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Bayesian Inferencing for Wind Resource
Characteri sation

Marcos S. Miranda, Member, IEEE, Gavin Shaddick, Rod W. Dunn, Member, IEEE, F. Li, Member,
IEEE and Keith R. W. Bell

and can be used, for example, in the statistical analysis of
Abstract-The growing role of wind power in power systems siting and sizing of wind power plants and its influence on

has motivated R&D on methodologies to characterise the wind generation capacity adequacy, transmission system security
resource at sites for which no wind speed data is available, and capability, amongst others.
Applications such as feasibility assessment of prospective The methodology developed in this paper uses a Bayesian
installations and system integration analysis of future scenarios,
amongst others, can greatly benefit from such methodologies. framework to characterise the known resource (weather
This paper focuses on the inference of wind speeds for such stations data) and estimate the wind at the desired new
potential sites using a Bayesian approach to characterise the location. The model is implemented in two (hierarchical)
spatial distribution of the resource. To test the approach, one year levels. At the first level, the wind data is described as the sum
of wind speed data from four weather stations was modelled and of a temporal and a spatial component, plus an unstructured
used to derive inferences for a fifth site. The methodology used is
described together with the model employed and simulation (random) component. At the second level, the temporal and
results are presented and compared to the data available for the spatial components are modelled as a random walk and a
fifth site. The results obtained indicate that Bayesian inference multivariate normal distribution respectively.
can be a useful tool in spatial characterisation of wind. This approach allows the temporal characterisation of the

wind resource at the desired location while at the same time
Index Terms--Bayesian inference, Markov chain Monte Carlo maintaining the spatial correlation of the given data, thus

simulation, spatio-temporal modelling, statistical methods, wind allowing the equivalent of a virtual weather station to be
power integration, wind resource characterisation.

created. The model was implemented using the OpenBUGS

I. INTRODUCTION (Bayesian inference Using Gibbs Sampling) software package
[1] and used Markov chain Monte Carlo (MCMC) simulation

THE ever-increasing presence of wind power generation in to estimate the model parameters.
modern power systems has driven much research effort In thei aperthe meth g d b

into methodologies to characterise the wind resource and the I nte using ta mefouM Oi ci(UK ate
impac of ind ower n th powr sysem. uch

mplemented using data from four MetOffice (UK) weather
impthofol windpoweran ncre thengly ipowrtan s . Suhe stations. Estimates are made for a fifth location (also a weather

methodologies play an increasingly important role as they station) for which wind data is available. Simulation results are
make it possible to assess incurred risks in terms of the system presented and compared with the data for the fifth location.
reliability against possible requirements for higher operational
costs or further investments in the system infrastructure. II. SPATIAL CHARACTERISATION OF WIND SPEEDS

One area of particular interest is the modelling of wind
speeds at locations where little or no information regarding the Windi speedt modellingnande characterisationehasegained
wind resource is available. In this paper, a methodology for s

characterisatio of te wconsiderably complex implementations becoming feasible as a

Iharctserisatsian ap ctmdthewindspeedatagivenspateiac.orrel . result of the increase in computational processing speed. This
It ues Baesinaproch o mdelthespaialcorelaion broad subject area can be generally divided into two mainbetween different sites - weather stations for which wind speed broasuect are can beageneral iv i w

data is available - and infer wind speeds for the new location. Temporal andsptial chraterisation.
Resource characterisation can be an important tool for

prediction" relates to the forecast of future wind speeds (orassessing the integration of wind power into the power system prdcin,rltst h oecs fftr idsed oassessing_the_integration_of_wind power into the power system wind power), and its prediction horizon is greatly dependent
This work was supported by the UK EPSRC, through the Supergen on the application area [2]-[4]. It can range from seconds (e.g.

initiative. wind turbine control, power quality management, mitigation of
M. S. Miranda (e-mail: m mirandaWbath.ac u1), R. W. Dunn (e-mail: stress loads on turbine system), to hours and days (market

r.w,durnn(Tbath.ac.uk), and F. Li (e-mail: eesfl(Tbath.ac.uk) are with the
Department of Electrical Engineering, University of Bath, Bath, BA2 7AY, operations, power system operational security, generation
UK. dispatch, maintenance scheduling).

G. Shaddick (e-mail: g.shaddick abath.ac.uk) is with the Department of Spatial modelling, on the other hand, mostly applies to the
Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK.

K. R. W. Bell (e-mail: kbe11Xeee.strath.ac.uk) is with the Department of characterisation of the resource at sites where insufficient or
Electrical Engineering, University of Strathclyde, 16 Richmond Street, no information is available. It can be a useful tool in feasibility
Glasgow, Gi 1XQ, Scotland, UK.
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studies of prospective installations and system integration, samples are stored to estimate the posterior distribution. Only
assessment of the impact on system reliability, generation these remaining values are used in the analysis.
adequacy, and transmission system capability, amongst others.

Different approaches can be found in the literature A. ierarcal Models an Exe K nowledge
regarding the problem of spatial modelling, many applied to One important aspect of the Bayesian approach is the
climatologic variables (wind speed included) or pollutant ability to implement nested structures, also referred to as
concentration analysis. These can either employ physical hierarchical models. This enables a more detailed description
models, which take the terrain into account, such as WAsP [5] of the variables in the model and the introduction of expert
or statistical models. Amongst the latter, we find the Maximum knowledge at each of the levels, if such information is
Likelihood method [6], the Kalman filter [7], Bayesian available. Thisfeaturealso allowstheuseofdatafromvarious
inference [8], [9] and the Measure-Correlate-Predict (MCP) sources recorded atdifferentresolutions.
method [10]. The latter is widely adopted by the wind industry This can be exemplified by considering a fictitious modelanthodcIOniere ltthe istndeardometodoy forwindfasitry of hourly electricity demand over the winter. The overalland considered the standard methodology for feasibility

deadisrbtomybeoeldbyanmldsrbuo,studies of future projects. A drawback of the MCP technique is demand distribution may dbem ele eya normal distribution,
the requirement of data (at least 6-12 months) for the candidate the mean of which could be time-dependent (time-series).
site, which implies the installation of an anemometric tower Further, the time-series data available may be modelled by two
making it impractical for broad integration studies. The worl additive functions, the domestic and the industrial
in this paper tries to overcome this requirement by inferring consumption. The individual time-series models themselves

*thei speresat uneasredlthion may have any desired structure, e.g. an autoregressive process.
The domestic consumption can further be made dependent on

III. THE BAYESIAN METHODOLOGY the average daily temperature, which in turn can be
characterised using any desired formulation.

One important feature of Bayesian statistics is how the te sifi ase ofsind sedm ong
probability associated to a variable in a given process is ao the inclsi of finste, oterlimatogi
treated. In contrast to the frequentist approach, where vables or season variations.variables or seasonal variations.
probabilities are based on how often events occur in a
(hypothetical) sample, in Bayesian inference, results are based IV MODEL DEVELOPMENT
on a combination of data and prior beliefs. This results in a
posterior distribution, in which degrees of belief are attached A Bayesian hierarchical model was developed to model the
tostheriov trable ion] spatial correlation structure in the data set and the individual

Bayes' theorem (1) states that the probability of a variable sites temporal autocorrelation structure, thus allowing the
A given the occurrence of another variable B is equal to the characterisation ofthe wind speeds at a prospective site.
normalised likelihood of B given A ( P(B|A) / P(B) ) times the A. Input Data
probability ofA. In other words, the conditional probability of The data used in the model were one year of hourly average
A on B can be found using the conditional probability of B on wind speeds from four weather stations at the north of
A, and the degree of belief on A, the prior P(A). Scotland (Aultbea, Tamn Range, Duirinish and Altnaharra).

P(A IB) _P(B A) *P(A) Wind speed estimates were calculated for the target site of
P(A B) - P(B) (1) Loch Glascarnoch, where a weather station is also present. A

map with the location of the four reference stations and their
A prior probability is a marginal probability, i.e. notrepciedsaetohesimedieishwnnFg.1

conditional, defined on some knowledge of what value a
variable may assume, but not necessarily based on X. LOCH GLASCARNOCH
observations of the variable, which is not always possible. 1. AULLTBEA (46 KM) 4

The posterior probability, on the other hand, is a 2. TAIN RANGE (56 KM)
conditional probability, which takes into account the 3. DUIRINISH (66 KM)
information contained in the prior and the normalised 4 A ARRA (68 Km)
likelihood, as shown above.

In many cases, it is not possible to derive the posterior I
distributions analytically, but samples may be generated using
Mako chiMon.°tel Carlo (MhCMC) methods. The result is a _

than just a single parameter estimate. Empirical summarylll_
statistics can be calculated from this distribution and used to III~
draw inferences about their true values, such as the expected _--!
value and associated uncertainty (credible intervals).

In MCMC, a 'burn-in' stage during which model
parameters converge is followed by a period in which the Fig. 1. Location oftarget and reference weather station sites.
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A summary of the weather stations wind characteristics for distribution (4), with mean gM(S), and variance CYM.

the year studied (1997) is presented in Table I. The height 2
above ground level at which measurements were taken follows M(s) = MVN(t.M(S),GM ) (4)
the Met Office guidelines of standard exposure (over level, In any Bayesian hierarchical model, there will be a final
open terrain, at IOm above the ground). The estimated location level of modelling which assigns 'hyper-priors' to the
is represented by Sx. On average, around 4% of the data is parameters in the higher levels of the model.
unavailable; however the methodology used allows the The temporal component in this model follows a first order
inclusion of such points as missing data. random walk, which gives flexibility in that assumptions of

TABLE I stationarity do not have to be made.
SUMMARY STATISTICS OF WEATHER STATION DATA The spatial component is incorporated into the covariance

matrix (scaled by a spatial variance, GyM2) of the multivariate
Summary StanMatistics revailing

normal distribution described in (4). Correlations areMissing Mean Maximum Prevailing
Site Data Speed Variance Speed Direction proportional to the distance, d, between sites,f(d) = exp(-+.d).

(%) (m/s) (m/s) (0°- East) Predictions can then be obtained for unmeasured locations
Sx 7.91 4.48 11.90 20.09 150° conditional on the measured values. The prior distribution for
Si 1.39 4.90 11.51 21.12 2400 _ the rate of decay of the correlation function, , was chosen to
S2 4.11 4.58 8.32 18.54 240°
S3 2.56 5.20 15.63 25.75 2100 be a uniform distribution with limits corresponding to
S4 7.81 3.97 9.80 20.60 2100 expected drops in correlation, p, over distance, which can be

estimated using the relationship + -log(p)/d.
The correlation/covariance between the four input stations

is shown in Table II. Since all stations had missing data points, C. Non-normalitv correction
the correlation coefficients shown in the table were calculated It is a well known characteristic of general wind speed
using only time-steps in which data was available for all series that its variation at a given site can be modelled using
stations (a total of 7662 points out of 8760). the Weibull distribution [12]. As described above, this is a

potential problem for the hierarchical model adopted since it
TABLE II assumes normally distributed errors at all levels (temporal,

CORRELATION/COVARIANCE BETWEEN WEATHER STATION DATA
(CORRELATION BELOW AND COVARIANCE ABOVE DIAGONAL) spatial and unstructured components).

Therefore a transformation of the original wind speed data
Covariance _ was required and the Box-Cox transformation was used as it

Site Si S2 S3 S4 presents a simple and straightforward procedure for
Si -- 6.4083 11.1908 7.0866 non-normality correction [13], as detailed below.

. S2 0.6527 7.0320 6.8288 The Box-Cox transformation y , of a dataset y is defined

O S3 0.8319 0.6148 7.7360 as:

S4 0.6639 0.7544 0.6230 X

k forX (5)
B. Model Structure Y I) (y), fork =O

The hierarchical structure implemented in this work has two
main modelling levels: The choice of the value for the parameter X can be made

* Level 1: The wind speed data from the reference through an analysis of the log-likelihood function:
weather stations is defined as the sum of a temporal and a nrX))2(X)ln(y))(6)
spatial component, plus an unstructured error component, f(y, ) - * E 1 + ( - In(y ) (6)
which represents the information contained in the data 2 ni=[ n i=

that is not explained by the other two components. The The value of X which maximises (6) is used in the Box-Cox
data (observation) equation can be written as: transformation (5). A plot of the log-likelihood function using

U (s,t) =0(t) + M(s) + Eu (s, t) (2) data from each of the four reference weather stations can be
seen in Fig. 2. The function is calculated for values of X

where 0(t) and M(s) are the temporal and spatial between [-2,2] in steps of 0.1.
components, respectively. ou(s,t) ~N(0, cU(5)2) is the From Fig. 2, it can be seen that the value of X which
unstructured error, hil, 2, 3,...........,8760, and s= 1, 2, 3, 4. maximises the log-likelihood function for the four reference

* Level 2: The temporal part is modelled as a first order sites is within the range [0, 0.3]. For consistency, the same
random walk, with a zero-mean random term, £o (3), data transformation should be applied across all sites, therefore

the value X = 0.2 was chosen.
(t)=(t-1) +£o ~~~(3)

and the spatial part is modelled as a multivariate normal

©C Copyright KTH 2006
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Fig. 2. Log-likelihood functions of wind speed data for the four reference Fig. 3. Model residuals (unstructured error term) for transformed data.
weather stations as a function of X in the Box-Cox transformation. Reference stations 1 to 4, from top to bottom.

To validate the procedure used, Matlab's boxcox function As explained in Model Structure (section IV.B), the
was also used. This function performs a continuous assessment unstructured error component was assumed to be normally
of the data on the variable X, searching the resulting function distributed with zero mean, therefore the data and estimate
maximum through an optimisation routine. This yielded the average values should be very close. Indeed, the average wind
following values XMAT =[0.2768, 0.3178, 0.1223, 0.0301] for speed calculated for the site was Uwdata 4.48m/s, whereas
the four sites, showing good agreement with the results _

c

obtained using discrete values for B. The difference between the model output yielded Uw,pred 4.49m/s .

the results was not significant enough to justify the use of the
more complex calculation procedure, which may not be readily 20
available to many. FirstEhalf-year Data

V. SIMULATION RESULTS 15

In the analysis of MCMC simulation results, the initial
outputs are usually discarded to allow for the convergence of 10
model variables. The following results were taken for a run of I k I ,
6,000 samples, the first 1,000 were discarded and only the E 5 ' i
remaining 5,000 used in the analysis. Convergence was =
assessed by visual examination of the "time series" plots of the W o

samples. QQ20 Lsamples. 20 ~~~~~~~~~~~~~~~~~~~Second half-year Data
The first stage in the model assessment was the analysis of .= Estimates

the residuals in (2), i.e. the estimates of the unstructured error 35
component, su(s,t), for the four reference stations, as depicted
in Fig. 3. It is worth emphasising that the values plotted have
not been transformed back (reverse of the Box-Cox transform).
There is no noticeable trend/cycle in the residuals over time or
discrepancies/patterns across the stations, the presence of 5- JsIjg
which would have indicated unspecified components of the L

model and the possibility of non-stationarity. 0
** * 1 1 1 r 1 ~~~~~0500 1000 1500 2000 2500 3000 3500 4000A comparison between the data available from the Time (h)

Time- (h)estimated site and the model output is shown in Fig. 4. It is''
worth highlighting that the model output includes only the Fig. 4. Comparison between time series for target weather station wind data
temporal and spatial components, not accounting for the and model estimates.
unstructured error component, which will be present in the
data. For better visualisation, the one-year estimate (8760 Although predictions from the model lack the random error
points) was split in two halves in this figure. The agreement component, an estimate of its confidence intervals was carried
between both curves is very good. out using the parameters found for the reference weather

stations. In the model described in (2), the standard error,

©C Copyright KTH 2006
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cyu(s), of the random component, ou(s,t), can be found for each 20
weather station (cyu(s) =[0.468, 0.577, 0.535, 0.561], for the 18 y=l.Ol9*x-0.1617
transformed data). Since these values are very similar, a simple R2 = 0.7270*0.161

^ u~~~~~~~~~~~~~~~~~~~~~416 -@e@saverage, GU = 0.535, was used as an estimate of the standard .
deviation for the target site. The 95% confidence interval was "Some

then obtained using: 1 =
Iz 10 - _= * .-

(t=Uwpred(t)±+1.96 GU (7) 8 - 3 Om

This calculation was performed before transforming back .m 6"
the data. A plot of the data, estimates and the 95% confidence 4

interval for 10 days in early September (data points 2 =
[6000, 6240]) is shown in Fig. 5.
A linear regression fit of the data against the estimates is ° 5 10 15 20

shown in Fig. 6, together with the regression equation and the Wind Speed (mis) - Predicted

calculated Ri value. From the plot it can be seen that the model Fig. 6. Linear regression plot of wind speed data against the estimated values.
tends to overestimate at lower s and underestimate at higher
speeds. Since there is limited practical interest in accurately 3500- Data
knowing the temporal behaviour of past wind speeds, a Estimates
histogram of the data and estimates is also shown in Fig. 7. 3000

The frequency of occurrence of each wind speed range shows 2500
a good degree of matching between the data and the estimates.

30 ; ~~~~~~~~~~~~~~~~~~200030
Data
Estimates

25- 1.96*cy Inter\I
1000

-~20 -500-

15 -0
0 2 4 6 8 10 12 14 16 18 20

Wind Speed (m/s)
/

Fig. 7. Histogram comparing wind speed data and model estimates.

5
PredError

0.35
----- Normal fit

00 50 100 150 200 250 0.3 err 0.7
err

Time (h)
0.25-

Fig. 5. Zoom of time-series plot for 10 days, with 95% (±1.96*cyU)
confidence intervals included. n 0.2

0.150/-X
Posterior estimates of the unstructured component of the /

model are available at each of the site locations in terms of the 0.1 1'
variances of Su(s). The standard deviation (after transforming
back the data) for these estimates are very similar across the 0.05 /
four reference sites, cyu(s) = [1.316, 1.694, 1.821, 1.70], -8 - - -26
indicating consistent model fit over each of the sites. Likewise, -8 -6 -4 -2 0 2 4 6 8

such samples can also be obtained for the target site, in the Estimate Error (m/s)
form of the difference between the available data and the Fig. 8. Histogram and normal distribution fit of the random component
estimates. The resulting distribution can be seen in Fig. 8. As samples (Uw data - Uw,pred) at target site.
expected, the unstructured error mean is close to zero, and its
standard deviation is well within the range of those found for A. Discussion ofResults
the reference stations.

The results obtained were encouraging with respect to the
application of Bayesian inferencing to spatial wind speed
characterisation. The temporal and spatial components were
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[10] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy
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complex temporal structure could better represent the data, [13] NIST/SEMATECH, e-Handbook of Statistical Methods. [Online].
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