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CONSTANT FREE ERROR BOUNDS FOR NON-UNIFCRM
ORDER DISCONTINUQUS GALERKIN FINITE ELEMENT
APPROXIMATION ON LOCALLY REFINED MESHES WITH
HANGING NODES

MARK AINSWORTH AND RICHARD RANKIN

ABSTRACT. We obtain fully computable constant free & posteriori erpor
bounds on the broken energy seminorm and DC-norm of the error for
non-uniform polynomial order symmetric interior penaity Galerkin, non-
symmetric interior penalty Galerkin and incompleto interior penalty Galerkin
finite element approximations of a linear second order elliptic problem on
meshes containing hanging nodes and comprised of triangular elements, The
estimators are completely free of unknown congtants and provide guaran-
teed numerical bounds on the broken energy seminonn and DG-norm of the
error. These estimators are also shown to provide a lower bound for the
broken energy seminorm and DG-norm of the error up to a constant and
higher order data oscillation terms.

1. INTRODUCTION

Two of the major advantages of discontinuous Galerkin methods are that,
since the finite element spaces are discontinuous, they readily allow the order
of approximation to vary from element to element in the mesh as well as allow-
ing approximations to be obtained on meshes containing hanging nodes, This
means that refinements can be made to areas where the aceuracy is poor without
having to propagate refinements to neighbouring elements in order to maintain
conformity of the mesh. A posteriori error estimators are often used to detect
where in the mesh the accuracy is poor so that the mesh can be refined or the
order of approximation increased in these locations until & stopping criterion has
been satisfied. While there is already a wealth of a posteriori error estimators
available for the error in discontinuous Galerkin finite elernent approximations
[8,9,15,19], all of these a posteriori error estimators contain unknown constants
and so they are not actually fully computable. Consequently, they are really
error indicators, as opposed to estimators, since they do not estimate the ac-
tual value of the error and as such cannot be used as a quantitative stopping
criterion in an adaptive refinement strategy.

In [2, 3], the first fully computable bounds were obtained for both the broken
energy seminorm and the DG-norm of the error in the first order syrninetric
interior penalty discontinnous Galerkin finite element approximation of a linear
second order elliptic problem with variable permeability on meshes where no
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hanging nodes are present. Computable bounds on the error in the DC-norm for
elements of fixed, but arbitrary, order, again on meshes without hanging nodes
were subsequently obtained in [1G,14,17]. In [5] the ideas used in [3] were
extended to obfain fully computable error bounds, completely free of all un-
known constants, which were applicable to symmetric interior penalty Galerkin
(SIPG), non-symmetric interior penalty Galerkin (NIPG) and incomplete in-
terior penalty Galerkin (IIPG) finite element approximations of first order on
meshes containing hanging nodes.

The objective of the present work is to extend the ideas used in 5] to obtain
fully computable a posteriori error estimators, completely free of all unknown
constants, for non-uniform order discontinuous Galerkin finite element approx-
imations on locally refined meshes with hanging nodes. The estimators we
obtain also provide lower bounds up to a constant on the DG-norm and broken
energy seminorm of the errer plus higher order data cscillation terms. In con-
trast to [15, 19], we do this without making any assumptions on the regularity of
the weak solution u to the problem considered, beyond the minimal assumption
u e H Q).

We know of no work, apart from this article, where fully computable estima-
tors for the error in discontinuous Galerkin finite element approximations are
obtained for general non-uniform order approximation on meshes containing
hanging nodes that provide two-sided bounds {i.e. efficiency). If the constant
in the Poincaré-Iriedrichs inequality for the domain is known, then computable
bounds for the error in the discontinuous Galerkin finite element approximation
can be obtained using the approach in [21]. Unfortunately that estimator re-
quires the solution of a global dual problem on the entire domain and the issue
of whether the estimator provides a lower bound on the error is not considered.

The remainder of the paper is organised as follows. In Section 2, we de-
scribe the finite element schemes, introduce the notation and give an explicit
computable bound for the values of the interior penalty parameters needed to
ensure the existence of the discontinuous Galerkin finite element approximation
for ali versions of the method. In Section 3 we present numerical examples illus-
trating the theory before stating our computable error bounds in Section 4. We
then present the proofs of our results in Sections 5, 6 and 7 before concluding
with some extensions of the theory in Section 8.

2. PRELIMINARIES

2.1. Model Problem. Consider the model problem
~div({Agradu) = f in {}

subject tou=¢onI'p and n- Agradu = g on 'y, where (1 is a simple plane
polygonal domain, the disjoint sets I'p (nonempty) and Iy form a partitioning
of the houndary I' = 90 of the domain and n is the outward unit normal
vector to I'y. The data satisly f e Lo (), g€ La(Tw), g€ H' (Tp) and A is
symmetric positive definite,
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The variational form of the problem consists of finding 4 € H* (1) such that
u=gqgon ['p and

(Agradu,gradv) = (f,v) + (g, v)p, Vv € HL (), (1)

where HL, () = {v € H' () : v=0on [p}. We shall use the notation (-, -},
to denote the integral inner product over a region or line segment «, and omit
the subscript in the case where w is the physical domain .

Let P be any partition of the domain () into the union of nonoverlapping,
shape regular triangular elements such that the nonempty intersection of a
distinet pair of elements is a single common node or a single common edge
which is an entire edge of both of these elements. In addition we shall insist
that this partition is such that every edge which is the complete edge of an
element in P and lies on the boundary of the domain Q is a subset of the
closure of either the Dirichlet boundary I'p or the Neumann boundary I'y and
that 4 € R2*2 on each element in PO, We generate a family of partitions
F = {P(“} from P recursively by marking a subset of triangles in P for
refinement. These elements are refined by sub-dividing each element inte four
congruent sub-triangles as shown in Figure 1. We shall assume that additional
refinements are then performed to ensure that there is at most one hanging
node per edge of an element.

|
K \ LK \

i i 1
I‘. L _MWWWJ

FIGURE 1. The refinement of triangle X into four congruent
subtriangles K1, Ky, K3 and K.

In order to avoid propagation of refinements, we permit hanging nodes such
as those shown in Figure 2 with more examples being found in Figures 5, 7, 9
and 11 in Section 3.

We note that the family of partitions is locally guasi-uniform in the sense
that the ratio of the diameters of any pair of neighbouring elements is uniformly
bounded above and below over the whole family.

2.2. Discontinuous Galerkin finite element approximation. Henceforth
since we shall consider only a fixed partition P® in the family we omit the
superscripts. Let K and K’ denote individual elements in P, let 8K dencte
the boundary of element K and let £x denote the sef containing the individual
edges of element K. Likewise, we let £5, £p and Ex denote the sets of edges
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FIGURE 2. Example of the types of hanging nodes allowed.

defined by

& = {yi7=0KNOK K K eP),
En {vCT'p:vyée &k for some K € P},
Ev = {yCTy:v €&k for some K ¢ P}

il

and let &r = Ep U En and P = &7 U Er. For m € Ny, let Py, (K) denote the
space of polynomials on K € P of total degree at most m and let Py, () denote
the space of polynomials on v € P of total degree at most m (with respect to
the arc length parameter). Let [K| denote the area of the element K and let
l7| denote the length of edge .

For each element K € P, let ng > 1 denote the order of approximation on
element K. The discontinuous Galerkin finite element space on P is defined by

Xp={v:Q=—R:ygeP, (K) YKeP}.

For each element K € P, let ug : 0K — {+1,—1} denote & sign function
that is piecewise constant on K and satisfies pg + g =0 on 3K NOK'. Let

{n-Agradv), =

% ,uKng,-r{-AKgradv;K+pK1n$J~Angradle,) on v =dKnNdK’,
ny - A grad v ony €& nNép

and
o], = prU K + prevge oy =K NaK’,
i |5 onvyEEgNEpD

where n:‘f is the outward unit normal vector to edge v of element K and A g =
A g with nﬁ,{’ and Ag being defined analogously.
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Let 7 € [—1,1] be fixed and, for w,v € Xp, define bilinear forms B, :
Xp xXp - R by

B; (w,v)
== Z (Agradw,gradv), — Z ((n -Agradw). [12}7)},
KeP YEEUED
Finy 1
oy Z ([wlv {n . Agrad ’U),f)ﬂf + Z (;ﬁ [w], , {*UJLJ
~EEIE L YEEIUED v it
and linear forms L, : Xp — R by
L) = > {fule+ Y (go),
KeP YEEN
Ry
+ Z ;-—Tqﬁv -7 Z (q, {n. Agrad'u)nf)
L = v

where the ., > 0 are the usual interior penalty parameters chosen as in Lemma
1.

We can obtain a first order discontinuous Galerkin finite element approxima-
tion of the solution to problem (1) by finding upe < Xp such that

B (upg,v) = L, (v) Vv e Xp. (2)

There are many variants of discontinuous Galerkin methods 7,16} corre-
sponding to the particular choice of the parameter : + = 1 gives symmetric
interior penalty Galerkin (SIPG), v = —1 gives non-symmetric interior penalty
Galerkin (NIPG) whilst T = 0 gives incomplete interior penalty Galerkin (IIPG).

2.3. The choice of the interior penalty parameter for discontinuous
Galerkin finite element methods. Usually, when discontinuons Galerkin
methods are being considered, the existence of a unique solution to (2) is proved
under an assumption that the interior penalty parameters «. are sufficiently
large without quantifying precisely how large. A hound on the size of K~ sufli-
cient for unigue solvability is given in the following lemmas:

Lemma 1. Let 7 € [—1,1]. If the interior penalty parameters Ko are chosen
such that

1 2 2
Ky > L%Q— MAX g (nk +1)p(Ax) Z A?[!(T forallvyeaP  (3)
yCAK Y€€k
where
oy T,
A'y = I dfvCTIp, (4)
0 ifyC Ty

and p (M) denotes the largest eigenvalue of the symmetric matriz M, there
exists o unique solution upe € Xp to problem (2).

A related result was obtained in {20] for the case when T = 1, A=17and
I'=Tp with the factor ny (ng + 1) in (3) replaced by {(ni -+ 1) (ng +2). We
prove Lemma 1 in a similar way to that result aithough we shall defer this
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proof until Section 5. We note that another different lower bound for the size
of £y was proved in [13], for the case when there are no hanging nodes in the
mesh. Which of the bounds in [13] and Lemma 1 gives a lower threshold for
the value of k, will depend upon the data 4 in the problem heing solved and
the triangulation used in the discretisation.

2.4. Data oscillation. For v € Ly(K), let Prv be the function satisfying
(v~ Pgv,pjp = 0forall p e Pry—1 (K. Similarly, for v € L, {v}and v € Exni
&p, let Pov be the funetion satisfying (v— Py, p)ﬁf =0 foralipe P, _1{~).
The oscillation of the data f on an element K € P is defined to be

osc (£, K) = (K1Y || = Px fll 0, -

Likewise, the oscillation of the Neumann data gon an edge v € Ex N Ey is

defined to be
osc (9,7 = [ lg = Pyglly, .y -

Also, the oscillation of the Diricklet data g on an edge v € Ep N Ex is defined
to be

dq
at.,

dq
at“f Laly)

where £, is a unit tangent vector to edge 7. We shall adopt the convention
whereby osc (g,7) = 0 if v & Ex and osc(g,v) = 0 if v & Ep.

osc (g, 7) = I{*/?

B,

2.5. The broken energy seminerm and DG-norm, Let gradyp denote the
operator defined by (gradpe fv)‘ % = grad (’Ul K) for K € P and let the broken
ELergy seminorm over a region w be denoted by

I, = (A gradp - gradp /2 (3)

W
where again we shall omit the subscript in the case where w — (). Let the
DG-norm over a region w be denoted by
2

K
Mhew=12+ > =0, (6)
- TEEPUE 1 "Lty
YW
with HHH%G = E!E!%GQ Let the error in the discontinuous Galerkin finite ele-

ment, approximation be denoted by € = u ~ upg where u is the solution to {1)

and upg is the solution to (2). Now, since EE{E] ,ﬂ = “{u;;g] H for all
i 1!3 R Laly)

Lal(v)

¥ € &y and ”[e]ﬂf” = |lg ~ wpgll gy, for all v € Ep, the quantity

Lafv)
2

2 Igll ”[e]“‘ ‘Lz(”f)

’YEE}U&?D

(7)

is directly computable. Therefore, if we can obtain a constant free estimator for
the broken energy seminorm of the error then we automaticaily have a constant
free estimator for the DG-norm of the error as well, Moreover, we can also show
that both of these norms are in fact equivalent:
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Lemma 2. If x satisfies {3) then the DG-norm and broken energy seminorm
of the error e == w — upg are equivalent in the sense that

lel® < el (8)

and there exists o positive constant ¢, independent of e and the size of the
elements in the mesh but depending on the topology of the mesh and the orders
of approzimation, such that

elpe < Bel® + 3 os? (LK) + D osc* (gy) + 5 osc®(g,7). (9)

KeP ~v&ED ~EE N

el

A proof of this result can be found in Section 7.

3. NUMERICAL EXAMPLES

Before presenting the details of the computable error bounds we shall first
present examples of their performance in actual applications. When reporting
the numerical results we let: n denote the estimator of the broken energy semi-
norm of the error (which we shall define in Section 4); npq denote the estimator
of the DG-norm of the error {which we shall also define in Section 4); osc denote
the oscillation terms in the estimator and; the effectivity indices are denoted

by ¥ =5/ fel and ¥pe = npa/ el po-

3.1. Example L. For our first example we look at the performance of the
estimator for the problem of finding u such that —Aw = f in the region { =
{x>0,y>0,2+y <1} with homogeneous Dirichlet data on I'p = 80. The
datum f is chosen so that the exact solution to this problem is

wezy(l—x — )t

The initial mesh used for this exarnple consisted of the one triangle making up
the domain itseifl and we let 7 = | and K, = 5n, (n, + 1) on all v € P. Note
that these values satisfy (3). The mesh was then uniformly refined. We did
this for the cases when ny took the values 1 to 6 on all K € P and the results
obtained are shown in Figure 3.

From the graphs in Figure 3(a) and Figure 3(b) it can be seen that, as we
shall subsequently prove, the estimators do provide a guaranteed apper bound
on both the broken energy seminorm and DG-norm of the error. From Figure
3(e) it can be seen that although the effectivity index starts off quite high it
does go down to a value which is between 1.45 and 2.70 for all orders as the
mesh is refined. This large initial overestimation of the error is explained in
Figure 3{d) by the fact that it is the oscillation terms that are causing this large
overestimation of the error. It is also worth noting that the effectivity index
remains bounded as the order of the approximation increases.

3.2. Example 2. For our second example we look at the performance of the
estimator for the problem of finding u such that —Aw = f in the region

Q = (=1,1) % {(0,1) U(~1,0) x (1,0}
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FIGURE 3. Performance of the estimators of the (a) broken en-
ergy seminorm and (b} DG-norm of the error, (c) effectivity
indices of the estimators and (d) the percentage contribution of
the oscillation terms to the overall estimator for Example 1.

with homogeneous Dirichlet data on Tp = 8. The datum f is chosen so that
the weak solution to this problem is

w= (1 -rcosf) (L -~ r¥sind) r*/ sin (26/3).

The gradient of w displays singular behaviour at the origin since gradu =
O (r~%/%). The initial mesh used for this example is shown in Figure 4(a) and
we let 7 =1 and & = 5ny {n., + 1) on all v € IP which satisfies the bound
given in {3).

The mesh was then adaptively refined whereby a bulk criterion [12] was used
to refine the mesh on the sinallest number of elernents such that the estimator
of the broken energy seminorm of the error on these elements exceeded 50%
of the value of the total error. Additional refinements were then performed to
ensure that there was no more than one hanging node per edge.
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We did this for the cases when ny took the values 1 to § on all K € P and
the results obtained are shown in Figure 6. We also note that the culy time
that additional refinements had to be performed to ensure that there was no
more than one hanging node per edge was when going from the 14th to the 15th
mesh when the order of approximation was 3 where two additionsal refinements
had to be performed. Consequently, our limitation to one hanging node per
edge results in virtually no loss in performance compared with the case when
arbitrary numbers of hanging nodes are permitted. It can be seen in Figure 5
that when polynomials of degree six are used very little mesh refinement has
taken place away from the origin, where the gradient of « has a singularity, in
contrast to the case when using polynomials of degree one.
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FIGURE 5. The final meshes for Example 2 with ng = 1 (left)
and nx = 6 (right) for all KX € P.

From the graphs in Figure 6{a) and Figure 6(b) it can be seen that, as in
Example 1, the estimators do provide a guaranteed upper bound on both the
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Freure 6. Performance of the estimators of the {a) broken en-
ergy seminorm and (b) DG-norm of the error, (c) effectivity
mdices of the estimators and {d) the percentage contribution of
the ascillation terms to the overall estimator for Example 2.

broken energy seminorm ané DG-norm of the error. From Figure 6(c} it can
be seen that the effectivity index for this example is between 1.23 and 2.31 for
all orders as the mesh is refined. It is again worth noting that the effectivity
index does not appear to be increasing as the order increases.

The above results correspond to uniform order of approximation over the
entire mesh. We now consider the effects of allowing the order of the elements
to vary locally beginning with the initial mesh shown in Figure 4(a) and uniform
initial order nx == 1 on all elements K in this mesh. We then implemented the
following adaptive refinement strategy:

(1) The bulk criterion described above s used to mark a set of elements
M < P where the local estimator is largest.

(2) The elements in M which have a vertex lying on a vertex of {3 are
refined into four congruent sub-triangles.
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(3) The order of approgimation is increased by one on the elements in A
which were not refined in step (ii).

(4) Additional refinements are then performed to ensure that theve is no
more than one hanging node per edge.

However, in the seventeen adaptive refinements we performed using this re-
finement strategy, no additional refinements had to actually be performed to
ensure that there was no more than one hanging node per edge. A sample of the
adaptively refined meshes are shown in Figure 7 with the results we obtained
being shown in Figure 8.

Figure 8(a) shows the estimators providing & guaranteed upper bound on
both the broken energy seminorm and DG-norm of the error. From Figure
8(b) we see that the effectivity index for this example is between 1.34 and 1.69.
However, it does appear to be increasing as refinement with respect to both the
mesh and the polynomial degree is carried out. While we were able to prove
that the estimator was efficient with respect to the size of the elements in the
mesh we were unable to show that it was efficient with respect to the degree
of approximation. Figure 8(a) shows that the effectivity index of the estimator
does not appear to be increasing enough to significantly degrade its use as a
stopping eriterion.

3.3. Example 3. For our final example we look at the performance of the
estimator for the problem of finding u such that — Ay = f in the region

1 1
0 = {{x,y):m<0,y> -2 — 1,y < 3" 5:::}

1 1
U{(r,y)::c 20,y >0,y < 3 mi:c}
with homogeneous Dirichlet data on I'p = 8. The datum [ is chosen so that
the weak solution to this problem is

Y= (rsinéH— %rcos@ - %) (rsing + 2rcos® + 1) 7%/ sin (20/3) .

As in the previous example, grad u = O (r~/3) and so is singular at the origin.
The initial mesh used for this example is shown in Figure 4(b) and we let 7 =1
and #y = Bny (ny +1) on all v € AP which again satisfies the bound given
in (3}. The mesh was then adaptively refined using the adaptive refinement
strategy described for uniform order approximation in the previous example.
We adaptively refined the mesh fourteen times for the cases when ny tock
the values 1 to 6 on all K € P and the results obtained are shown in Figure
10. The final meshes obtained after fourteen adaptive mesh refinements for the
cases when nyx = 1 to ng = 6 on all K € P are shown in Figure 9 where
it can be seen that, as in the previous example, when polynomials of degree
six are used very little mesh refinement has taken place away from where the
gradient of 4 has a singularity, in contrast to the case when using polynomials
of degree one. We also note that the only time that additional refinements
had to be performed to ensure that there was no more than one hanging node



12 MARK AINSWORTH AND RICHARD RANKIN

B

Ry

Fiaure 7. The 2nd, 5th, 8th, 11th, 14th and 17th adaptively
refined meshes for Example 2.

per edge was when going from the 14th to the 15th mesh when the order of
approximation was 3 where three additional refinements had to be performed.

From the graphs in Figure 10(a) and Figure 10(b) it can be seen that the
estimators again provide a guaranteed upper bound on both the broken energy
seminorm and DG-norm of the error. From Figure 10(c) it can be seen that the



CONSTANT FREE ERROR BOUNDS POR NON-UNIFORM ORDER DOFEM 13

oty inday
i
'3<1'_9

145 N/é
WP e o, sonenifori ned
- 9, HOT-Unifarar f 14r

v Pl nameunifoen for

DG, SR 138

S e, mon-waiforts ny
D.‘ 2 3 A -2 2 5 g

10 I 10 10 1o 10
Numbar of degiass of readam Humbet of dagitas o readom
(a) (b)

FIGURE 8. {a) Performance and (b) effectivity indices of the
estimators for Example 2.

ok
| N
24 \ '\
\
a4 5 \\
\\ \
az :
" i
= \ ]\ ]
6.2 “-\_\' ¥
LT
0.4 %, \\ kY
w06 AN
%
2.8 N
-1
i DE .08 W04 B2 ] [ 04 08 0.8 1 - =06 AB w04 R [ a2 L2 L 2.2 1
x %

Fi1GURE 9. The 14th adaptively refined mesh for Example 3 with
ng = L (left} and ng = 6 (right) for all K ¢ P.

effectivity index for this example is between 1.40 and 2.74 for all orders as the
mesh is refined and that the effectivity index does not appear to be increasing
as the order increases.

We then went back to the initial mesh shown in Figure 4(b) with uniform
initial order nx = 1 on all elements K in this mesh and implemented the
adaptive refinement strategy described for non-uniform order of approximation
in Example 2. In the seventeen adaptive refinements we performed using this
refinement strategy, the only time that additional refinements had to be per-
formed to ensure that there was no more than one hanging node per edge was
when going from the 17th to the 18th mesh where one additional refinement
had to be performed. A sample of the adaptively refined meshes are shown in
Figure 11 with the results we obtained being shown in Figure 12.
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Fiaure 10. Performance of the estimators of the {a) broken
energy seminorm and {(by DG-norm of the error, (¢) effectivity
indices of the estimators and (d) the percentage contribution of
the oscillation terms to the overall estimator for Example 3.

Figure 12(a) shows the estimators providing a guaranteed upper bound on
both the broker energy seminorm and DG-norm: of the error. From FPigure
12{b) we see that the effectivity index for this example remains between 1.40
and 2.42 as refinements are carried out. This would lead us to believe that it
is not the presence of the singularity which is causing the effectivity index to
increase as was observed in Example 2.

4, THE COMPUTABLE ERROR BOUNDS



CONSTANT FREE ERROR BOUNDS FOR NON-UNIFORM ORDER DGFEM 15

=1 “08 08 04 .02 bl 0z G4 98 98 i =1 -0E -6 A0d4 .02 a a2 ad L33 0.8
® 3

_—
[

o5

x
a6

ot . : ot .
w1 08 06 B4 .02 a2 e 98 1 -t A& DB uDd LR Q9 bR b4 06 28 1

.
o
;

FIGURrRE 11. The 2nd, 5th, 8th, 11th, 14th and 17th adaptively
refined meshes for Example 3.
4.1, Notation. Before stating our main result we shall define the notation
which is required to make use of it. Let
[n- Agradupgl, =

5 Ignﬁ,{ - Ay grad Upgk T+ ﬂff’ - Aps grad UDGEK’) on K NEK' < ~,
on v € Ex N EN,
ony & ExNEp

(&)

v - Axgradupgg ~ Py

n
0
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FIGURE 12. (a} Performance and {b) effectivity indices of the
estimators for Example 3.

and
UpGlK — Upglrr on 0K NAK' ¢ »,
[?'LDG],),K - UDGEK - on v € 5K 8! ED-;
0 on v € Ex MEy.
Define
rg = Py f+div(Agrad upg)
on K and

By .
RK P {’ﬂ, . Agrad ’U,DG],Y — (I_:;]% LUDG]qK)
~
on vy € dP such that v C 8K. Let K denote the set of elements in P whose
boundaries share more than a single point with K. Let n # = max ngs. Let
Kek
the vertices of element K be labelled &}, @} and xy. Let T be the subdivision
of the element K into the four congruent triangles Ky, K, Ky and K, with K;
being the element containing vertex x} of element K and v, = 0Ky N OK; for
i=1,2,3. Also, let £, denote the set of the three edges of triangle K. Define

Ry = —Ef (Lirg)g — Z (l,RK)nf onv fori=1,2,3
it ' y
re€r, N\
and
P{Tg)={v:vy, € Brjp (i) x P (Ki) fori=1,2,3,4) .

Let o € P(Tx) be the unigue function which minimises (AWEO‘K,O’K)K
subject to

(i, prad Uk, (105

= (v, + (1~ 264) > (Ri,v), Woe Pr vz (K;) fori=1,2 3,4,
7€€K,
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Define
— /2 . -
g = (A 10‘K70’K)h{ HCx = Peflpun+ Y. CF 19 = Pl 1,0
YEERME N
(11)
where b
Cre =~ p (A71)/?
and
1/2
gl b [he -1
SR e plAK).
¥y

with hg being the length of the longest edge of element K.

For v € 9P, let n, = max ng:. Let N index a set of points {wm}ma\f}(

’ylég%’

on K associated with a Lagrange basis for the conforming finite element space
of order n i on Tx and let &V I‘; dencte the restriction of the set A K to the
points which do not lie on the boundary of element J. Let N, index a set of
iy -+ 1 points {@p},,. A5, Oy which includes the endpoints of edge + and et
N«I‘,D denote the restriction of the set N, to the points which lie on the closure
of the Dirichlet boundary. Let the function g7 be such that, for all v € &p,
Uy € Py, () and g7 (@) = g (2 for alim N, For m € N, let Q,, denote
the set of elements in P whose closure contains the point x,,.

Let § {up¢) be the continuous function on O satisfying S {upe) i € Pry (K)

for all triangles KL € T forall K € P, 8§ (upa)), € P, (y) for all v € 8P and

ar (@m) ifme fo
_ UDGIK (.’L‘m} ifme NK
S{upg) (Zp) = 1 o i N\ ND
Z upgir: (®m) i m e M\ N
i Kiely,

for all v € 0P and K € P where #Q,, denotes the number of elements of P
contained within the patch ,,,. For K € P and v & Ex MNEp, define

H,"-;(K):{v;vefﬁ(fc);UEOOnaK\y}.

Define
Vi =fupe — S(upailix + inf ol . (12)
vegknep ETI0:

4.2. The computable error bounds. Our constant free upper bound and
lower bound on the DG-norm and broken energy seminorm of the error e in non-
uniform order discontinwous Galerkin finite element approximations on locally
refined meshes with hanging nodes are stated in the following thecrem:

Theorem 1. Let g and Uy be defined as in (11) and (12) respectively. Then,
the broken energy seminorm of the fotal error e = 14 — 4 Da coan be estimated as

el <n? = 3 (8% + 0% . (13)
KeP
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Also, there exists a positive constant ¢, which is independent of e and the size
of the elements in the mesh P bul dependent on the orders of approzimation,
such that

e (@ + %) < lel’+ > os? (LK) + S osc? (g7 + 3 osc® (g,7).
KeP Kep vEED YLy
(14)
Moreover, the DG-norm of ihe total error e can be estimated by

2 Fimg
lelbe <ribe =7+ 3 T lwal, |+ 20 T une — g
ve&; L) velp h/|

with
e (P% + Tk (15)
S lelbei+ X osgm+ Y os (FEY+ S osc?(g,7).

veEx D K'ek YEERMEN
where Ex = {y € 9P . ¥NEK is nonempty}.
The proof of Theorem 1 is given in Section 6.
5. DERIVATION OF BOUNDS ON THE INTFRIOR PENALTY PARAMETERS FOR
WELL-POSEDNESS

In this section we give a proof of Lemma 1. Since Xp is a finite dimensional
space, it suffices to show that upg = 0 is the only solution to the homogeneous
problem. For v € Xp, we can rewrite

> b+ > o,

Kep ve& U | Laty)
~(1+n 3 (<n - Agradu)., ['U]Jv. (16)
veErUED
For any 4, > 0 and v € £y U Ep we have that
(14 7) (<n Agradv)_,[v] ) (17)
s
(1+7")c5ﬁ,[’y_1 2 f4r
JO R S . ML d
= ‘< - Agradu), La(y) 26 hr| i[ 1

Now, f y= 8K NaK' for K, K’ ¢ P, then

2
byl |[on - A graduy [ .

5. in . 2
< S0 It A+ S g gead o

La(n) Lo

Sy 1l

”AKJ grad U%Krg 2

dy |7l 2
s _’Y—Q——— HAK grad UgK“Lz(“f) + EELQ(W) !

while if v € £ N Ep we have
Oy Iy “ -Agradv),

<8y vl |Ax grad '“IKHL@,)
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which together imply that

Z Oy 1] H(n -Agradv),
YEETUED

S 220 2. Ml Axeraduxl

KeP NyeEy ~nedP.
yCOK

Lalv)

Upon observing that Ax gradvy € Pp,_y (K) x P, _; (K), it can be seen
that in [23] it was proved that

K
; ’CU
”AK gmdﬂgl{jflm < T”K (ng -+ 1) i 1 ifAK grad@[ Ly(KS

for v € &P such that v C 8K where

¥k _ | 2 ifyis net a complete edge of elemens K,
7 T 1 1 otherwise.

Making use of this result then allows us to say that

5 o Ao

YEErIED Laly)
nig (ng + 1) s whiA, in
< 3 5 + 5 2 fK |Ax gradv”f:z(h’)

KeP ~EHP: !

Z K (n; +1j P (ALK Z byl A | e

Kep YEIP: !Kl
YCEK

!

Combining this with (16) and (17} yields

Wy Aﬂf
LT (S
'yCK v EEx

147 6'\/ - h"z | 2
- (npg +1)p(Ax) W_KT— lwllz

47y 1 2
t 2 (R”’ ) fl o8 La)
yeErUED ‘ T
where we have also made use of the fact that
_ z ol A y]? Z it A.},|’y
~eGP: Z wKAw i’?f ~eaP, Z Ay i'\/
Y CHEK o EHP: YK y GE}{
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. 1
Now, if -, satisfies (3) then we can choose &, such that s, — ——%«I > 0 and
i
W—i{AvEVIQ 4T
> AP A

Y elx

(Tni,w,‘:fv Ay |2

0
&

g (nk + 1)p(AK)

for all K such that v < K. Consequently, when L, (-} = 0, equation (2)

implies that Jupg(; = 0 for all elements K € P and

2
[UDG}VHLQW) for all

edges v € &7 U Ep. Hence, the only solution to the homogensous problem is
upg = 0, implying that there exists a unique solution upg € Xp to problem

(2).

6. DERIVATION OF UPPER BOUNDS ON THE BROKEN ENERGY SEMINORM OF
THE ERROR

This section is concerned with providing a proof of Theorem 1. As mentioned
previously, since (7} is directly computable we need only concern ourselves with
obtaining a constant free upper bound on the broken energy seminorm of the
error. In order to do this we shall decompose the broken energy seminorm of
the error into conforming and nonconforming components as in {11]. The result
used to do this was proved in [11] for scalar permeability tensor A. A proof of
the version given below will be found in {1.

Lemma 3. Let H = {we HYQ) : (w,1}q =0 and dw/0t = 0 on T} where
t is a tangent vector fo Uy. The error e = u — upg mey be decomposed into
the form

Agradpe = Agrad ¢+ eurly {18)
where the conforming error ¢ € HL{0) satisfies
(Agrad ¢,gradv) = (Agradpe gradv) Yo € HH(Q) {19
and the nenconforming error 1 € 'H satisfies
(A7 curly, curl w) = (gradp e, curlw) Yw € H. (20}
Moreover,
bell® = I6§® + (A" curly, curly) . (21)

The importance of this lemma is that it allows us to write [le]® as the sum of
a conforming part ||¢]|* and a nonconforming part (A~} curl s, curl ) which
reduces the task of obtaining an estimator for ||} to that of obtaining separate
estimators for each of the two terms in this decomposition. The upper bounds
in Theorem 1 will therefore follow if we can prove the following two lemmas:

Lemma 4. Let Oy be defined as in (11). Then
Ilol* < > @k (22)

Kep
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Lemma 5. Let Wy be defined as in {12). Then
(A7 curly, curly) < 5 w4, (23)
Kep

Moreover, the lower bounds in Theorem 1 will follow from Lemma 2 if we
can prove the following two lemmas:

Lemma 6. There exists a positive constant ¢, independent of e and the size of
the elements in the mesh P but depending upon the orders of approzimation,
such that

ed? < f{{e!ﬂQDGﬁ + Z osc? (f. K'Y + z osc? (g,v) . (24)
K’gf{’ YEEETE N

Lemma 7. There exists a positive constant ¢, independent of e and the size of
the elements in the mesh P but depending upon the orders of approzimation,

such that
< ¥ (g,

2

Lafvy)

Fosct(g,) ). (25)
We shall now concern ourselves with the proofs of the preceding four lemmas,

6.1, Proof of Lemma 4. Letting v = ¢ in (19) gives
4l = (Agradp e, grad ¢)
into which we can substitute the definition of ¢ and (1) with v = ¢ to obtain

[#4* = (£,9)+(g.0), — (A gradp upc, grad ¢)

il

> | (f @)k ~ (Agradupe, grad o), + > (g,
KeP YEERNE N

Now, integration by parts and the fact that ¢ =0onI"p gives

H|<i5|”2 = Z ((f: ¢)K - Z ([TL : Agrad UDG],}, ’¢)A,«

KeP ~EEy
+ Z (Q*Pﬁygaﬁﬁ)nf)
YCERNEN
and since

Z Z (%P'y,(} {UDGETK ¢> =0,

HKeP year: ¥
~TOK
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where P, g [u DGJ.YK is the constant such that (P»-],!g [upg] 4 = fupg] e 1) . = (),

we can say that

Iel* = > ((PKfa¢3)K - ([H'Agradupclf},,cb)w

Kep vEE
Y
- > ( ﬁ Py lupcl. x ,qb)
~4E8F 7 i
YCAK
+ Z (g_P“fg1qb)nY+(f—PKf!¢)K)‘
YEEw ME N

We can then rewrite this equation as

WlI? = 3 ((rm@ﬁ 3 (Ri,9),

KeP ve€x

+ Z (9*P79a¢)7+{f_PKf:¢)K)- (26)

Vel NEp

Let 3%, denote a cubic bubble function which vanishes on the boundary of
triangle X;. Similarly, for v € £, let 3,*;"2 denote a quadratic edge bubble
function which vanishes on the two edges of triangle K; which are not edge ~.
We shall now show that equation (10) is equivalent to

nf o = (1-264) Ry € P,

—1 {7} on « for all v € &, (27)

and
—divoy = TE & IP’W_Rﬁl (IQ) on K (28)
for i = 1,2,3,4. Integrating equation (10} by parts vields

Z ((1 - 25@4) By — n,YK”‘ STy, 1:)“j +{rg +div O‘K,U)K-i =0V & Pn,f(JrQ (K;)
vEEK,

(29)
for i =1,2,3,4. It is immediate that if (27) and (28) hold then so does equa-
tion (29). Conversely, for i = 1,2,3,4, letting v = P, (ri + div JK)J;Q &
Pr 42 () in equation (29) leads to equation (28). Also, for ¢ = 1,2,3,4 and
each v € &y, extending R, onto K; as a polynomial in Pr -1 (K} and
letting v = 35 {(1 - 264) Ry — ni . O'K)!Ki € P42 (i) in equation (29)
yields equation {27). '

In [6] it was proved that, for a triangle X, there exists a function £r €
P, (K) x Py (K) such that

nng € = (yonyforall ve &,
—divgy = (xonk
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and there exists a positive constant €, independent of the size of the triangle
K, such that

€kl Loty SC (]IC! ¢kl Loy Z MRS L.m))

veék

forall ¢, € Prq () and {x € P,,_; (KC) which satisfy

(L + > (1.¢), = 0.

YEEK

This means that, since (47", ) x 18 strictly convex, then if the data satisty

(e, Vg, + Y (R, 1), =0fori=1,234 (30)

TEEK,

then there exisis & unique o x € P (7% ) such that (A oR, o K) is minimised
subject to equation {10). Moreover, since

Z hﬂ iRKHLQ[f}r) C Z F’Y l!RK“Lg('y)ﬂ

Vel HEFP:
yCOK

then if (30) holds then o g will satisfy

(A7 ok 0k)c < C LK racll, e+ S 1 IR0 (31)

eI
YCGR

as well.

From the definitions of rx and Ry it is immediate that (30) is satisfied for
i =1,2,3. By summing the left hand side of (30) over ¢ = 1,2, 3,4 and recalling
that (30) holds for 7 = 1,2,3 we can deduce that if

(ric,1) e + Z (Ri, 1), =0 (32)
ve€x

then (30) will hold for i = 4 as well. Upon observing that we can rewrite
equation (2) as

Z ((f,v)K_ Z ({n»AgraduDg]T,v)T

Kep ’)’EES;{

- Z ( UD(“’WK, ) (33)
~EFP: Y
yCOK

+7‘ZA ('UDG q’rf'-AKgradU)i+ Z (g—ng,v)A{> = {}

yEE i k veEx Ny
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for all v € Xp, we can let v = 1 on K and zero elsewhere in this equation to
see that condition (32) does in fact hold, The fact that

{ok,gradv) = (rg,v), + Z (RK,'U),Y Vv e H{Q) {34)
TelK

is then & trivial consequence of (27} and (28) holding and implying that o
H(div; K.
Now, returning to (26) and substituting in equation (34) with v = ¢ gives

el = > ({GK,grad Pl+(f—Pefidlg+ > (- Pny:@S)T). (35)

Kep YeERNEN

By making use of results proved in [18] and [3], it was proved in [5] that

(F = Picf. 8)p < Crelf = Pre Fll ey bl (36)
when ng =1 for K € P and
(9= Py9.4), < C Mg~ Pygllp, 0 1ol (37)

when n., = 1 for v € £xNEx. Sinece when 1 x = landny > 1, Pr and P, satisfy
the same properties that Pg and P, satisfy when ng = 1 and 1, = 1, these
results hold for the Py and F, that appear in (35). Hence, we can insert {36)
and (37) into (85) and apply the Cauchy-Schwarsz inequality to (o x, grad ¢}
to yield

Iel* < 3 @5 Jo
Kep
from which the result in Lemma 4 follows.

1/2
K< ( > @?() ol

Kep

6.2. Proof of Lemma 5. In [1] it was proved that
(A" curly, curl ¥} = min Z V" — upafly, - (38)

ut e HI{0,
u*=q 01l 'p KEP

The result in Lernma 5 can then be obtained by letting v* = S{upg) ~ ¢,
where £ is an extension of ¢ — g; onto the interior of {1, in (38) and applying
the triangle inequality to the right hand side of the resulting expression.

6.3. Proof of Lemma 6. Since Cx < C'|K|%? and cF < C iy M2,

Ch SO | (ATox,0k) +os (L) + S0 ose?(g,7)

YEERNEN

Now, inequality (31) means that

(Aox. ox) e <RI Irellf o0 + S IR

~YEIP:
yCOK

2
La{)
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o)
Lafy)
for v € 8P such that v & dK.
Now, substituting (1} into (19} and then integrating by parts gives

and applying standard arguments leads to

12 Koy
ot
Latv) |yl

[UDG}TK

(Agrad g gradv) =
S b Y (v Agradupsl, o) + 3 (- Pagiv),
Kep vEEk T veERnEy

for all v € HL(2). We can then apply standard bubble function arguments
|4, 22] to this equation to obtain the estimates

2 el ey € C (180l + ose (£, K) (39)

for all K € P and

|
|12 %{n - Agradupgl,

| <C gl + D ose(f, K) +osc{g, )

“Lz {7 Kes

(40)
for all v € 8P. Combining all of the estimates given above then leads to the
regult given in Lemma 6.

6.4. Proof of Lemma 7. In a similar way to how the corresponding resuit
was proved in {1}, we can show that

inf vl < Coselg, )
UEH%,(K):
Ui ==g—G 1

which allows us to say that

% <C | flupe —S{upe)lx + D osc?(g,7)
yeExNED

Now, by the equivalence of norms in finite dimensions we can say that

lupe — S (upcili < C 3 luncix (@m) — S (upe) (@)’
mENK

= C z lupaix (@m) — 8 (upa) (:cm}f
mENK\N{(

¢S Y fupik (@)~ S (upe) (@)

FEHP: mEN'y
YyCAK

AN
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from which we can obtain the result in Lemma 7 by inserting the estimate

upcik (@m) = S (u5G) ()

2
< C ~—~1l€ -+ osc? {q, )
ot O o
YEELED: TEEy:
T Y Epn CF

for m € N, such that v € P and v 8K which can be proved in the same
way that its analogue was in [5].

7. EQUIVALENCE OF THE BROKEN H1-SEMINORM AND DG-NORM OF THE
ERROR

Finally, in this section, we present a proof of Lemma 2. It is cbvious from
the definitions (5) and {6} of the two norms that inequality {8) is true. Since
every edge in P is the complete edge of at least one element in P it will follow
that inequality (9} is true if we can show that, for v* € 9P an entire edge of
element K € P which does not lie on the Neumann boundary,

1 I .
Sy H{ejw;fmw < C(E{feﬂlp(}()%" ST esc(f,K) (41)
o Krepl)

+ 3 osclgmt 3 OSC(q,7)>

TEBR(K) YEOP{K)

where for a patch of elements w C P, & denotes the union of w and the elements
in P which have an edge on the boundary of w, {w) denotes the smallest patch
of elements in P such that w C p (w) and each edge which lies on the boundary
of p (w) is the complete edge of an element in p (w) with there being no hanging
nodes on any of these complete edges, and 8p (w) denotes the set of edges in
&P which lie on the boundary of g (w). We shall now show that inequality (41)
does in fact hold:

For v € 9P, let

dupax x Fup g if v C K ﬂaK’,

b . T
[Bupa = a?fifé*}( atg :
| ot CT) TEES - Pgk My COKNT,
0 ifyC Ty

with t,‘;,( being the anti-clockwise {(from the interior of element X } unit tangent
vector to edge v of element K and the other tangent vectors being defined
analogously. By applying a standard bubble function argument [4,22] to the
equation obtained after integrating the right hand side of equation {20) by parts
we can prove that

S |
1/2 ba
vl [ Y L

J <C ((A”“]‘ curl, curl 1[))32 + osc (g, 7)) (42)
Loy}
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for all v € O which do not lie on the Neumann boundary. Standard arguments
then allow us to say that, for v € & such that v & £y,

E,ilﬁ H MW’} Lat)

|

1
— |t s, L)
(7 cloe )WE

and so we just need to bound the final term in this inequality. ¥or K € P and
v & Ex let

< ((A”]' curly, curl fa,[));/z -+ ose (g, ”Y)) +

1 if there is a hanging node on edge -,
H, = . .
0 if there are no hanging nodes on edge 7.

Let i ¢ Py (K) be the function, supporied on element K ¢ P, which takes the

value 1 at the midpoint of edge v; and 0 at the midpoints of the other two edges

of element K. Note that this function has the propersies that (v, i),b,j = |yl 8y
—

and grad ¢ = TR - Define

vl x
i:TZHA(?ID(*]K“}?'E*n Anz’y

velK

Z Z ( o [upg] ;m%) —(f +div(Agradupg), @i g
Y

y &€k \ry; vEIP:
yCf

- ([W'AgradUDG}f}u‘Pi)w_ Yo (9- P,

yely T ove€gnEn

with n; being the outward unit normal vector to edge ~; of element K. Upon
observing that if there are no hanging nodes on edge v € £ \ % then

(1{ ) ) Sy —(iguf)w-
/l DG r\;K1(P't .y g“?‘[ DG -}41( g’y[} DG;"-J/K ’)‘} %

na] e~ (?’%’ {uDG]TK)

{EMDG]
ot |,

A

CVI“/\”2

THLz(v)

c |y

IA

+ osc (g, 7)
Lafy)
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we can say that

Wil < C( ST Hy S 17‘1/2 l[i pal,

VEEx  veam L)
YTy
8uDG
+ 3 (1= Hy) ;[ o
¥e€r\ % ! TNLa()
. I [ Ceri1/2
< 3 Y I Agradupcl,| K ekl
) La{y}
~EdP:
~yCEK
+osc{f, K} -+ Z osc (g, 7) + Z osc(q,'y))
YeERNE N YEE R D
< STH, S N el
= 1/2
("'681{ Ve8P I / La(y)
vy
flelp+ 3 osc (LK) + S oselon s 3 osc(m))
Kel yeErNEN veERNEp

upon applying (39), {40, (42) and (21). Now, if H,, # 1 and v ¢ Ty, letting
v = (; in equation (33) gives

TA%, il mg - Agmg min s

1 [ } Koy, p R A
— lupg| K, —rt— min
il PP i ey | e IS
i
A, v nf Ay min A
- > 2 fupe] , —2 TEk
T L -
vEEK W \ | | ! ’yﬂg:lg} e ‘-Kl oy
N
- W (43)

where £ i3 the restriction of the set £x to the edges which do not contain
hanging nodes and de not lie on the Neumann boundary.

Assume, without loss of generality, that there are no hanging nodes on edge
71 and choose element K € P such that £k = {y1,72,7s}. Fori=1,2,3, let
) 5 be the diagonal matrix with entries

mign fomp \ 2
v EE]
[QK}M =1 (1-Hy) A%““""””""{”{”M
i
and let J; e and I/_VK be the vectors with entries
| = (1= Hy) | = lune) "
P R W DELE i o

y'e&,
K Yi
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and [WKJ = W,. For a maitrix Mg, let M % dencte the matrix M & with all
rows and czolumns t replaced by zeros if Hy =1orvy CIy. Similarly, for a
vector M 7, let M % denote the vector MK with all rows i replaced by zeros if
H%, =lory CIn.

The system of equations obtained by letting i = 1,2,3 in eguation {43y if
H, # 1 and v; ¢ T'y can be written as

(min EH{I" - 4TS'}(Q%{> fK = WK (44)
&€,
where Sk is the 3 % 3 matrix with entries
il !
[Skly = TR AR

We consider two cases.
Case 1: 7 € [~1,0]. In this case {3} means that

(1 T)2 ll"vg ?gg
oS " —l T
3 {ry + 1) meagf p{Ar) E il Q,

vCOK ye£r

min £, > min
TEEL YEEL

and since M47-f£ Q% SKQLT. > 0 (because 8% is positive semi-definite) we
can say that

min i JE QR < JEQY (wI' - 4757Q%) Ty
vELL

i

TE Qi < (FEQk )" (wrey)

Squaring both sides of the above inequality and then multiplying by
(Fasr)

then gives

2 TTA2 T o T2 1
”ﬁgé?{’fVJKQKJKg K QW

which means that

1
’ U ] )1
[(h’ﬁlé [ DG}FY{( )ﬂyl

Case 2: 7 € (0,1]. In this case (3) means that

. .1+ 7)2
MmN K. > min —-———"
vEEY, veél, 8

z Ao (QxSkQx).
Upon observing that (44) is equivalent to

3
SCY A (1- Hy) Wy (45)

(=t

Ay h’lg
iy (ny 1) max p(Ag) ~RT
YCOK TEE )

(min &,YI’ - 4TQKS!KQK> QKJN}( = QKW/;{'

N 7
YEE L



30 MARK AINSWORTH AND RICHARD RANKIN

we can say that

ok
Tie = Q3! (gg}gl ryl' 47"QKS’KQK> QxW-
K

from which we can conclude that (45) holds in this case as well.
Combining the above we have that if (3} holds then, for v € £x such that

Y EEN,

1 I ;
|12 upglx L2(y)
1 ;
= C ( > Hy 3 11172 H[”DG]*’”LQM
~eEr AfeEP: P

a,u’prH

+llelz + Y osc (LK) + 37 osclam) i+ D osc(qu))

K'ek vEERMEN vEERNED

which we can use recursively to obtain (41).

8. EXTENSIONS

The estimators we presented previcusly were such that they could be simply
and efficiently coded and calculated. If one is prepared to deal with a more
sophisticated estimator, then scme adjustments can in fact be made to improve
the value of the effectivity index and also to allow an arbitrary number of
hanging nodes per edge.

8.1. Further imnproving the value of the effectivity index. We can obtain
an estimator of the conforming component of the broken energy seminorm of
the error ®x whose value is at least as good as that defined previously if we
take

P(Tx) = {v:ve H{div;K),vx € Pup (K) x Py (K) VK € T}

and let ox € P(7x) be the unique function which minimises (A ok, o5} &
subject to

{or,grad e}y = (rr,v) 5 + Z (RK,?))? Yo e X
1e€K

where Xy is the conforming finite element space of order ngz + 2 on Tk.

We can also cbtain an estimator of the nonconforming component of the
broken energy seminorm of the error ¥y whose value is at least as good as that
defined previously by choosing the values taken by 8§ (upg) (2,) for n € N to
be such that they minimise fupg — & (upa i &
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8.2. Estimators for when there is an arbitrary number of hanging
nodes per edge. To obtain estimators which can be applied when there is
more than one hanging node per edge the following adjustments should be
made in the calculations of the functions ox and S (u D(})‘ K

Let Tx be the sub-partitioning of element K which is obtained by performing
sufficiently many uniform refinements of K of the type shown in Figure 1 to
ensure that every node on JK, hanging or otherwise, Is located at a vertex
of an element in Tx. The function & (upg) k should then be calculated from
its definition in Section 4.1 but using this new definition of 7x. The function
o should also be calculated using this new definition of 75 but in the way
described in Section 8.1. The analysis of such estimators can be carried out
following the approach of [5], but is not inciuded here in the interest of clarity.
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