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ABSTRACT

The aim of image fusion is to combine multiple images
(from one or more sensors) into a single composite im-
age that retains all useful data without introducing artefacts.
Pattern-selective techniques attempt to identify and extract
whole features in the source images to use in the compos-
ite. These techniques usually rely on multiresolution image
representations such as Gaussian pyramids, which are lo-
calised in both the spatial and spatial-frequency domains,
since they enable identification of features at many scales
simultaneously. This paper presents an FPGA implementa-
tion of pyramidal decomposition and subsequent fusion of
dual video streams. This is the first reported instance of a
hardware implementation of pattern-selective pyramidal im-
age fusion. Use of FPGA technology has enabled a design
that can fuse dual video streams (greyscale VGA, 30fps) in
real-time, and provides approximately 100 times speedup
over a 2.8GHz Pentium-4.

1. INTRODUCTION

Image fusion allows multiple observations of a scene to be
combined, in order to increase the information content pre-
sented in a single image, and make the image more effective
for its intended application. The images to be fused may
originate from a single sensor, perhaps taken with different
points of focus, or from multiple sensors that are sensitive
to different spectral regions. Image fusion has been used
widely in medical, manufacturing, military, and security ap-
plications, amongst others [1]. One modern example where
image fusion techniques are proving useful is in the detec-
tion of concealed weapons by using a composite of ther-
mal and visible-range observations [2]. There are several
methods of performing image fusion, with a successful im-
plementation being one that retains all useful information
from the source images into a single composite image, with-
out introducing artefacts. Basic methods take no account of
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the image content and perform simple merging of the image
data, for instance averaging. More sophisticated methods
work at a higher level by identifying detail in the source im-
ages and using a selection process to determine the elements
that will be used in the final composite.

Several key methods in image fusion rely on the multi-
scale image pyramid [3]. Image pyramids are a decompo-
sition of a single image into a series of images of varying
resolutions, with each image containing data representative
of detail at a particular scale. The advantages of a multi-
scale representation lie in its localisation in both spatial and
spatial-frequency domains. The fusion algorithm presented
here uses pyramids that have been further decomposed into
orientation specific pyramids [4], [5], [6]. It uses simple
edge filters (gradient filters) to identify details in the source
images along four orientations. These edges are compared,
and the most useful features are selected according to some
measure of saliency and then carried forward into the com-
posite image. Using gradient pyramids has been found to
reduce the artefacts that other pyramidal methods can in-
troduce [4]. The pattern-selective fusion algorithm is com-
plicated and requires thousands of calculations to be per-
formed in order to produce a single output image. For this
reason a microprocessor implementation is inherently slow,
and real-time processing unfeasible. However, like many
image processing algorithms, there are opportunities to ex-
ploit parallelism in the algorithm’s operation that make an
FPGA implementation an attractive option.

This paper describes an implementation of a pattern-
selective fusion algorithm on a single Virtex-2 FPGA. The
design uses several novel approaches to enable dual grey-
scale VGA video streams to be fused in real-time. Note that
the source images are assumed to be pre-aligned, and auto-
matic registration tecniques have not been considered here.

2. PYRAMID GENERATION

The Gaussian or low pass pyramid and Laplacian bandpass
pyramids were introduced by Burt in 1983 [7]. These meth-
ods have since been used in a wide variety of applications
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besides fusion, and were a precursor to the development
of more general multiresolution methods, in particular the
study of wavelets.

The image to be decomposed forms the bottom level of a
notional pyramid. Each subsequent higher level of the pyra-
mid is formed by low-pass filtering, and then subsampling
by a factor of two, the pyramid level beneath it. The act
of low-pass filtering reduces the band limit by one octave,
and hence, according to the sampling theorem, subsampling
can take place without any loss of information. In reality
the generating filter is not ”ideal”, which means that the fol-
lowing subsampling may result in aliasing; however these
effects are usually disregarded for these purposes [8]. The
low-pass filter is usually chosen to be a 5x5 Gaussian, which
has the added advantage of being separable.

Hence, each level of the pyramid is produced as

[t]Gk =
2∑

m=−2

2∑
n=−2

w(m,n)Gk−1 (2i + m, 2j + n) (1)

for k=1,...,N; G0 ≡ I, the original image; w is the filter ker-
nel. This process is usually referred to as REDUCE, when
considering the 2D image as a whole:

Gk = REDUCE (Gk−1) (2)

Since each image is half the size in each dimension of the
image below it, it consists of one quarter the number of pix-
els.

The alternative pyramid type is known as the Laplacian.
This is formed as a bandpass pyramid rather than a low pass,
and is obtained by subtracting a level of the Gaussian pyra-
mid from the level directly beneath it. Each level of the
Laplacian pyramid can thus be thought of as a difference
image between two corresponding levels of the Gaussian
pyramid. Because two levels of the Gaussian pyramid are
different sizes, in order to subtract one from another the res-
olution of the image at level k+1 must first be increased to
the resolution of the image at level k. In order to do this
we use the EXPAND operation, which involves upsampling
of the smaller image (by inserting zeros), and then interpo-
lation of the missing values by a further application of the
generating filter kernel. Then:

Lk = Gk − EXPAND (Gk+1) (3)

There must be one fewer levels in the Laplacian pyramid
than in the Gaussian. Typically the Gaussian and Laplacian
pyramids are generated with three levels above the base im-
age. At levels higher than this the resulting images may be-
come too small to be useful, and the edge effects of succes-
sive convolutions with the generating kernel become detri-
mental. It is possible to perform fusion with less than four
pyramid levels, but the ability of the algorithm to distinguish
features of different sizes is compromised.
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Fig. 1. Block diagram of hardware image pyramid genera-
tion.

The Gaussian pyramid is the one used in the process of
extracting detail from the source images to be used for fu-
sion. The Laplacian pyramid and a variant of it known as the
FSD Laplacian [9], are used in the inverse pyramid trans-
form to reconstruct the composite image.

2.1. Hardware Implementation

A block diagram of the image pyramid generation system
with two pyramid levels above the base is shown in Fig. 1.
This is a multirate design that allows multiple pyramid lev-
els to be generated concurrently. The downsampling stages
work by simply discarding certain data values: horizon-
tal downsampling occurs by discarding every other sam-
ple; vertical downsampling occurs by discarding every other
row. The samples that are not discarded are stored in a FIFO
that acts as a buffer between pyramid levels. The next pyra-
mid level operates at a clock rate that is one quarter that of
the level below it, to match the fact that it is receiving one
quarter the number of samples. In this way the higher level
can run concurrently with the lower level, without empty-
ing the FIFO. This structure is repeated for each level of the
pyramid, with each level operating at one quarter the clock
speed of the level below it. The ability to generate pyramid
levels concurrently counteracts the negative effect on per-
formance caused by running portions of the design at slower
clock speeds. By using this approach the time to generate
the whole pyramid is only 1.1 times that needed to read a
full frame of data, compared to upwards of 1.8 times for
designs that generate levels sequentially.

3. DETAIL EXTRACTION AND FUSION

To extract detail from the levels of the source pyramids
four gradient operators are each applied to each level of the
source pyramids via a simple convolution. The operators
represent derivatives in the horizontal, vertical, and two di-
agonal directions, and essentially act as edge detection filters
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Fig. 2. Gradient pyramid decomposition and fusion

in the four orientations. The gradient filters are as follows:

d1 =
[

1 −1
]

d2 =
[

0 −1
1 0

]
1√
2

d3 =
[ −1

1

]

d4 =
[ −1 0

0 1

]
1√
2

(4)

The resulting set of images is known as a gradient pyramid
[5], and can completely represent the original image [10].
The gradient pyramid is essentially a set of gradient maps
of the source images at varying scales. As illustrated in
Fig. 2, the gradient pyramids constitute a large amount of
intermediate data: each level of the two source pyramids
is now represented by four gradient maps. Another way to
conceptualise this is that the two source pyramids have now
been decomposed into four further pyramids each, giving a
total of eight full image pyramids to be handled and pro-
cessed concurrently. Obviously, the ability to work with this
amount of data on chip is one of the ways in which an FPGA
may achieve large performance gains over a microprocessor
based implementation.

Fusion of the gradient pyramids takes place by select-
ing the most prominent detail from each level. In this ap-
plication the elements with the greatest absolute value are
chosen through a simple comparison, this is an implemen-
tation of the simple measure of saliency given in [4]. Other,
more complex measures of saliency (also known as Activity-
Level Measurements [11]), based on texture criteria and
other higher order attributes, may give better results in some
specific circumstances, but the amplitude based measure has
been shown to provide good results in the general case [4].

4. IMAGE RECONSTRUCTION

Before the inverse transform can take place it is necessary to
adjust the format of the composite image pyramid, as the in-
verse pyramid transform relies on the Laplacian rather than
the Gaussian pyramid. The conversion requires a secondary
application of the gradient filters, followed by summation
and scaling; for a full description of the process see [5]. The
output of this process is a composite Laplacian image pyra-
mid that may be inverse transformed. The method of re-
constructing an image from its Laplacian pyramid uses the
EXPAND operation defined earlier. The starting point for
the inverse transform is the top level of the Gaussian pyra-
mid (in this case G5). This is formed by a simple averaging
of the top level of the source pyramids. Then, from (3):

G̃k = L̃k + EXPAND (Gk+1) (5)

This process is performed repeatedly to expand each pyra-
mid level. The addition of L̃k represents the incorporation
of detail data at each scale. The complete fused image lies at
the bottom of this pyramid, level G0. This process mirrors
the decomposition process described in Section 2, and again
uses FIFOs to store data between pyramid levels, with two-
dimensional upsampling occurring as data are read from the
FIFOs through insertion of zero value samples.

5. IMPLEMENTATION RESULTS

The entire design was implemented using Xilinx System
Generator, and mapped to a Virtex-2 XC2VP100 device.
Synthesis was carried out using Xilinx’s proprietary XST
tool, as part of ISE8.1. The resource requirements are shown
in Table 1. The large RAM requirement is mostly for the
delay lines used in the 2D convolutions. The design is fully
pipelined and capable of producing an output pixel every
clock cycle. The maximum clock speed reported by the
place and route tools is 31MHz.

As a means of comparing the system’s performance with
a software implementation, the Matlab Profiler was used to
measure the speed of execution of a Matlab implementation
of the same algorithm. Processing a single frame of data
on a 2.8GHz Pentium-4 processor with 1GB RAM takes, on
average, 1.1 seconds. A comparison of the performance of
both FPGA and PC based versions of the algorithm is shown
in Table 2.

Note that although the maximum reported clock speed
is 31MHz, a speed of 10MHz would allow 8-bit greyscale
VGA video at 30fps to be processed in real-time, with a la-
tency of <50ms. Sample images have been produced for
comparison and are shown in Fig. 3. The source images are
from a TV camera and thermal (IR) camera respectively, and
are pre-registered. Both source images accentuate different
features about the scene being observed. The composite im-
age contains the significant details from both source images.



Fig. 3. Example of source and fused images.

Table 1. FPGA resource requirements
Resource Used Available % of XC2VP100

Slices 13,287 44,096 30

4-input LUTs 24,533 88,192 27

Slice FFs 5,784 88,192 6

Block RAMS 430 444 96

Table 2. Performance compared to PC implementation
FPGA Maximum Clock Frequency 31 MHz

FPGA Maximum Frame Rate (8-bit, VGA) 101 fps

PC/Matlab Frame Rate (2.8GHz P4, 1GB
RAM)

0.91 fps

Speedup 111x

6. CONCLUSION

A complete implementation of pattern-selective image fu-
sion has been presented that utilises aspects of FPGA tech-
nology to enable dual video streams to be processed in real-
time. Four levels of pyramidal decomposition, with four
separate gradient operators, can all run on a single device
with no requirement for off-chip memory. The modular na-
ture of the design means that pyramids with less, or more,
levels could be implemented without major modification.
Use of an FPGA has enabled a design that can process im-
ages at a rate over 100 times faster than a similar PC-based
implementation.
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