly(Q), gradov € Ly (Q)Q}.
For v € H' (Q) = H* (Q), let

(v) =

2m

<gr3d v+ (grjld v) T>

N =

and

g (v) = Ee (v) = 2pu€ (v) 4+ Mr (g (v)) I

denote the linearised strain and stress associated with a displacement v, where I

is the identity tensor. The compliance tensor is given in terms of the inverse E~
defined by

x

=

e (e A
E ’g}_Qu(g} 2u+3/\tf(2")£ '

Consider the model problem of finding the linearly elastic displacement u such
that

—divg (u) = f in ,
u=gqon ['p,

g(u)nr =gonly,

where nr is the outward unit normal vector to I'.
The variational form of this problem is to find w € H' () such that u = q on

I'p and
L
3 3

where w : v = Zzwij”ij and Hp () ={veH' (Q): v=00onTp}.
i=1j=1
The data are supposed to satisfy f € Ly (Q) = Ly (Q)® and g € Ly (Ty) =
Lo (FN)S. Likewise, we assume that the data g is smooth, and, in addition, is
compatible in the sense that problem (2.1) admits a solution. We shall also assume
that the boundary T'p is such that a unique solution w € H' (2) to problem (2.1)
exists. In this case Korn’s inequality

(/Q gradv : gradv dw>1/2 < Cq (/Qg (v) 1 €(v) dw) v (2.2)

is satisfied for all v € H}, (Q2). For certain domains Q and choices of T'p an upper
bound for the constant Cq is given in [15,22]. However, in many cases suitable
bounds are unavailable and one can then resort to an approximation to Cp obtained
by solving an eigenvalue problem.

2Q

(u) : €(v) dac:/gfﬂudac—l—/F g-vdSvWve Hp(Q), (2.1)
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2.2. Partitioning the domain. Consider a family of partitions {P} of the
domain 2 into the union of nonoverlapping, shape-regular tetrahedral elements such
that the nonempty intersection of a distinct pair of elements is a single common
node, single common edge or single common face which is an entire face of both
of these elements. Consequently, the family of partitions is locally quasi-uniform
in the sense that the ratio of the diameters of any pair of neighbouring elements is
uniformly bounded above and below over the whole family. In addition, we shall
insist that each element face « which lies on the domain boundary satisfies one of
the inclusions vy C I'p or v C I'y.

Henceforth, we shall consider a fixed partition P from the family. Let K and
K’ denote individual elements in P, let 0K denote the boundary of element K and
let Fx denote the set containing the individual faces of element K. Likewise, we
let 7, Fp and Fu denote the disjoint sets of faces defined by

Fr={y: y=0KNoK' K, K' € P},
Fp={yCTp: v € Fk for some K € P},
Fn={yCTn: v € Fg for some K € P}

and let 9P = F; U Fp U Fn denote the set of all element faces. For m € Ny, let
P,, (K) denote the space of polynomials on K € P of total degree at most m and
let P, () denote the space of polynomials on v € 9P of total degree at most m.
We also let |K| denote the volume of the element K and let |y| denote the area of
face .

2.3. Finite element approximation. The conforming finite element space
of second order X C H" () is defined by

X = {’U S C(ﬁ)g UK € Py (K)3 VK EP},
with the subspace X p C HJ, (Q) being defined by
XD—{’UEX: 'U—OOHFD}.

The conforming finite element approximation of second order of problem (2.1)
consists of finding ux € X such that

/g(ux):g(v) d:vz/f-vd:n—i—/ g-vdSVYve Xp (2.3)
Q” - Q Ty

subject to the boundary condition ux = q on I'p. For simplicity, we suppose that
the Dirichlet conditions can be satisfied exactly using the finite element space.

2.4. Projections and oscillation of the data. For K € P, let Pxf €
P, (K)® be the function such that

/ (f —Pxf)-pde=0foralpeP (K)*.
K
For v € Fn, let P,g € Py (7)3 be the function such that
/(g—Pvg)-pdSzOforallpEPl(w)g.
.

We define the oscillation of the data f on an element K € P to be

osc(f,K)=hg Hf_PKf||L2(K)
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where hy is the length of the longest edge of element K. The oscillation of the

Neumann data g on a face v € Fy is defined to be

1/4
osc(g,7) = """ lg = Prgll, ) -

3. Estimation of the energy norm of the error. Let the energy norm over

a region w be denoted by

= ([0 dw>1/2.

We shall omit the subscript in the case where w = ). We are interested in obtaining

computable bounds for the error e = u — ux measured in the energy norm.
Let v € H}, (R). Then, by the definition of e and (2.1), there holds

[e@icw do= [ guie do- [ glux)ie) da
= f~vd:c+/ g~vdS—/Sg(uX):5(v) dx

3~

KeP yeEFKNFN Y

3.1. Equilibrated stresses on tetrahedral elements. Let N index the set
{xn}, e of vertices of the elements in P. For n € N, let P, denote the set of
elements in P that have a vertex at x,, and let A, denote the function which is
piecewise linear on P and vanishes at all the vertices in P, except x,, where it

An 0
takes the value one. Define )\S) = 0 , )\512) = An and )\513) =
0 0

Also, let NV () denote the subset of N which indexes the three vertices of face 7.
We want to define equilibrated stress functions gy ., € Py (7)3 satisfying the

conditions
Ixy T 9K 4= 0ifye FxNFr,K,K' € P,
9k, =PygifyeFy
along with the equilibration condition
/ fopdet Y
K YyEFK
for all K € P. We note that conditions (3.2) and (3.3) imply that
o> /P,,g-vdS: >y /gm-vdsweﬂg(n).
KeP~eEFKkNFn T KeP~eFr V7

We also note that the values of the nine moments

up, = /gm.xgp dS forn € N (7) and i =1,2,3
Y

determine a unique stress g, ., € P1 (7)3. This means that the stress field can be
written as a linear combination of the stress moments, but it will not be necessary
to actually construct this representation in the code. In fact, the estimator which

we shall derive is expressed directly in terms of the moments £}, .

/gxmp dS—/Kg(ux):g(p) de =0VpeP (K)® (3.4)

(3.1)

:Z(/Kf-vdw—i— Z /g-vdS—/Kg(uX):g(v) dw).
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The computational procedure used to determine the moments u'}(ln is virtually
identical to the one described in [3] for the case of scalar problems in R? (with
element faces in R? playing the same role as edges in [3]). For convenience, we
briefly outline the main steps.

Let
L (g (ux i) nff = @ (uxper) n") iy € Fic 0 Fr
<g(UX)nK> = g('u,X‘K)n,IY{ if vy e Fx N Fp,
P,Yg if”y € Fx N Fn,

(3.6)
where n,ly( denotes the outward unit normal vector to face v of element K. We look

for moments p}", of gy ., in the form

1 (g}Qn - g;’),m) J (g (ux) i) AP S if 5 € Fx N Fe

,U’Iy(y,in: %?n"'f’y (g (UX\K)n’IY()'ASzi) ds ity € FxNFp,
fwg~>\§f) s if y € Fg N Fn.
(3.7)

This construction means that u}{ln + u}{fn = 0 for v € Fx N Fkr, which means
that the corresponding stresses gy ., will automatically satisfy (3.2) for all choices
of 55?71 Similarly, (3.3) follows directly from the definition of u}(ln onvy € FxkNFn.

We determine the free parameters 55?71 in (3.7) by solving a system of equations
analogous to (6.46) in [3]:

% > ( o — 553,”) + Y & =Ak (A§j>) for all K € P,,

K'eP,NPk YyEFKkNFpNFy

where Py denotes the set of elements that share a face with element K, F,, denotes
the set of faces that have a vertex at x,, and

Ag ()\S)) :/ ag(ux):e ()\Sf)) d:v—/ FAD dz— Z
K K

/<g (uX)nK>’Y-)\Sf) dS.
YyEFK Y

(3.8)
The above system consists of §P,, equations for §P,, unknowns, where f denotes car-
dinality. In general, the linear system fails to have a unique solution. Fortunately,
as shown in Lemma 5 in [2], a solution can always be found which depends continu-
ously on the data {A K (Ag)) K € 73"} provided that the following compatibility

condition holds:

Z AK(AS)>:OVn€N:wn¢fD.

KeP,

The fact that this compatibility condition does indeed hold follows at once upon
using the definition (3.8) along with (2.3) and the fact that, thanks to (3.6),

> Z/<g(ux)n;<>’y-)\£f) dS= [ Pg-ADds=[ g-AP ds

KeP, veFK V7 I'n I'w

for all n € N such that x, & T'p.

The following result establishes the continuous dependence of the stresses on
the data:

THEOREM 3.1. If the stresses gy ., are chosen as described above, then there
exists a positive constant C, independent of the error e and the size of the elements
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in the mesh, such that

1/2 _
hx Hgm (g (ux)nK>7}L2(7) (3.9)
<C Y| X el + D ose(f, KN+ D ose(g.y)
neN(y) \K'€Pxn K'eP, Y EFANFN

Proof. Standard “bubble function” arguments [3, 23] can be used to prove that,
for K € P,

hx ||PKf +divg (u)HLz(K) < C(|lefl x + osc (f, K)) (3.10)
and
1/2
S S|V N (3.11)
YEFKNFn
<C o dlelle+ > ose(fLKN+ D ose(g)
K'ePgNPy K'ePgNPy YEFKkNFNNFn
where
L (2 (ux i) nff + ¢ (wx i) ') if 5 € Fic 0 Ficr
Jy = g(uX‘K)nff—Pvg if v € Fx N Fn, (3.12)
0 if y € Fx N Fp.

Now, integration by parts yields

50 ()
| 2 [ tuxunt A as = 3 [ g wxyni) AL as
vEFK T ~NeEFK VY v

_/ (Prf +dive (w) - AV da
K

=1y /JW-AS) dS—/ (P f +dive (u) - AP da
¥ K

yeEFK
(i) - @
< Zf ”J’YHL2(7) ‘ A ) + HPKf +divag (u)HLz(K) ‘ A La(K)
YyeFK

<C|hk Z 150 () + 3l HPKf—i_dng(u)HL2(K)
YyEFKNFn

<ol S el + Y ose(fKN+ Y. osc(g,n)

K'ePrgNPy K'ePrgNPy YEFKkNFNNFn

upon inserting bounds (3.10) and (3.11). Finally, (33) from [2] means that

e e )

K’'€Pn

hl—(1/2




from which it follows that

h;(1/2

/ (gK-,'v - <g (ux) nK>'y) . )\s) dS‘ (3.13)

<C| > lelg+ > osc(f, K+ Y. osclg.y)

K'eP, K'ePn Y eEF.NFnN

upon combining the above bounds. Inequality (3.9) is then a direct consequence of
(3.13) and the fact that gy ., is affine. O

3.2. Upper bounds on the energy norm of the error. Substituting (3.5)
into (3.1) gives

Now, integrating by parts yields

/Qg(e):g(v) de = Z (/Kf-vdw—i— Z A9K77-vdS

KeP YyEFK

- Z (g (uxix)nk) v dS+/

yEFK T K

(diveg (ux)) - v dw) .

The above expression can then be rewritten in the form

/gg(e):g('v) de = Z /TK-'vd:B—i— Z /R%K-'vdS (3.14)

Kep \"K veFx U
+Z/(f—PKf)'Ud$+Z (g—Pyg)-vdS
Kep’K yeEFN T

where the interior residual rx € Py (K )3 is defined by
rxk = Pxf+divg (uX‘K) on K
and the boundary residual R, x € Py (v)” is defined by

R,k=9k,—¢C (ux|x) nf on 7. (3.15)

Since the stresses g ., have been chosen such that (3.4) holds, then these residuals

satisfy
>/

yeFr

R,,_,K~pdS+/TK-pdw:OforallpePl(K)?’. (3.16)
K

For future reference, we note that choosing the stresses gy . in the standard way
described above does not enforce any relationship between the R, x beyond (3.16)
and so, in general,

'I’LK/ . R»),_’K 75 'I’L,Iy( . R'y/,K (3.17)

Y
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on the edge shared by faces v and 4’ of element K.
We define the set of symmetric tensors in H (div; K') by

Igsym (div; K) = {v € H (div; K) : angag = aggal for all a1, g € R?}

and the associated subspace
Ijiym (div; K) = {g € Ijsym (div; K) : gKn,If € Py (v)® for all v € Fg,

divy € Py (K)*, /

v:e(p) dm_OforallpEPl(K)3}.
K

Observe that both spaces are infinite dimensional.

We can now state our main result giving a computable upper bound on the
energy norm of the error e in the finite element approximation:

THEOREM 3.2. Suppose gk € I;Ifym (div; K) satisfies the condition

ganf =R,k on forall~y € Fk. (3.18)

Then

J,

and

K:€(v) de = Z/

vEFK T

2Q

R, k-v dS—I—/ ri-v de for allv € H' (Q) (3.19)
K

1/2 1/2
_ Cao
el < Elokx:ox de + == P2 3.20
lel (KEEPj/K 9K gk ) m(}j K> (3.20)

KeP

where Cq is the constant in (2.2) and

1
\IIK:;osc(f,K)—i— Z Cfosc(g,w), (3.21)
YEFKNFN
with
12 1/2
K (ke (hi 2 _
(@ —< K« (w +3I£12§<|:B x| (3.22)

where hg is the length of the longest edge of element K and x- is the vertex of
element K which is not a vertex of face . Details on how to compute the value of
fK E_ng 1 g dx directly without having to construct g i explicitly are given in
Section 4.

Proof. For g € H iym (div; K), integration by parts yields

/K Kig(”)d$22/

g (ganf)-vdS—/ (ding)-vd:B
YyEFK Y K
= > /R%KwudS—/ (divey) v dz (3.23)
YEFK v K

upon inserting (3.18). By letting v = p € P; (K)® in (3.23) we can see that

Z /R%K-pdS—/ (dngK)-pdw:OforallpEIP’l(K)3
yeEFK VY K



by the definition of HY™ (div; K). From (3.16) it follows that

/ (TK+dngK) -pdx =0 for all p € P, (K)3
K

which means that

—divgg =Tk in K, (3.24)
since both r and divagk belong to Py (K)? by the definition of HY™ (div; K).
Finally, substituting (3.24) into (3.23) yields (3.19).

We can now return to (3.14) and replace the first two terms on the right hand
side using (3.19) and then use the estimates

1 1/2
/ (f—Pxf) vde < —osc(f,K) (/ gradv:gradvd:n) (3.25)
K ™ K = ~

and
1/2
/ (g—Pyg) - vdS < C’f osc(g,7) (/ gradv : grad v dcc) (3.26)
o K =] =

(which we prove in Lemma 3.7) to conclude that

2

1/2
(v) de+ Vg (/ gradv : grad v dw> ) .
K ~ =

< oK :
> (/.7
1/2
X« g g

Then using the Cauchy-Schwarz inequality

Let

1/2
[aniew dos ([ Blanignds)  lol = vl
K K
we obtain the bounds

[ e et i
€

1/2
< 3 ol + 3 W ([ gradv: grado da)

KeP KeP

1/2 1/2 1/2 1/2
< (Z @%) (Z |||v|||§<> + (Z W%) (Z / gradv : gradv dw)
KeP KeP KeP Kep”’K -
1/2 1/2 1/2
= (Z @%) flofl + (Z W%) (/ grad v : grad v dw) .
KeP KeP @ - -

We can then apply (2.2) and make use of the fact that

([ cto):e dw)m < =l
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to conclude that
1/2 o 1/2
/ g(e):e(v) dx < (Z @%) + (Z q’%{) vl -
Q KcP 2p KeP

Finally, letting v = e in the above expression and dividing through by ||e|| we arrive
at (3.20) in the case when |le|| # 0. In the case when |le]| = 0 the bound holds
trivially. O

It is also possible to obtain an alternative bound:

COROLLARY 3.3. Suppose g € HY" (div; K) satisfies (3.18). Then

1/2

1/2 2
lell < Z((/K E-lgx : gk dm) +5—2K_HWK> (3.27)

KeP

where Ck denotes the constant in the local Korn’s inequality

1/2
inf rad (v —vg) : grad (v — v dx <C /
erR(K)(/ng ( K) gre ( K) ) K(K

forallve Hy (K)={ve H (K): v=0 onTp} where

1/2
(v) 1 €(v) dw)
(3.28)

2

R(K)={ve H' (K): e(v)=0} C P (K)’. (3.29)

Proof. In the proof of Theorem 3.2 we can use the estimates

/K(f—PKf).vd:cg %osc(f,K) (/Kg(v) e () dm)l/z

and

A(Q — Pyg)-v dS < CxCX osc(g,7) (/KS(”) (o) dw) 1/2

(which we prove in Lemma 3.8) instead of (3.25) and (3.26) to arrive at

/Qg(e) re(v) de < Z g o]l + CrxPx </K5(”> (o) dm>1/2

KeP

Ck
<y (rbK + ﬁWK) Iolx

KeP

o 2\ 1/2
<[> <<I>K+—£\IJK> ) ol
<K€P 2

from which we obtain (3.27). O

An upper bound on the constant Ck in the two dimensional analog of (3.28)
is given in [14]. However, as far as we are aware, an upper bound for the constant
Ck in (3.28) is not known in three dimensions. In many practical applications of
finite elements, one sees the engineer choosing data f € Py (K )3 on each element
KePandgel (7)3 on each face v € Fy (or even piecewise constant), in which
case the oscillation terms are absent and knowledge of Cx or Cq becomes a moot
point.
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3.3. Construction of a stress representer. Throughout this section we
shall only be considering a single element K, and hence, for ease of notation we
omit the superscript from n,ff . Our computable upper bound hinges on the existence
(and construction) of a suitable stress representer ax € HY™ (div; K) satisfying
(3.18). - -

THEOREM 3.4. There exists g € HY™ (div; K) satisfying (3.18).

Proof. In order to prove the existence of g, we consider the related problem
of seeking a displacement ¢ € H(K) = H' (K) \ R (K) satistying

/Kg(qbK):g(v) dcc:/KrK-vdm+ > | Ryx-vdSVveH(K). (3.30)

yeFK Y

The bilinear form on the left hand side of (3.30) is trivially seen to be coercive
on H (K) whilst the linear form on the right hand side of (3.30) is continuous on
‘H (K). Hence, the Lax-Milgram Lemma ensures the existence of a unique solution
¢x. Let ax = g (k). Then g satisfies

/K K:g(v)d:cz/KrK-vdw-i-Z

YEFK
since both sides of (3.31) vanish when v € R (K) thanks to (3.16). Consequently,
since g € Py (K)® and R, kel (7)?, identity (3.31) means that — div gK =TK
in K and ggn, = R,k on all v € Fgx. Moreover, gx € Ijiym (div; K) since,
again thanks to (3.16), (3.31) means that [, gk : €(v) dx =0 when v € P, (K)*.
d

2Q

/R%K vdSVYve H (K) (3.31)
v

Theorem 3.4 ensures the existence of a suitable field gk, satisfying the hy-
pothesis of Theorem 3.2. It is easy to see that g is non-unique which is indeed
fortunate since the construction of g i suggested in the proof of Theorem 3.4 is not
a viable practical proposition: (3.30) entails the existence of an infinite dimensional
local boundary value problem which cannot be solved analytically in general. Nev-
ertheless, some authors [8,13,19,20] have sought to construct an approximation to
g by approximating (3.30) over a finite dimensional subspace of H' (K). This
means that the approximate displacement ¢, fails to satisfy (3.31) over the full
space H* (K) meaning that the resulting estimator is no longer a guaranteed upper
bound on the error. For this reason, we adopt an alternative approach whereby g i
is treated directly (i.e. need not be defined in terms of a displacement field (;SK)N.

Ideally, we would like to choose a simple direct construction for g i in terms of

polynomials defined over the element K: e.g. seek o € Py, (K)3X3ﬁIjiym (div; K)
for a suitable m € N. Unfortunately, this choice is doomed to failure, regardless of
the value of m, for the following reason. Let g € Py, (K)*** n Ijiym (div; K),
and consider only the edge shared by distinct faces v4,71 € Fx shown in Figure
3.1. Since, g is symmetric n%g;{nVl = nagan on the edge shared by faces
74 and ~y;. This means that, if g € Py, (K)***n I;Iiym (div; K), then (3.18) can
only be satisfied if naR.YLK = nfl R, i on the edge shared by faces 74 and ~;
which, as noted earlier in (3.17), is not the case in general.

The above argument shows that one cannot hope to find a polynomial field gk €
HY™ (div; K) on element K satisfying (3.18). Prompted by our investigations [4]
in the case of planar elasticity we construct a piecewise polynomial field g i over the
element as follows. We construct a sub-mesh of four tetrahedra, denoted by K7, Ko,
K3 and K4, each having a vertex at the centroid of element K and such that K, has
Ym as one of its faces as shown in Figure 3.2. We then seek g € Ijiym (div; K)

such that g i |K,, € P2 (Km)3X3 for each sub-tetrahedron K, C K. In other words,
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Fic. 3.1. The labelling and positioning of the vertices, faces and unit normal vectors of
element K. The face v; of element K lies opposite verter ; and n~, is the outer unit normal
vector to face v;, for 1 =1,2,3,4.

we seek OK in the space L/K defined by
Vie={v: ve BY™(diviK), v, € P2 (Kn)* form =1,2,3,4}.

We note that the space V i is a subspace of the three dimensional analog of the

lowest order Arnold, Douglas and Gupta finite element space [5]. The following

result asserts that it is possible to find a g € V i which satisfies (3.18).
THEOREM 3.5. There exists Ok € L/K such that

arny = R, i for all v € Fi (3.32)

and there exists a positive constant C, independent of the error e and the size of
the elements in the mesh, such that

1/2
</ Efng LTk d:c) (3.33)
K

<C D el + D osc(f£,K)+ > osc(g.7)

K'eK K'eK yEFKNFN

where K denotes the set of elements which share a vertex with element K and Fx
denotes the set of faces which share a vertex with element K.
Proof. The theorem is proved at the end of this section. O
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K,

Ty

TK Ty

T2

T4

T2

FiG. 3.2. The splitting of element K (shown in Figure 3.1) into the four sub-tetrahedra
K1, K2, K3 and K4 is shown in the centre, surrounded by individual diagrams of the four sub-
tetrahedra. The centroid of the element xx = % (@1 4+ @2 + @3 + 24).

Theorem 3.5 asserts the existence of a field gx € Vi satisfying (3.32). For
the purposes of Theorem 3.2, we are obliged to construct g € V i explicitly, or,
at any rate compute its norm. We construct Ok ona given element K in terms of
functions g}( associated with each face of K as follows. Without loss of generality,
we consider the face 74, with vertices @1, 2 and x3, of the element shown in Figure
3.1. For each vertex xy, s and x3 of the face we define three functions, which are
associated with the remaining faces 1, 72 and 3. For example, in the case of
vertex x1, the functions are denoted by 67! .., €74 . and 8% . and satisfy the
conditions:

07 oMy =0 0n v € Fic \

and
1

A1 sfi=1 d — /’
/ (ni’g:lt,mlnw) Aj dS = { (\)’Yi| 1 and y Y
Y4

otherwise.
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The function @,;! , is assigned a weight R} . , given in terms of the residual R, x

defined by (3.15), as follows:
R =il [ (0 R ) v S,
Y4

The sum of this weighted combination yields the function

Y4 E
Qa:l R’nl $1~nz,a31

associated with vertex a; of face 74. Functions associated with the vertices @s
and x3 of face 4 can be constructed similarly and used to construct a function
associated with face 4 as follows:

3

Y4 __ Y4
gr = E 0.

i=1

Our actual stress representer is then given by the sum of this function and the
corresponding functions on the remaining faces:

gk =gK tgy¥ tag +ax. (3.34)

However, as seen in Theorem 3.2, in order to compute the upper bound on the
error, we need only compute the value of the number fK E_ng : gk dx and not
the actual field ok itself.

All of the above arguments depend on whether or not one can find functions
0%, .z, foralli,j € N'(y) and v € Fi such that

zni,

0) . mny=0o0n~ €Fg\y (3.35)

~MNi,Tj

and, for m € N (v) and v € Fk,

1 . . /
. = ifm=jandy =+,
Oz ) A AS =3 T 330
/y (nv Znix; Ty { 0 otherwise. (3.36)

In fact the following piecewise polynomials satisfy these properties:
The function 7% . is defined by

~MN1,T1
1 11 22 22 33 33
zz;ll,ml - W (p?{?,ml,‘mh + p?{? ZII’Y47 + Plff,zl I’M) (337)

V4,23 74,23 V4,31 _v4,31 V4,12 _va,12
+pn17$1~ +pn1,$1z +pn1,9311-
where

T = = (tith; + tit;)

DN =

with
tji =T; — Ty

and the piecewise quadratic polynomials pJi-Ll = pra,22 i pya33 . pya23 = p1431 and

12 ni,x1’ ny, 5 ni, ni, n1,T1
45 1 1 4
pa &, are given in Table 6.1. Moreover, the function €y ., is defined by
V4 — ;(p'ﬁhll 4,11 4 p’)’4722 V4,22 4 p’)’4133 774,33 (3 38)
~MNi,L2 2 ny,o T n1,x T n1,T2 ~ .
P 36759780 |K | e s s

V4,23 74,23 Ya,31 _7va,31 V4,12 _v4,12
P02 T + Pri s T + Prt 2T
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where the piecewise quadratic polynomials pJ-ll | pJa:22 | p1a:33 - pa28 - phad) and

PR 152 are given in Table 6.2. In total, there are 36 distinct functions of the form
0, . corresponding to nine functions on each of the four faces of K, and the choices
of & being any of the three vertices on the face itself, and n being the normals
on the three remaining faces. Expressions for the remaining 34 functions can be
obtained by permuting the indices of the functions €7* . and 84

<MN1,T1 ~M1,L2°
In general, for v € Fx and 7,5 € N (),

1
O = g 2 D Pl T
wi | K |*

keEN(v) leN(kw

where

896580 ifi=j
@il T\ 36759780 if i # j,

and the piecewise quadratic polynomials p};";, kI can be obtained by permuting the

indices of the pJy; klz , given in Table 6.1 and the p;Vl klm given in Table 6.2 for the cases

1 = 7 and i # j respectively. A tedious, but straightforward manipulation reveals
that these functions do in fact satisfy (3.35) and (3.36). We note that there are
other functions in V' x which satisfy these properties. However, the choices given
above are such that f E~ 102 x; Q;lej dzx is minimised when K is an equilateral
tetrahedron.

We are now in a position to give a proof of Theorem 3.5:

Proof. For v € Fg, let

ak= > > Q;’li’mj/hﬂniR%K/\j ds. (3.39)
iEN(7) JEN (7) K

Now, property (3.35) implies that g}(nvl vanishes on all faces v’ of element K except

face v. Upon observing that {\;}, -, is a basis for Py (v) and that {|7i[ 7, },c v

is a basis for R?, we see that {|vi| 1, ), }ijen(y) is a basis for Py (v)®. Hence, it
follows from property (3.36) that

/ (gkny) -pdS= / R,k -pdSforalpelP ()?.
v v
Hence, g}’(n,y = R, k on face v of element K since R, x € P (’y)3 and the defini-
tion of V x means that gjn, € Py (7)®. Hence,
giny = Ry g0, on~' forall v € Fg

from which (3.32) is a simple consequence when we construct gx as in (3.34).
Moreover, the triangle inequality allows us to say that

1/2 1/2
</ Efng tOK dw> < Z </ Eflg'}{ : g'}{ dcc)
K K

YEFK

by the definition of gx (3.34) and

1/2
</ Elgk gk dw)
K

1/2
<> > / ilnd Ry kA dS‘ (/ O O dw)

lEN(’Y JEN (V)
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by the definition of g (3.39). Now, standard arguments yield that

/K E- 191“% 00, dr < Chy’

and

nl Ry k) dS’ < Ch%

/"QR%K/\J' dS’ < Chy ||R%K||L2(V)
.

Rewriting
Rk =gx,—(g(ux)nk) —J,

where J, is defined by (3.12), allows us to say that

1Byl < aren = (g ux) i) | 4 150

™)
to which we can apply (3.9) and (3.11) to conclude that

h?{ ||R%KHL2(V)

< 3T 1Y el + > ose(£,E)+ Y osclg,y)

neN(y) \K'€Px K'eP, v EFuNFi

Finally, by combining the above inequalities we can arrive at (3.33). O

3.4. Bounding the oscillation terms. In order to bound the oscillation
terms we shall require the three dimensional analog of the result proved for triangles
in the appendix of [1].

LEMMA 3.6. Let w € H' (K) be such that [, w de = 0. Then, for v € Fg,

b (b | 2 2
Hw”Lg('y) < K| = \n + 3I;1§X|.’1}—.’1}7| ngadeLg(K)' (3.40)
Proof. Let 05 = % (z — x,) where x is the vertex of element K which does

not lie on face . This function satisfies f,y, nf/ . 05 dS = §y for all v/ € Fg.
Then

2 .
lwllz, ) = Z // nff/ . 05102 s = /Kdlv (0511}2) dx

YeFk T

_h
|K| [|w HL2 &)t 2 w0,ly( -gradw dx

<l 2
|K| loll oy (Nl + 3 maXIfff: — x| |grad w| ,, g,

Dl hw (hr | 2 7
< e + = 5 nax [z — x| | lgrad wl|7, s,

upon applying the inequality
hk

< — llgradwp, ) (3.41)

HwHL2('y)

which is proved in [9,21]. O
We can then bound the oscillation terms as follows.
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LEMMA 3.7. Let CX be defined by (3.22). Then, for v e Hp, (),

1 1/2
/ (f—Pxf) vdr<—osc(f,K) </ gradv : gradv dcc) (3.42)
K Q0 K = ~

for K € P and

1/2
/ (g—P,g)-vdS< Cf osc(g,7) (/ gradv : grad v d:v) (3.43)
5 K = S

forve Fx N Fn.
Proof. Let vi € R? be such that

/p~('u—'uK) dx =0 for all p € R®.
K

Then, the definition of Px f means that we can write

[ t=pef)vde= [ (F-Pif) - vi) de
K K
<|f- PKfHL2(K) v — ”KHL2(K)

from which (3.42) follows upon applying (3.41). Also, for v € FxNFn, the definition
of P,g means that

/7<g—Pvg>-vdS—/<g—ng>-<v—vK> as

:
<llg=Pogly, e v = vrlp

to which we can apply (3.40) to arrive at (3.43). O

We can also bound the oscillation terms in an alternative way.

LEMMA 3.8. Let Ck denote the constant in the local Korn’s inequality (3.28).
Then, for v € Hp, (),

/K(f—PKf).v dwg%osc(f,K) (/Kg(v)ig(v) dw)1/2 (3.44)

for K € P and

/V(g — Pyg) v dS < CxCXF osc(g,7) (/Kg (v) 1 €(v) dw) 1/2 (3.45)

forve Fx N Fn.

Proof. The definitions of Px f and P,g mean that (3.42) and (3.43) will still
hold with v on the right hand side replaced by v — v where v € R (K). We can
then apply (3.28) to the resulting inequalities to arrive at (3.44) and (3.45). O

4. Practical application of the theory. Our main result is summarised in
the following theorem.

THEOREM 4.1. Let the error e = uw — ux where u is the solution of (2.1) and
ux is the solution of (2.3). Then

1/2 1/2
_ Ca
e < E Elox ok dx +— E U2 . 4.1

KeP
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where Cq is the constant in (2.2) and Vi is defined by (3.21). Alternatively,

1/2 2
llell < Z <(/K E_ng Lok d:v) + \(/7—2K_M\I/K> . (4.2)

KeP

where Ck is the constant in (3.28). Moreover, there exists a positive constant C,
independent of the error e and the size of the elements in the mesh, such that

1/2
1
</K E—ng tOK d:c) + Emax (OQ,OK) VB (43)

<C > lellg+ D ose(£. K+ > osclg,”)

K'eK K'eK yeEFKNFN

where K denotes the set of elements which share a vertex with element K and Fg
denotes the set of faces which share a vertexr with element K.

For the convenience of the reader who is primarily interested in the practicalities
of implementing the estimator, we present an outline of the steps involved in the
computation of [, E™'gk : gk da.

The procedure for calculating fK E_ng (oK dx is:
L. Calculate equilibrated stresses g ., satisfying equations (3.2), (3.3), (3.4)
and (3.9). A way of doing this is described in Section 3.1.
2. Use these equilibrated stresses to calculate the data defined by (3.15).
3. With these data, calculate [ E_ng : gk dx (see below).

The final step is to calculate

/ E_ng rax dr = (4.4)
K

/ g}y{l:g'};dw—l—/KIE O'K o-de—l-/KE_aK aKd:c—l-/E_o-K aKd:c
o’

(.
AR

K

E_O'K aKd:I:—i—/E gy aKd:I:+/IE gy O'de—i—/IE_ Kk gy dx
s O'K d:v—i—/ E-! O'K O'K dw)
The following lemma, which is proved in Section 6.1 of the appendix, shows how to

compute this quantity without having to construct g explicitly. We continue to
use the notation shown in Figure 3.1.
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LEMMA 4.2. Leti,j,k,l € {1,2,3,4} be distinct and define

|7k|n$ka7K)\k ds

il nl Ry, k) ds

i Vi
f ilnl Rk Ax ds /7 el md, Ry, N ds
f |7j|n’7y;R’)’quAl ds / |7k|n$kR7ijAi ds
i Yi
T T
fi |7k|n'ykR’YhK)‘j ds /'Yj |Fyl|n’YLR’Yij)\k ds
R, = f el nd, Ry, kA ds | and RY), = A Iyl nl Ry, ki ds
i J
f vkl nl, Ry, kN ds / Iyl nk R, ki ds
¢ o
f |71|n$lRm,K/\j ds / |'7i|n?y1Rvj,K)\k ds
i Yi
f |'Yl|n,;1;lR’yi,KAk ds / |~yi|n$iR%K)\l ds
i ot
fv [l nd, Ry i\t ds / il 2, Ry i Ai ds
- U - L 7/ i
(4.5)
Then
. 1 .
-1 i, i _ i i3V i
/K Bl gk de = i (R ) MR, (4.6)
and
, . 1 L \T o
JE e g de = o (R) NI AL, @)

where the matriz M} is defined by

MO :ijjjBJ”] + M jjxBs g+ MjjuBi + MjjaBi i + M B]

gkl JJlj

+M jj ik B i1 + Mgk Bl g, + MikuBrl i + Mk B, g + Mk, B
+Mkk7jkBkk,jk + M”JlBll,ll + M”vlell,kl + Mll,ljBlz,lj + M”vjkBll,jk

Vi LR ) Yi L R
+M ki By gy + M By 1+ My e By g + Mg B)j

and the matriz NZZ'Y] is defined by

Vi Yi __ L Vi
Nk,z = NJJ»]]BJJ jj + ijykkB jj,kk + NJJ»”'B 54,11 + ijyle jg,kl + NJJJJBJ';',U

L . RYi
+Njjik B i + Nk Bl + Nk, Bl ip + Nkt Biie iy + Nkt Bl 15

. Vi Vi Vi LR A Vi
+ Nk, ik Bi, i + NuuBy'y + NuwBy'y + Nug Byl + Nuge By i,

ANk B + Nk Bl i + Nwgr Byl g + Nijag Blj iy + Nujjr By
where
B g = E7Lp000P g0 (4.10)
with
T = 5 (tuth + it (1.11)
and

tiq =Tq — Ty. (412)

(4.8)

. Vi S Vi
+ MlJ,Jszf,jk + Mjkdklez,jk

(4.9)

o Vi
i+ Njkk B
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The matrices which appear in the definitions of M;Yfk?[ and NZfl’W are defined in
Tables 6.3 and 6.4 in the appendix.

By setting 4, 7, k and [ to the appropriate values all ten terms on the right hand
side of (4.4) can be calculated using the above lemma:

i:l,j:2,k:3,l:4yields/]E’lg}*{l: o)l dz and
K

1 V1. 2 .
E™ g} 10 dx;

i=27=3k=4,1=1 yields Eflg}?: o2 dx and Elo gy gy dx;

1=3,7j=4,k=1,1=2 yields E~'g} : g} dx and E'g) g} duw;
Eflg'}? co ) dw;

w\»w\»w\»w\»

1=1,7=3, k=2,1=4yields E-'g) 1 g du;

I,
I,
i=4,j=1k=2,1=3 yields / E~'g)! : g} dw and
K
I,
i=2j=4 k=23 1=1 yields / E~'g} : g}t d.
K
5. Numerical example. Consider the problem —divg (u) = 0 in the L-
shaped region pictured in Figure 5.1. Homogeneous Dirichlet boundary conditions
are imposed on the face which is built in. The Neumann boundary condition
g = ( 0 0 1 )T is imposed on the face on which there is a tangential traction.
Homogeneous Neumann boundary conditions are imposed on the remaining faces.
We took A = 23 and = . The initial mesh is shown in Figure 5.2(a).
For this exanlple both of the upper bounds given in Theorem 4.1 reduce to

lefl < n where
1/2
n-(Z/E oK : o'de>
KeP

and | K E_lg K @ gk dx is calculated using Lemma 4.2. However, as noted previ-
ously, the field g is not uniquely defined. We therefore also give results for when,
on each element K eP, f KE OK : OK dx is minimised over V k. We shall use
Nmin to denote the estimator obtained with this choice of OK.

We obtained results for a uniform refinement strategy as well as for an adaptive
refinement strategy where we used a bulk criterion to refine the mesh on the smallest
number of elements such that the sum of the contributions from these elements to
the estimator of le]|* exceeded 50% of the value of the estimator of [|e]|*. The final
adaptively refined mesh is shown in Figure 5.2(b). We can see that the areas which
have been the most refined are the re-entrant corner and the edges on which Dirichlet
boundary conditions are imposed. The results obtained are shown in Figures 5.4,
5.5 and 5.6 where the effectivity indices ¥ = 7/ [le|| and 91,;, = Mmin/ llell-

In order to see how well our estimator performs we need to calculate the energy
norm of the error. This proves problematic since the true solution to the problem
that we are considering is unknown. However, we used the adaptive refinement
strategy based on our estimator to refine the initial mesh 22 times to arrive at the
mesh shown in Figure 5.3. The finite element approximation on this mesh gave us
an approximate value of [u]|> which allowed us to calculate |le]|* = Ju|® — [ux |
with sufficient accuracy for the results shown in Figures 5.4, 5.5 and 5.6 to give a
faithful representation of the actual performance of the estimator.

In Figures 5.4(a), 5.5(a) and 5.6(a) it can be seen that the estimators do indeed
provide guaranteed upper bounds on the energy norm of the error. It can also be
seen that the error decreased at a faster rate when an adaptive refinement strategy
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built in

tangential

FiG. 5.1. Domain, loading and boundary conditions for the example.

(a) (b)

Fi1G. 5.2. The (a) initial and (b) final adaptively refined meshes for the example.

was used. Whether this strategy was based on the estimator n or the estimator
Nyin Made negligible difference to the rate at which the error went down.

In Figures 5.4(b), 5.5(b) and 5.6(b) it can be seen that the estimators over-
estimated the energy norm of the error by a factor between 3.28 and 5.71 when
uniform refinement was used. When adaptive refinement was used the energy norm
of the error was overestimated by a factor between 3.74 and 4.55 by 7 and a factor
between 3.23 and 3.96 by 7,;;,- The difference in the amount of overestimation by
the estimators n and n,,;, varies between 0.31 and 0.97.




22

F1c. 5.3. The adaptively refined mesh containing 71377 tetrahedrons

freedom used to approzimate |ul)?.

10 : :
= * = lefl
—o—y
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10"} :
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10° | 1
1071 L L
10 10° 10* 10

Number of degrees of freedom

(a)

Effectivity index

and 321426 degrees of

5.5

4.5

35

10° 10* 10

Number of degrees of freedom

(b)

FiG. 5.4. The (a) performance and (b) effectivity indices of the estimators for the example

with uniform refinement.
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Fic. 5.5. The (a) performance and (b) effectivity indices of the estimators for the example
with adaptive refinement with respect to 7.
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FiG. 5.6. The (a) performance and (b) effectivity indices of the estimators for the example
with adaptive refinement with respect to Mpyin -

6. Appendix.

6.1. Proof of Lemma 4.2. Let the vertices, faces and unit normal vectors of
element K be as in Figure 3.1 and let 4, j, k, 1 € {1,2, 3,4} be distinct. Define

41p%7ab 7

T,
Vi ab
pnj Yy L
Vi ab
pn] s L]

Vi
1 pnlk),mj

_ - i,ab

ikl = 36750780 | HPmia. | (6.1)

p%,a
nkvmbl
p”rYLll’,mb]

P

41ppia

ny,e; -

Then,

Vi Vwab vi,ab
K | DN (J,k,l) Siga T

aGN(’yz) beN (7;):
b>a

1
'Y'uab 'Y'L y. ,ab
> (Sm ) Rjsaz™
N(vi

2
| | aeN (vi) beN (v;):
b>a

Therefore,
. . 1 -
E g0 do = — (R'ﬁ ) M Ry
Ok Tk 3 Kl B AV k0
/ |K| J Js J

where the matrix M%) is defined by

il = Z Z Z Z |K|/ hab 77;71) dzBy, .4

a€N(7i) beN (v;): cEN (74) deN wl
>a
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and
1
E-lg) : o) d:c——(R )NWJRJ
/K O TR |K| ik, kol

where the matrix N %’W is defined by

M= XY XS g[S () e o,

aEN(%)beN(n) ceN(7;) deN
b>a

Now, since i, j, k and [ are distinct and a,b,¢,d € {1, j, k, 1}, for fixed a, b, ¢
and d the entries in the 9 x 9 matrices

1 » . T
i ab i,cd
K| KSj,k,l (Sj,k,l) dx

and

. b 'y ,ed
|K|/ g’ykal k]u> de
will be independent of the particular values taken by 4, j, k and [. These matrices
are also independent of which element K we are on. Hence, these matrices need

only be calculated once for each admissible combination of values for a, b, ¢ and d.
Hence, upon also making use of the property that

— Yi
Bab cd — ba cd Bab de Bcd,u,b7

we can conclude that (4.6) holds with M defined by (4.8). Similarly, upon also
making use of the fact that ¢;; = t;; — ti;, t;; =ty — t;; and t;; = —t;; to rewrite
the (E_lg%“b : Z”ﬂ“c‘i) in terms of By ., we can conclude that (4.7) holds with
N’Y“’“ defined by (4.9).
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The coefficients of )\%, /\%, /\g, )\421, A1A2, A2A3, A3A4, A1, A1)3
in (3.37) on each of the four sub-tetrahedra K1, K2, K3 and K4. We define plﬁ’zﬂbl = pjﬁl’}fl.

V4,12
Pny,x;

and AaAyq for the six piecewise quadratic polynomials p:fl”ml, Ptz Prtiays Pryiays Pryie;

/\% /\% )x% /\Z A1 Ao A2 A3 A3 A4 Aa A3 Aoy
p]{*llwll —4590 0 0 0 1195440 0 0 1195440 1195440 0
p]{*l%fl 821364 896580 0 0 | —1562836 115846 0 261306 —239793 —205937
pl;‘fﬁl 821364 0 896580 0 —239793 115846 —205937 261306 | —1562836 0| on
p]{*l’?m?’l 2695160 —298860 —298860 0 —754756 963748 898338 | —3204972 —754756 898338 | K
p%‘ﬁ?;jl 355802 0 0 0 1264366 0 0 —486464 | —4063604 0
p]{*l’llffl 355802 0 0 0 | —4063604 0 0 —486464 1264366 0
p]{l‘l’}mll —896580 | —1805544 0 0 3824396 1628106 0 1943210 —308719 —803139
p]fl%a 0 86530 0 0 0 0 0 0 0 0
p]{*lfl 0 —118950 0 0 785137 205480 759517 0 —785137 —759517 | on
p;YL‘*l’?mBI 0 —32420 0 0 1570274 124560 0 0 0| —1519034 | K>
p]{*l’?’mll 0 4599530 298860 0 | —3083052 | —4644172 —898338 0 496136 301136
p]{*l’lﬁl 0 | —1258042 0 0 | —2586916 1512260 0 0 0 —597202
pl;‘;ﬁl —896580 0 | —1805544 0 —308719 1628106 —803139 1943210 3824396 0
p]ﬁl’?ﬁl 0 0 —118950 0 —785137 205480 —759517 0 785137 759517
p]{*l’?’m?’l 0 0 86530 0 0 0 0 0 0 0| on
p]{*l%fl 0 0 —32420 0 0 124560 | —1519034 0 1570274 0| K3
p]{*licll 0 0 | —1258042 0 0 1512260 —597202 0 | —2586916 0
pl;‘;}ﬁl 0 298860 4599530 0 496136 | —4644172 301136 0 | —3083052 —898338
p]fllfjl —896580 —298860 —298860 | —6934182 | —1580941 —597720 3854283 8061248 | —1580941 3854283
p]{*l%fl 0 —896580 0 | —1067064 90917 —134666 251813 —153086 0 1995196
pl;‘fﬁl 0 0 —896580 | —1067064 0 —134666 1995196 —153086 90917 251813 | on
p]{*l’?m?’l 0 298860 298860 | —3339840 | —1074138 —926108 1182836 3594212 | —1074138 1182836 | K4
p%‘ﬁ?;jl 0 —298860 1494300 5970410 1074138 1195440 | —8793352 | —4180344 892304 —283936
p]{*l’llffl 0 1494300 —298860 5970410 892304 1195440 —283936 | —4180344 1074138 | —8793352
TabLe 6.1 11 4,22 4,33 v4,23 4,31

and

qc
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\2 A2 pY: X2 Ao A2 A3 POV XA A XoMs
p]fl?}mlz —15612800 0 0 0 | —196052160 0 0 49013040 49013040 0
p?{fé —97196160 | —110279340 0 0 220871840 2772867 0 —15802163 —2447827 2080783
p,”flf% 19770612 0 36759780 0 22603673 —13043859 10090231 —1187909 —74992528 0 | on
p7141’72£2 —123717500 36759780 —12253260 0 26663970 —38742048 10971678 139383272 52777302 —91843194 | K;
p];‘l?ilz 165995636 0 0 0 | —139275036 0 0 71662732 —77144932 0
p];‘l?lfz —200937640 0 0 0 392177780 0 0 —15133244 29932464 0
pl“l’}é 12253260 —68507640 0 0 | —168806920 32055251 0 48344121 16632749 14390299
PR 0 0 0 0 0 0 0 0 0 0
9714{,352 0 0 0 0 47685439 0 18845449 0 —18845449 —47685439 | on
p?{f& 0 0 0 0 —34490824 0 0 0 0 34490824 | Ko
Pl“l’% 0 —17391620 12253260 0 69915146 | —117899406 —10971678 —72181722 26719220 130795200
p];‘l’lfz 0 117647120 0 0 46800340 29282384 0 0 0 12309516
p?{‘;}é 12253260 0 190596948 0 —34173451 | —171438523 63948319 —23837601 | —150987832 0
pl{‘l’?mi 0 0 0 0 82176263 0 111016253 0| —111016253 | —82176263
ppass 0 0 0 0 0 0 0 0 0 0| on
9714{,252 0 0 0 0 0 0 92170804 0 —92170804 0| K3
PR 0 0| —20253916 0 0 | —158394664 | 53858088 0| 146028892 0
p7141’1m22 0 —36759780 | —348686720 0 —72509332 476765190 | —145499112 72181722 168704198 91843194
p]fl?}mlz 12253260 36759780 —12253260 263951112 65255891 24506520 47369001 | —203429208 3444611 | —351496587
PR e 0| 110279340 0| 97196160 | —2080783 | —2772867 2447827 | 15802163 0 | —220871840
/)7141’?32 0 0 —36759780 —19770612 0 13043859 74992528 1187909 —10090231 —22603673 | on
p7141’72£2 0 —36759780 12253260 123717500 91843194 38742048 —52777302 | —139383272 —10971678 | —26663970 | K4
p]{‘l’iblz 0 36759780 61266300 81819360 —91843194 | —64829766 | —174352686 208670186 31152140 | —67403720
p];‘l?lfz 0 | —183798900 —12253260 | —519047460 | —87681628 —33196314 77814112 92645702 10971678 860585430

TABLE 6.2

The coefficients of A2, X2, A2, A2, A1)2, A2A3, A3ha, A1, A1A3 and AaXyg for the siz piecewise quadratic polynomials p
17 A2 A3r Ay

v4,12

Pl ms in (3.38) on each of the four sub-tetrahedra K1, K2, K3 and K4. We define 92141’:173172 =p

_ a,ba

n1,T2

v4,11

V4,22

v4,33 nd
ni,xos Pni,xos Pni,xss Pni,xss Pni,xs &

V4,23

V4,31
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We note that the matriz ¢ will be

TABLE 6.4
fK Y dx where the entries in X are in terms of the vectors of piecewise quadratic polynomials defined by (6.1).
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K|

The matriz ¢
identical for every tetrahedron K.
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