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Abstract. Following the analytical work of Ref. [1], a numerical analysis of squeezing and quantum en-
tanglement in a continuous wave singly-resonant optical parametric oscillator approaching threshold is
provided. The singly resonant case is mainly relevant to largely non-degenerate signal and idler modes
(two-colour output). As the threshold of oscillation is approached the numerical spectra of the intensity
difference confirm squeezing of quantum fluctuations and a progressive line-narrowing in the linear case.
In the nonlinear case entanglement is confirmed although progressively reduced when approaching thresh-
old with the squeezing spectra still displaying a narrowing of the spectral line. Modification of quantum
entanglement approaching threshold is also evaluated via the condition of state inseparability.

PACS. 42.50.Lc – 42.50.Dv – 42.65.Yj

1 Introduction

Continuous variable squeezed states of light, where the
noise in one quadrature of the fields is reduced below the
vacuum level, have found several applications in quantum
information [2]. For example, squeezed states are used to
generate continuous variable entanglement and achieve
high fidelity in quantum teleportation protocols [2]. In
order to be squeezed, quantum fluctuations of the elec-
tromagnetic field require nonlinear optical effects such as
parametric down-conversion or four-wave mixing [3]. Here
we focus on intra-cavity parametric down-conversion of
a pump photon at frequency ωp into a photon at fre-
quency ωs, the signal, and another at ωi, the idler, inside
a nonlinear crystal with a second order nonlinear suscep-
tibility χ(2) [3]. The so-called "non-degenerate case" cor-
responds to separate signal and idler frequencies. Para-
metric down-conversion in an optical cavity is known as
an Optical Parametric Oscillator (OPO) where the os-
cillation build-up inside the cavity increases noise reduc-
tion by considerably extending the interaction time. Sev-
eral theoretical and experimental investigations of squeez-
ing in non-degenerate OPOs focused on the doubly (or
even triply) resonant configurations where both the signal
and idler fields are resonated [5,6,4]. Although the singly-
resonant cavity is, in principle, a simpler configuration to
realise experimentally, theoretical investigations of quan-
tum entanglement in a singly-resonant OPO (SROPO)
have been done only very recently [1]. Here it was shown
that both intensity and quadrature squeezing are present
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in the SROPO below threshold and that the maximum
noise reduction below the standard quantum limit is the
same at the signal and idler frequencies in a similar way to
the doubly-resonant case. As the threshold of oscillation is
approached, however, the intensity-difference and quadra-
ture spectra display a progressive line-narrowing which is
absent in the balanced doubly-resonant case. One of the
reasons for the lack of squeezing experiments in SROPOs
is that they operate with strongly non-degenerate frequen-
cies (two-colours). Since the observation of non-classical
correlations in the strongly non-degenerate regime of para-
metric down-conversion [18], however, investigations of quan-
tum entanglement in SROPO have gained relevance be-
cause of possible optimisation of coherent sources with
fluctuations below the shot-noise level. Moreover, SRO-
POs have clear technical advantages over doubly-resonant
configurations such as continuous temperature tuning and
suppression of mode-hopping. It is the aim of this work
to compare the analytic results of [1] for the squeezing
and entanglement properties of SROPOs with a numeri-
cal analysis of both the linear and nonlinear regimes ap-
proaching threshold. In the nonlinear case we observe a
progressive reduction of squeezing and quantum entangle-
ment while the novel feature of SROPO of narrowing of
the spectral line survives although it is reduced while ap-
proaching the threshold of oscillation.

2 Quantum Langevin equation

We consider parametric down-conversion in a monolithic
cavity resonant to the signal field only and pumped with
a monochromatic beam at frequency ωp (see Fig. 1).
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Fig. 1. The singly-resonant OPO cavity scheme. αp is the
input pump amplitude, ain

1 and bin are the input signal and
idler fields, aout

s and bout are the output signal and idler fields.

By assuming perfect collinear phase matching and con-
sidering energy conservation, one has [3]:

kp = ks + ki, (1)

ωp = ωs + ωi, (2)

where kp, ks and ki are the wavevectors of the pump,
the signal and the idler fields respectively. In the case of
perfect phase matching the frequencies of the signal and
idler fields depend only on the frequency of the pump and
the orientation of the crystal with respect to the direction
of the pump beam. The quantum mechanical Hamiltonian
for the system in the rotating-wave approximation is:

H = Hsys + Hbath,1 + Hbath,2 + Hint,1

+Hint,2 + Hint,3. (3)

where Hsys is the sum of the free energies for the single
signal mode, as, a continuum of idler modes, b(ω), and
a continuum of pump modes, ap(ω), treated here using
the approach of [10]; Hbath,1 is the free energy of bosonic
heat bath modes, c1(ω), providing a description of the field
external to the cavity and coupled to the signal because
of non-perfect reflection of the mirrors [11]; Hint,1 in the
Hamiltonian (3) represents the interaction of the signal
mode with this heat bath, describing the damping of the
signal mode caused by the non-zero transmittivity of the
cavity; Hbath,2 is the free energy of different bosonic heat
bath modes, c2(ω), while the term Hint,2 is the interac-
tion between the signal field and these modes, describing
the damping of the signal mode associated with other loss
mechanisms like other mirror transmissions or crystal ab-
sorptions and diffraction; the term Hint,3 is the interaction
between the signal, idler and pump modes, treated here
as a continuum of modes since the pump is not resonated
in the cavity, describing the process of parametric down-
conversion inside the nonlinear crystal [3]. In the rotating
wave approximation, all these terms have explicit forms

given by:

Hsys = ~ωsa
†
sas + ~

ˆ ∞

−∞

dω ωb†(ω)b(ω), (4)

Hbath,1 = ~

ˆ ∞

−∞

dω ωc†1(ω)c1(ω), (5)

Hbath,2 = ~

ˆ ∞

−∞

dω ωc†2(ω)c2(ω), (6)

Hint,1 = i~

ˆ ∞

−∞

dω κ1

[

c1(ω)a†
s − c†1(ω)as

]

, (7)

Hint,2 = i~

ˆ ∞

−∞

dω κ2

[

c2(ω)a†
s − c†2(ω)as

]

, (8)

Hint,3 = i~

ˆ ∞

−∞

dω

ˆ ∞

−∞

dω′ κ3

[

b†(ω)a†
sap(ω

′)b(ω)asa
†
p(ω

′)
]

. (9)

The coupling constants κ1, κ2, and κ3 are considered to be
independent of the frequency ω according to the Markov
approximation. We also consider the following commuta-
tion relations for the modes:

[as, a
†
s] = 1, (10)

[ap(ω), a†
p(ω

′

)] = δ(ω − ω
′

) (11)

[ci(ω), c†i (ω
′

)] = δ(ω − ω
′

), (12)

[b(ω), b†(ω
′

)] = δ(ω − ω
′

), (13)

where i = 1, 2 while all the other commutators are iden-
tically zero. For the non-resonant idler field we use the
theory of Collett and Levien [12] who showed that sys-
tems described by a continuum of mode operators b̄(ω)
and possessing an isolated mode of particular interest, can
be redescribed in terms of an orthonormal set formed by
this one mode and a new continuum b(ω). From (3-9) one
can derive a Heisenberg-Langevin equation of motion for
the evolution of the signal field below the threshold of
oscillation in the interaction picture:

d

dt
as = γε2 as

[

1 + ga†
sas

]2 − γas −
√

2γεb†in

+
√

2γ1a
in
1 +

√

2γ2a
in
2 . (14)

where g = k2
3π

2, bin is the idler field noise, γ1 = κ2
1π

is the signal cavity damping rate and ain
1 the input vac-

uum modes entering the cavity from the environment. The
term γ2 = κ2

2π is the intracavity loss rate, mainly due to
absorption by the crystal, while ain

2 is the quantum noise
associated with this loss and defined in the usual way [10].
We also consider γ = γ1 + γ2 as the total damping rate
and ε to parametrize the classical external pump value αp,

below threshold αp = εαth, where αth =
√

γ/(2π2 k2
3) so

that 0 < ε < 1. Note that there is no detuning in Eq.
(14) since any change in the cavity length is compensated
by a change in the signal (and idler) frequency, a prop-
erty typical of SROPO configurations. Finally it is useful
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to introduce the number of photons at threshold given by
nth = α2

th = γ/2g that characterises the pump intensity
necessary to achieve signal generation in the optical cav-
ity. In addition to the Langevin equation (14) there are
boundary conditions, known as input-output relations:

aout
s =

√

2γ1as − ain
1 , (15)

bout = ǫ
√

2γa†
s − bin. (16)

Note that the input-output relation of the signal field is
written at the cavity mirror of the SROPO while that of
the idler field makes explicit the propagation of the idler
fluctuations through the crystal (see Fig. 1). The input
fields satisfy the following commutation relations:

[ain
i (t), a†in

i (t
′

)] = δ(t − t′), (17)

[bin(t), b†in(t
′

)] = δ(t − t′) (18)

where i = 1, 2. Similar relations hold for the output fields
while all the other commutators are vanishing.

For completeness we present the explicit expressions
for the input and output fields, following the usual defini-
tion of [17]:

ain
i (t) = − 1√

2π

ˆ +∞

−∞

dω e−ıω(t−t0)c0
i (ω)

bin(t) = − 1√
2π

ˆ +∞

−∞

dω e−ıω(t−t0)b0(ω)

aout
i (t) =

1√
2π

ˆ +∞

−∞

dω e−ıω(t−t1)c1
i (ω)

bout(t) =
1√
2π

ˆ +∞

−∞

dω e−ıω(t−t1)b1(ω) (19)

where i = 1, 2, t0 < t and c0
i (ω) and b0(ω) are the values

of ci(ω) and b(ω) at t = t0, respectively, while t1 > t
and c1

i (ω) and b1(ω) are the values of ci(ω) and b(ω) at
t = t1, respectively. We consider the input noise to be a
Gaussian distributed white noise and the heat bath to be
at zero temperature. In this basis the correlation functions
for the input fields are:

〈

ain
i (t)a†in

i (t
′

)
〉

=
〈

bin(t)b†in(t
′

)
〉

= δ(τ), (20)

where i = 1, 2 and where we have defined τ = t − t′.

3 Direct detection of intensity fluctuations

3.1 The linear case

Direct detection of intensity fluctuations of the signal and
idler fields is the simplest type of quantum measurement
one can perform in a two-colour OPO. A reduction in
the intensity-difference fluctuations below the shot noise
level in doubly-resonant OPOs above the threshold of os-
cillation was calculated by Reynaud et al. [13] and Lane,
Reid and Walls [14] and demonstrated by Heidmann et
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Fig. 2. Intensity difference correlation spectrum of (21) plot-
ted for a range of input powers. Curves correspond to ε = 0.6

(solid line), ε = 0.7 (dashed line), ε = 0.8 (dotted line), ε = 0.9

(dash-dotted line) and g = 0 (linear case).

al. [15] for a Type II non-degenerate OPO. The study of
signal-idler intensity fluctuations in a SROPO below the
threshold of oscillation was treated analytically in [1]. In
this type of measurement the signal and idler fields hit two
different photodetectors and then the resulting difference
intensity fluctuations are studied with a power spectrum
analyzer. The measurable output is related to the Fourier
transform of the intensity-difference correlation function:

SD[ω]

S0
= 1 +

1

S0

ˆ +∞

−∞

dτ
〈

: Iout
D (0), Iout

D (τ) :
〉

eiωτ , (21)

where Iout
D (t) = a†out

s (t)aout
s (t)− b†out(t)bout(t) is the out-

put difference intensity operator for signal and idler fields,
S0 is the shot noise level given in this case by the sum of
the intensities of signal and idler beams, S0 = Iout

s + Iout
I ,

and colons denote normal ordering. Furthermore, for any
operators A and B:

〈A, B〉 = 〈AB〉 − 〈A〉 〈B〉 . (22)

In order to relate the theoretical approach to the nu-
merical simulations we express the normally ordered cor-
relation function and spectrum of Eq. (21) in terms of
equivalent c-number quantities in the Wigner representa-
tion. To this end we use the following correspondence:

C =
〈

a†out
s (t)aout

s (t + τ)
〉

=
〈

α∗out
s (t)αout

s (t + τ)
〉

− 1

2
exp(−γ(1 − ε2)|τ |) (23)

〈

: Iout
D (0), Iout

D (τ) :
〉

= C2 γ(1 − ε2)(2 − ε−2 − ε2)

ε2
.(24)

For simplicity we consider in this paper the case of γ2 = 0,
i.e. γ = γ1 but the results can be easily generalised to the
case that includes crystal absorption.
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The spectrum (21) is shown in Fig. 2 for different val-
ues of the pump parameter ε and for the linear case cor-
responding to g = 0. A progressive narrowing of the spec-
trum when approaching threshold clearly confirms the an-
alytic formula of [1]:

SD[Ω]

S0
= 1 − 4

4 + [Ω/(1 − ε2)]2
. (25)

Curves corresponding to the analytical form (27) are
not presented in Fig. 2 because they are not distinguish-
able from those obtained by the numerical integration of
Eq. (14). The numerical analysis then confirms that the
narrowing of the spectral line is a function of the pump
parameter ε and that squeezing below the shot noise is
indeed possible in the SROPO. It is worth noting that
perfect suppression of noise below the shot noise level is
achievable at resonance independently of the pump power
in the SROPO.

3.2 The nonlinear case

The spectra (21) in the nonlinear case are shown in Fig. 3(a)-
(b) for different values of the pump parameter, ε, and
for g = 0.001 and g = 0.01, respectively. It is clear that
when approaching the threshold of oscillation, the squeez-
ing level decreases and vanishes exactly at threshold. This
behaviour is not due to the narrowing of the spectral lines
which is characteristic of the linear case (see Fig. 2 and
Eq. (21)), but instead to the effect of the nonlinear term
in Eq. (14).

In Fig. 4 we plot the spectrum of (21) for ε = 0.9 and
for increasing values of g. We note that going from g = 0.0
to g = 0.01 decreases the squeezing value and at the same
time produces a broadening of the spectral line.

The effect of the nonlinearity of Eq. (21) on the spec-
tral minimum and spectral broadening of the intensity dif-
ference for different values of g is presented in Fig. 5(a)-
(b), respectively. The deterioration of squeezing approach-
ing threshold due to recombination and saturation in OPOs
has been known for some time [16]. One spectral feature
that is instead peculiar to the singly resonant case is that
of the spectral line narrowing. Although the narrowing ap-
proaching threshold is reduced when the number of pho-
tons decreases, line narrowing is still present even when
the saturating effects of the nonlinearity are considered.
This means that in realistic configurations of the SROPO,
squeezing, quantum entanglement and progressive narrow-
ing of the spectral line should be measurable experimen-
tally.

4 Quantum entanglement; the condition of
state inseparability

In order to claim state inseparability and consequently
entanglement for the signal-idler state we apply the sep-
arability criterion of Simon-Duan [17,18]. According to
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Fig. 3. Intensity-difference correlation spectrum of (21) plot-
ted for a range of input powers. Curves correspond to ε = 0.6

(solid line), ε = 0.7 (dashed line), ε = 0.8 (dotted line), ε = 0.9

(dash-dotted line) and (a) g = 0.001 and (b) g = 0.01, respec-
tively.

this criterion a sufficient condition for state inseparabil-
ity written for the quadrature operators of the signal and
idler beams

Xs
θ (t) = as(t)e

i(θ+ωst) + a†
s(t)e

−i(θ+ωst),

X i
φ(t) = b(t)ei(φ+ωit) + b†(t)e−i(φ+ωit), (26)

where θ and φ are quadrature angles, is that the quantity:

S =
〈

[Xs
θ − X i

φ]2
〉

+
〈

[Xs
θ+π/2 + X i

φ+π/2]
2
〉

(27)

is such that:
S < 2. (28)

It is possible to connect the quantity S to the intracavity
correlation function C introduced in (23):

S = 2

[(

4γ − 2γ(1 + ε2)

ε

)

F [C] + 1

]

. (29)
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Fig. 4. Intensity-difference correlation spectrum of (21) plot-
ted for ε = 0.8. Curves correspond to g = 0 (solid line),
g = 0.001 (dashed line), and g = 0.01 (dash-dotted line).

where F [C] is the Fourier Transform of C and the expres-
sion must be evaluated at zero frequency. The quantity C
can be directly evaluated from numerical simulations of
the Langevin equations (14) in both linear (g = 0) and
nonlinear regimes. These reasults can be compared with
the analytical expression of S:

S = 2

[(

4 − 2(1 + ε2)

ε

)

2ε2

(1 − ε2)2
+ 1

]

(30)

Fig. 6 shows a comparison of the Simon-Duan coeffi-
cient, S, for theory and numerical simulations in the lin-
ear regime, and two examples of the nonlinear case for
g = 0.001 and g = 0.01. The evaluation of S critically de-
pends on the tails of the correlation function, C, where the
numerical simulations display large fluctuations. Although
the value of S from the numerical simulations is system-
atically higher than the analytical result, it still repro-
duces the overall variation with the pump parameter and
clearly shows that quantum entanglement is commonplace
in SROPOs since S is well below the limit of 2. When the
nonlinear term is included, entanglement is reduced but
not entirely eliminated as shown in Fig. 6. We conclude
that SROPOs can be excellent candidates for the gener-
ation of two-colour quantum entangled states over wide
ranges of parameter values and different configurations of
operation as anticipated in [1].

5 Conclusions

Squeezing and quantum entanglement in OPOs has been
theoretically predicted and experimentally detected for a
long time. The case of singly resonant OPOs, however,
has been overlooked since preference has been given to
frequency degenerate cases or cavity configurations where
more than one field is resonated. We have recently de-
scribed quantum squeezing and entanglement in SROPOs
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Fig. 5. (a) Minimum of the spectrum (21) of the intensity-
difference correlation function versus the input power ε for g =

0.01 (solid line) and g = 0.001 (dashed line). (b) Full-width at
half-minimum of the spectrum (21) of the intensity-difference
correlation function versus the input power ε for g = 0.01

(solid line), g = 0.001 (dashed line) and the linear case for
g = 0 (dotted line).

and found a feature that is not present in the doubly-
resonant case: the spectrum of the intensity difference
between the signal and idler fields progressively narrows
when approaching threshold [1].

Here we have first verified that both squeezing and
spectral line narrowing are present in numerical simula-
tions of the Langevin equations describing quantum fluc-
tuations in a SROPO below threshold. The numerical in-
tegration of these equations becomes necessary when ex-
ploring regimes where the linear approximation fails. As
an example, we have investigated the role of the optical
nonlinearity on the squeezing spectrum of the intensity
difference and the conditions of state inseparability when
approaching threshold of oscillation. The spectral mini-
mum that remained at zero in the linear case for all values
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Fig. 6. The Simon-Duan state nonseparabilty coefficient S

versus the pump parameter ε. Theory from Eq. (30) (solid
line), numerical simulations for g = 0.0 (dotted line), g = 0.001

(dashed line) and g = 0.01 (dashed-dotted line).

of the input pump, gradually increases when approaching
threshold in the nonlinear case. For small values of g, i.e.
large photon numbers at threshold, reduction of quantum
fluctuations below the shot noise is still visible close to
threshold. The line narrowing of the squeezing spectrum
is also reduced but still visible even in the nonlinear case.
Finally, quantum entanglement via the state inseparabil-
ity condition of Simon and Duan has been analysed in the
SROPO model for both the linear and nonlinear regime.
In the linear regime entanglement is predicted for wide
ranges of the pump parameter below threhsold and well
below the limit imposed by the state inseparability con-
dition. In the nonlinear regime, entanglement is reduced
close to threshold but the condition of state inseparabil-
ity between the two colour signal and idler fields is still
satisifed. The numerical methods developed here for the
investigation of squeezing and quantum entanglement are
then ready to be exported to the study of giant noise am-
plification in synchronously pumped SROPOs.
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