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Abstract 

There is ever increasing commercial and regulatory pressure to minimise the cost of water distribution 

networks even as the demand for them keeps on growing. But cost minimizing is only one of the 

demands placed on the network design. Satisfactory networks are required to operate above a 

minimum level even if they experience failure of components. Reliable hydraulic performance can be 

achieved if sufficient redundancy is built in the network. This has given rise to various water 

distribution system optimization methods including genetic algorithms and other evolutionary 

computing methods. Evolutionary computing approaches frequently assess the suitability of enormous 

numbers of potential solutions for which the calculation of accurate reliability measures could be 

computationally prohibitive. Therefore, surrogate reliability measures are frequently used to ease the 

computational burden. The aim of this paper is to assess the correlation of surrogate reliability 

measures in relation to more accurate measures. The surrogate measures studied are statistical 

entropy, network resilience, resilience index and modified resilience index. The networks were 

simulated with prototype software PRAAWDS that produces more realistic results for pressure-

deficient water distribution systems. Statistical entropy outperformed resilience index in this study. 

The results also demonstrate there is a strong correlation between entropy and failure tolerance. 

 

Keywords: Failure tolerance; pressure-deficient water distribution networks; pressure-dependent 
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INTRODUCTION 

One of the major considerations in constructing water distribution networks is the capital cost 

of the project. To minimise cost of the network modellers endeavour to achieve a balance of 

smallest possible pipe sizes, tanks and pumps whilst still providing adequate amount of water 

to meet the demand. However, Walski (2001) questions the benefits of network optimization 

to achieve minimum cost at the expense of reduced system capacity, and consequently, 

reliability. He argues that due to uncertainty of future demands and loss in potential project 

net benefits following cost minimization, water distribution network (WDN) optimization 

based on cost alone is not viable. Hence another important factor in WDN design is reliability. 

To guarantee undisrupted water supply even during abnormal conditions, such as fire fighting 

or network component failure, a WDN has to have some redundancy built in it. But cost and 

reliability of a water distribution system are at least partly mutually conflicting constraints on 

design. Studies show that high cost is not always an indicator of high reliability, which means 

network optimization leading to minimum cost and maximum benefit and efficiency is 

desirable. 

 

For water distribution networks, however, accurate reliability and failure tolerance or 

redundancy measures are complicated to calculate because of the considerable computational 

effort required, and surrogate based measures have been proposed to be used instead. This 

research concentrated on a selection of such measures including resilience index and 

statistical entropy. Compared to other surrogate measures the advantages of using statistical 
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entropy to assess network reliability are that only pipe flows are required to carry out the 

analysis and the calculations are easy and quick to perform. On the other hand, if the 

resilience index is used, a full hydraulic analysis of the network has to be done, requiring such 

data as nodal pressure heads, pipe diameters, lengths and roughness coefficients, node 

elevations, etc. The intuitive appeal of the resilience index and its relative simplicity in 

comparison to accurate hydraulic reliability measures has resulted in its widespread use in 

recent years (e.g. Reca et al. 2008), but no study on its robustness as a reliability indicator 

exists as yet. The aim of this paper is to assess the effectiveness of surrogate reliability 

measures in relation to more rigorous and accurate measures. The surrogate measures studied 

are statistical entropy, network resilience, resilience index and modified resilience index. 

 

 

METHODS 

This paper is based on the hypothetical network 

shown in Figure 1. Minimum cost designs subject 

to a maximum entropy constraint were generated 

for 65 layouts by Tanyimboh and Sheahan (2002) 

and Tanyimboh and Setiadi (2008a, b) using 

sequential quadratic programming. Different sets 

of flow directions were used for some of the 

layouts thus giving a total of 137 minimum cost 

maximum entropy (MCME) designs. Continuous 

pipe diameters in the range of 100mm to 600mm 

were used. The piezometric head at the source is 

100m and the nodes have elevations of 0m. The 

minimum heads to fully satisfy demands are 

specified to be 30m. Zero nodal flow takes place 

if the nodal head drops to 0m. The pipes are 

1000m long and the roughness coefficient used is 

Hazen-Williams at 130. The demands in litres per 

second are shown in Figure 1. A range of 

performance indicators were calculated and assessed in the present study for the above-

mentioned MCME designs as described briefly below. The hydraulic simulations were carried 

out using prototype software for pressure-driven analysis called PRAAWDS (see e.g. 

Tanyimboh et al. 2003). 

 

Hydraulic Reliability 

While there is not one absolute definition for hydraulic reliability in broad terms it can be 

described as the ability of the water distribution network to satisfy the nodal demands under 

both normal operating conditions as well as when one or more components of the system 

experience failure. The reliability equation used in this paper is (Tanyimboh and Templeman 

2000) 
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in which R = hydraulic reliability; M = number of links (pipes, pumps and valves); P(0) = 

a1a2a3….aM = probability that all links are in service; am = probability that link m is in service 

Figure 1  Network layout 
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at any given moment; p(m) = p(0)(um/am) = probability that only link m is not in service; um = 

1 - am  = probability that link m is not in service; p(m,n) = p(0)(um/am)(un/an) = probability that 

only links m and n are not in service; T(0), T(m) and T(m,n) are, respectively, the total flows 

supplied with all links in service, only link m out of service and only links m and n out of 

service; and T is the sum of the nodal demands. Pipe availability = am = ratio of  ‘mean time 

between failures’ to ‘mean time between failures plus mean failure duration’ can be calculated 

with various formulae. In this study the formulae proposed by Cullinane et al. (1992) and 

Khomsi et al. (1996) were used. Due to the limitations of space, only the results based on the 

Cullinane et al. formula are included here. It should be noted, however, that essentially the 

same findings were obtained with the Khomsi et al. formulation. Two further pipe availability 

formulations were considered, namely Fujiwara and Tung (1991) and Su et al. (1987) but they 

proved unsuitable for the present study as their applicability would appear to be limited to 

small pipe sizes of up to 300mm and 200mm respectively. The first part of Eq. 1 indicates 

how much of the demand the system satisfies on average. In general, inclusion of all the 

possible combinations of multiple component failures in Eq. 1 is impracticable. The second 

part of Eq. 1 corrects the consequent underestimation inherent in the first part. Since the ratio 

um/am is in general small, cases including more than two links out of service are not normally 

computed. For this study, only the case of a single link out of service at any given moment 

was simulated. 

 

Hydraulic redundancy, or failure tolerance, is a measure of the proportion of demands 

satisfied when some of the components in the network are unavailable. It excludes periods 

when all the links are available, therefore representing spare capacity in the network. The 

equation for failure tolerance is (Tanyimboh and Templeman 1998, Tanyimboh et al. 2001) 
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where FT is the failure tolerance. Tanyimboh et al. (2001) note that failure tolerance may be a 

better measure of disruption of supply for a network in case of failure than the hydraulic 

reliability for very reliable systems. 

 

Resilience Index 

Todini (2000) introduced the concept of resilience index. The total power in the network is 

the sum of the power dissipated in the pipes and the power that is delivered to the nodes and 

the resilience index is a measure of surplus power available to be dissipated in the network 

internally in case of a failure. Todini (2000) defined the resilience index as 
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where RI = resilience index; Hi = head at demand node i; Hi
req

 = demand node head above 

which the demand is satisfied in full; Qi
req 

= nodal demand; γ  = specific weight of water; Qk 

and Hk = reservoir k supply and head, respectively; Pj = power introduced to the network by 

pump j; npu = number of pumps; nn = number of demand nodes; and nr = number of 

reservoirs.  

 

Jayaram and Srinivasan (2008) questioned appropriateness of the resilience index if used to 

measure performance in multiple source networks. They pointed out that networks with high 
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surplus power can also have high power input and since the power input term is denominator 

in the equation it potentially results in low resilience index even with networks with plenty of 

surplus power. They proposed an alternative indicator known as modified resilience index that 

measures the surplus power as a percentage of the power required at the nodes, i.e. 
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in which MRI = modified resilience index. In the present study involving a single-source 

network the correlation between Eqs. 3 and 4 was almost perfect; MRI essentially rescaled RI 

and as such did not shed any additional light. Therefore, due to the limitations of space, 

results for the MRI are not included here. 

 

Network resilience, NR, is a reliability measure developed by Prasad and Park (2004), which 

extends Todini’s concept by combining the effects of both surplus power and reliable loops. 

Prasad and Park (2004) stated that reliable loops can be ensured if the pipes connected to a 

node are not widely varying in diameter. They defined the pipe diameter uniformity, for each 

node, as the ratio of the average of the diameters of the pipes incident at a node to the 

maximum diameter at that node. The network resilience is thus defined as 
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in which Cj is the pipe diameter uniformity for node j. 

 

Statistical Entropy 

Entropy as a measure of uncertainty was introduced by Shannon (1948) and applies to simple 

exhaustive probability schemes in which all the outcomes are independent and the sum of the 

probabilities is unity. Tanyimboh and Templeman (1993a-c) developed the relevant 

probabilistic framework for WDNs. Their entropy function is 

 

∑
=

+=
nn

i

iiSPSS
1

0
      (6) 

 

in which S is the entropy for the WDN as a whole; S0 is the entropy of source supplies; Si is 

the entropy of node i; Pi = Ti / T is the fraction of the total flow through the network which 

reaches node i; Ti is the total flow that reaches node i; T is the sum of the nodal demands; and 

nn is the number of demand nodes. S0 and Si are defined as follows. 
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where Q0i is the supply at source node i; and I is the set of source nodes. 
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Figure 4  Failure tolerance vs. reliability  

in which Qij is the pipe flow from node i to node j; and NDi is the set of all pipe flows from 

node i. The derivation and detailed characterizations of S and the other parameters in Eqs. 6-8 

can be found in Tanyimboh and Templeman (1993a-c). Recent reviews of entropy 

applications in WDNs and its numerous advantages can be found in Tanyimboh and Setiadi 

(2008a, b). It is worth restating that evaluation of Eqs. 6-8 is quick and easy as it requires only 

the pipe flow rates and nothing else. The MCME optimization process explained previously 

yielded the minimum cost and maximum entropy for each layout and/or set of flow directions. 

 

 

RESULTS AND DISCUSSION 

Figure 2 clearly demonstrates the positive correlation between entropy and hydraulic 

reliability, which is in line with previous studies. Figure 3 shows strong positive correlation 

between entropy and failure tolerance. The result of Figure 3 has not been demonstrated 

hitherto. The motivation for designing WDNs to carry maximum entropy flows is that MCME 

designs are by definition maximally noncommittal to any information not explicitly 

incorporated in the design. They are consequently bias free and better able to cope with a 

broad range of operating conditions than conventional designs. It is indeed very encouraging 

that Figure 3 would appear to bear this out in practice. Figure 4 demonstrates a strong positive 

correlation between reliability and failure tolerance. However, the amount of scatter is such 

that two WDSs with similar reliability values can have significantly different failure 

tolerances. Thus, as observed elsewhere in the literature, both measures are best deployed 

together in a complementary fashion. 
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The other surrogate reliability measures 

produced much less correlation and showed a 

lot more scatter (Figure 5 and 6). Regarding 

RI and MRI, the power input to the network 

for all of the 137 designs is constant and 

therefore the two expressions effectively 

measure the same proportionality of network 

surplus power and minimum power required. 

Since the power input is not changing the RI 

and MRI lead to mutually consistent results. 

For assessment of the hypothetical networks 

of this study the modified resilience index 

adds no value. 

Figure 2  Reliability vs. entropy Figure 3  Failure tolerance vs. entropy  
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In order for the maximum entropy values achieved to have meaningful practical use they need 

to be repeatable in different network configurations. Similar entropy values should indicate 

similar network hydraulic performance regardless of the network layout. Previous studies 

(Tanyimboh and Sheahan 2002; Tanyimboh and Setiadi 2008b) showed results that seem to 

confirm low variation in the reliability values for WDN designs based on equal maximum 

entropy values (derived from different layouts or flow directions). In a similar manner, the 

present study investigated the similarity of the capital costs within equal maximum entropy 

groups (EMEGs) as a possible indicator of any similarity in the distribution of pipe diameters 

between the equal maximum entropy (EME) designs. In Figure 7, EMEGs were assessed in 

terms of the coefficient of variation of the cost (CVC). 

There are 77 designs that fall into 29 EMEGs consisting of a minimum of two and maximum 

of six designs. The remaining 60 designs formed the non-EMEGs group used as one of the 

comparators. The CVC was calculated for various categories as shown in Figure 7. Self-

evidently Figure 7 shows a single CVC value in each case except for the EMEGs. The aim is 

to provide a simple and quick visual comparison. The potential range was obtained by 

including only the smallest and the highest cost values in the calculation based on the fact that 

some of the EMEGs have only two members. The potential range of CVC for the entire set of 

137 designs is expectedly much higher than any of the other categories. The weighted average 

of all EMEGs was based on the number of designs in each group and the CVC of the group. 

CVC for all designs belonging to EMEGs is smaller than that of all 137 designs. The non-

EMEGs had CVC higher than CVC of all of the 137 designs. It is clear that the smallest CVC 

takes place in the EMEGs weighted average indicating that groups with higher numbers of 

designs have overall lower variation of cost, and once all designs are weighted they take the 

average down. This suggests that designs within EMEGs have high similarity of cost. 

However, there are EMEGs that have very high CVC, even higher than CVC for all of the 137 

designs. But as mentioned, the weighted average of all designs in turn has a very small CVC, 

which indicates that to balance the occasional high peaks, some EMEGs have nearly exactly 

the same cost for their designs. These results seem logical and support the hypothesis that 

entropy can be used to assess the performance of different networks in a reliable manner. 

 

When the EMEGs were studied in more detail, it emerged that of the groups that have lower 

CVC values than the EMEGs weighted mean, only two out of 29 had designs that do not 

belong to the 65 original designs in Tanyimboh and Sheahan (2002) and the majority of 

EMEGs with high CVC consist of designs that belong to the 72 additional designs in 

Tanyimboh and Setiadi (2008b). This is most probably due to the less direct and consequently 

Figure 5  Surrogate measures vs. reliability  Figure 6  Surrogate measures vs. failure tolerance 

R
2
 = 0.1721

R
2
 = 0.0019

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

Failure Tolerance

S
u

rr
o

g
a

te
 M

e
a

s
u

re
s

Resilience Index Network Resilience Linear (Network Resilience) Linear (Resilience Index)

R
2
 = 0.0023

R
2
 = 0.0768

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.9990 0.9991 0.9992 0.9993 0.9994 0.9995 0.9996 0.9997 0.9998

Reliability

S
u

rr
o

g
a
te

 M
e
a
s
u

re
s

Resilience Index Network Resilience Linear (Network Resilience) Linear (Resilience Index)



 8

long flow paths adopted in the 72 additional  designs that resulted in larger pipe sizes to cater 

for long flow paths in some of these designs (Tanyimboh & Setiadi, 2008b). If these designs 

were to be excluded, the CVC for the EMEGs would be even lower. In the network design 

process any unnecessarily long flow paths would be discarded and therefore high CVC for 

EMEG could possibly be used to eliminate less than ideal designs. The peaks of CVC within 

the EMEGs include groups with two to six designs. However, even the groups with only two 

designs have considerably smaller variation of cost than the potential range of all designs. 

 

 

CONCLUSIONS 

Entropy clearly 

outperformed the other 

surrogate reliability 

measures in terms of 

consistency of the results 

and, overall, hydraulic 

reliability, failure 

tolerance and entropy 

correlated well as a 

group. Previous studies 

demonstrated a strong 

positive correlation 

between entropy and 

hydraulic reliability. The 

present study has, in 

addition, demonstrated a 

strong positive 

correlation between 

entropy and failure 

tolerance. However, 

when the resilience 

index, network resilience 

and modified resilience 

index were plotted 

against reliability and 

failure tolerance, these 

measures often indicated 

counterintuitive results 

with decreasing values 

for increasing reliability 

and failure tolerance 

values. Network resilience, resilience index and modified resilience index often gave 

confusing values, which needed to be analysed further by inspection of the individual designs. 

These findings seem to indicate that if the RI, NR and MRI are used, then the results have to 

be treated with some level of caution. In particular, it is unclear whether these measures can 

be used to assess pressure-deficient WDNs even for the purpose of comparing networks with 

similar less than fully satisfactory demand satisfaction ratios because the surplus power term 

(in Eqs. 3-5) is negative for nodes with less than fully satisfactory pressure. A possible 

refinement of this research involves the removal of the designs that are not Pareto optimal on 

a cost vs. entropy basis before assessing the strengths of the relationship between the various 
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reliability measures; and verification using larger networks is obviously indicated. 
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