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ABSTRACT
Aperture filters are a recently introduced class of non-

linear filters used in image processing. In this paper we
present a new approach for aperture filter design, improv-
ing operator performance with respect to the MSE measure
by releasing some of the operator constraints without losing
statistical estimation accuracy. With the use of the proposed
methods an average of 34% MSE reduction was achieved for
deblurring, whereas a standard aperture operator reduced
the error by only 10% on the average.

1. INTRODUCTION

In statistical approaches to non-linear filter design the task is
to find a filter Ψ, given the training dataset of signal h to be
observed and corresponding signal g to be estimated, so that
the error measure between Ψ(h)(t) and g(t) is minimized.

The general class of image operators used in non-linear
filter design is called window operators (W-operators). A
window operator is a locally defined function ψ operating
on an observed signal h(t) restricted to the finite window W
about t, mapping the signal values in the window W to the
operator’s output value, so that Ψ(h)(t) = ψ(h(W )) where
h(W ) is the observed signal h(t) restricted to the window W .
Both signals h(t) and g(t) are assumed to be jointly station-
ary. Mapping function ψ(h(W )) is assumed to be transla-
tion invariant with respect to the window placement on signal
h(t).

2. APERTURE OPERATORS

A fundamental problem in non-linear filter design is to place
an efficient constraint on the filter search space so that it is
possible to obtain sufficient training data to achieve good out-
put estimates, but at the same time the constraint should not
damage the filter performance.

The domain constraint resulting from window operators
does usually not in itself, reduce the search space sufficiently,
especially for multidimensional signals. In order to further
reduce the class size, a subclass of W-operators called WK-
operators or aperture operators was introduced in [1]. Aper-
ture operators are not only constrained in their domain by
a window, but also restricted to a number of gray levels in
signal values. Because of this additional constraint, the oper-
ator’s class size can be greatly reduced.

For a specified window W the signal h(t) is projected into
the aperture K, K = [−k,k] by placing the aperture on a spec-
ified value a. Signal values outside the aperture are saturated
to the closest aperture boundary.

2.1 Aperture placement
Aperture placement has a strong influence on filter perfor-
mance. In general the position has to be chosen so as to
observe as many signal values as possible, without clipping.
Rather than compete with alternative techniques, aperture fil-
tering may build on a good existing estimate of the signal out-
put value i.e. for deblurring, the aperture is usually placed on
the center pixel value, and for noise removal it is positioned
on the median value.

2.2 Operator configuration
The choice of window size, its shape and the number of
aperture levels are the most important design considerations.
A large window and aperture assures better filtering qual-
ity by capturing more of the input signal characteristics and
increasing the output value range. On the other hand, a lim-
ited amount of training data requires that the search space be
small to maintain good output estimation.

In order to improve filter quality while maintaining good
output estimates a number of different techniques were tried
[2, 3, 4]. In order to capture more dominant signal char-
acteristic at the cost of losing some detail, scaling can be
used. The scaling can be performed in the image domain by
mapping several pixel values into one value, thus reducing
the resolution; or in gray-scale range [2]. Another technique
reduces the search space by using non-rectangular aperture
masks [3]. If a signal does not fit into a particular mask with-
out clipping, another mask is tried until the signal is fitted
with minimal clipping. All masks together cover a larger re-
gion than each one in particular thus the aperture is able to
capture more of the signal span with a smaller search space.
Another principle can be seen in the pyramidal approach [4].
In this approach a bank of filters is trained, each filter oper-
ating with a different level of resolution. During filtering if a
pattern was not sufficiently trained with the best quality filter,
another one is tried at lower resolution until the output value
is found.

All of the above techniques can be combined to achieve
better filter performance. A further technique which reduces
the impact of some of the operator’s constraints on the filter-
ing error is presented in this paper.

2.3 Output mapping
During training for every observed pattern x from input sig-
nal h(t) the output value is estimated as the expected value
from all corresponding center pixel values from ideal signal
g(t), translated by aperture position and clipped to the aper-
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ture boundaries. There is a problem of what output value to
assign to the unobserved pattern. One way to solve this is-
sue would be to use a Machine Learning framework based
on one of the classification algorithms, where estimated out-
put values would become class labels for input patterns x.
After training the classification algorithm is able to “general-
ize” and extend the knowledge gathered during training onto
unseen input patterns. The authors of earlier aperture op-
erator papers [1] suggest the use of Oblique Decision Trees
built with OC1 algorithm [5], which combines deterministic
hill-climbing with randomization steps in order to find sub-
optimal split in form of a hyperplane.

However of all classification algorithms known to date,
there is no one which can perform best with all datasets, and
since non-linear image filters are used with many different
kinds of imagery, it is impossible to point out just one opti-
mum classification algorithm. Furthermore most classifica-
tion algorithms are based on the principle of segmenting the
search space into continuous regions where the input data is
assigned the same label. Therefore in order for this to work
the input data belonging to the same class should form one
or more clusters in the search space. If the data from one
class is too scattered and mixed with data from another class,
classification algorithms will give very poor performance.

On the other hand, even a properly trained classifier is un-
likely to properly generalize the knowledge over a very large
region of the search space. Therefore it is impractical to try
filter configurations for which we can only supply data for
a small fraction of the search space during training, unless
filtered signals have very simple and predictable characteris-
tics.

If we consider only using filter configurations for which
we can supply training examples for most part of the search
space, the easiest implementation are lookup tables. The dis-
advantage of this approach is significant memory require-
ment, and no built-in generalization ability (it is however
possible to use k-nearest neighbor classifier for patterns un-
observed during training). On the other hand, lookup tables
do not introduce any classification error and are very compu-
tationally efficient with respect to other classification algo-
rithms, since there is no need for additional training after the
statistics for output estimates are gathered and output values
are calculated. Yet another advantage of lookup tables is their
ability to store output values over a wider range (as opposed
to most classification algorithms where output value range,
thus the number of labels, needs to be low in order to reduce
training cost and achieve good accuracy).

3. APERTURE CONSTRAINTS

The main source of error when using aperture operators, (as-
suming adequately trained output estimates), arises from the
constraints which limit the potential filter performance.

3.1 Windowing constraint.
Corrupted signal h(t) and ideal signal g(t) are assumed to be
jointly stationary. This assumption is necessary to proceed
with output estimation on the basis of examples of ideal sig-
nal g(t). Also the mapping function ψ(h(W )) is assumed
to be translation invariant with respect to the window place-
ment in the domain of signal h(t), which is required from
a statistical point of view to achieve good output estimates.
In practice these assumptions could introduce an error in the

filter performance, but this is very difficult to avoid. An-
other source of error is induced by constraining the signal
h(t) with a window W . This constraint can cause error if
the operator is not able to observe enough of the signal h(t)
to efficiently estimate output. This error depends on window
size and shape, and in general it would decrease with increas-
ing window size. On the other hand, from the point of view
of statistical estimation, the search space of all patterns that
can be observed in a window needs to be kept small, which
means that the window size also should be small. Optimal
filter performance is achieved with a window configuration
that balances the error introduced by domain constraint and
the output estimation error.

3.2 Aperture output value range constraint.

The idea behind aperture operators is that the filter is only ob-
serving a section of the input signal, and is able to filter the
subtle signal changes inside this section. According to the
originators of the aperture operator concept, the operator’s
output should also be clipped to the aperture boundaries. In
this way the probability mass of the output random variable
is more condensed, which in practice means less class la-
bels for Machine Learning output mapping described above.
Constraining output value range will obviously introduce er-
ror, as for a particular input pattern, even if it fits into the
aperture without clipping, output signal does not always fall
into the aperture range. Research results presented in this pa-
per suggest that this constraint can seriously restrict the filter
performance.

3.3 Output value’s translation invariance with respect to
the aperture position.

Another assumption in aperture filters is translation invari-
ance in gray-scale of the operator’s output value. Every pat-
tern observed through the aperture is assigned only one out-
put value, disregarding the absolute gray-scale level at which
the aperture was placed. This assumption increases the num-
ber of occurrences for every pattern, however it introduces
an error for applications where the relative signal corruption
varies with the absolute signal value i.e. blur.

4. RESEARCH RESULTS

4.1 Removing range constraint

The analysis of range constraint impact on filter performance
was tested for a deblurring application. The set of 100
grayscale pictures (8 bit) of Glasgow suburbs in 640×480
resolution was blurred with Gausian lowpass filter with 3×3
kernel and standard deviation of 3. From this dataset, 20
pairs were selected for testing purposes. The remaining 80
image pairs were used for training.

In this experiment 24 aperture filter configurations were
tested. For each of the six different window shapes, pre-
sented in fig. 1, an aperture filter was designed with 3, 5,
7 and 9 aperture levels. The aperture was positioned on the
center pixel value. Each filter was extended by scaling with 8
scaling factors: 1, 4, 8, 12, 16, 20, 24, and 28. If the observed
pattern was clipped by the aperture, then it was scaled by a
successively higher factor until the signal could be observed
through the aperture without clipping (or the maximum scal-
ing factor was reached).
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Figure 1: Window shapes of aperture filters used

window aper. number of images in training
shape levels 10 20 30 40 50 60 70 80

initial error (blur) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
W1 3 73.2 73.1 73.2 73.5 73.4 73.4 73.3 73.3
W1 5 70.9 70.5 70.5 70.6 70.5 70.4 70.2 70.2
W1 7 70.9 69.7 69.5 69.6 69.5 69.3 69.2 69.2
W1 9 70.9 69.6 69.5 69.4 69.3 69.0 69.0 68.9
W2 3 74.3 74.1 74.2 74.3 74.3 74.3 74.2 74.1
W2 5 72.3 71.2 71.1 71.1 71.1 71.0 70.8 70.8
W2 7 71.6 70.2 70.0 69.8 69.7 69.4 69.5 69.5
W2 9 72.2 70.1 69.8 69.5 69.4 69.2 69.1 69.1
W3 3 74.3 73.8 73.8 73.8 73.8 73.7 73.6 73.6
W3 5 74.3 72.4 72.0 72.0 71.8 71.4 71.1 71.0
W3 7 75.9 73.4 72.9 72.8 72.4 71.6 71.2 70.9
W3 9 77.8 74.9 74.8 74.9 74.3 73.2 72.7 72.3
W4 3 72.1 71.4 71.4 71.4 71.4 71.4 71.2 71.1
W4 5 70.6 68.8 68.5 68.5 68.2 67.7 67.6 67.4
W4 7 70.5 68.2 67.7 67.4 66.9 66.4 66.1 65.7
W4 9 71.6 68.9 68.3 68.2 67.8 67.1 66.5 66.0
W5 3 76.1 74.0 73.9 73.7 73.4 73.0 72.6 72.6
W5 5 76.8 75.1 75.3 75.6 75.3 74.7 74.3 73.9
W5 7 76.0 75.0 75.2 75.4 75.3 75.0 74.8 74.3
W5 9 75.6 75.0 75.0 75.2 75.1 74.9 74.7 74.4
W6 3 77.8 76.2 76.0 75.9 75.6 75.1 74.7 74.5
W6 5 76.5 75.7 76.1 76.4 76.2 76.0 75.9 75.6
W6 7 75.7 75.1 75.2 75.3 75.2 75.1 75.0 74.8
W6 9 75.3 75.0 75.0 75.0 74.9 74.9 74.8 74.6

Table 1: MSE of filtering results with standard aperture.

Training was performed using a dataset ranging from 10
images (636× 476× 10 = 3027360 sample patterns) to 80
images (24218880 patterns). Every filter was trained in two
versions: a standard version with output constrained to the
aperture boundaries and scaled appropriately; and an uncon-
strained version, where the output value was neither clipped
nor scaled.

After training the filters were applied on the blurred im-
ages in the test set. Filtering results are presented in tables 1
and 2 as a Mean Square Error (MSE) measure between origi-
nal and filtered images, calculated over the entire test set (20
image pairs) to get an average value.

In all tested configurations filters with unconstrained out-
put performed better than standard aperture filters for any
number of training samples. The only exception was the fil-
ter with window shape W3 (see fig. 2) and 9 aperture lev-
els, which performed slightly worse when trained with the
smallest training sets. However for those training sets both
the standard and unconstrained filters were seriously under-
trained.

It can be seen that the Mean Squared Error (MSE) as a
function of the number of training samples decreases mono-
tonically as expected, with the exception of a point around
12500000 samples, where for most filters there is a very no-
ticeable error increase. This is due to a few images included
into the training set from this point, which have non repre-
sentative statistical properties, hence worsening output esti-
mates. This performance deterioration is much less notice-
able with the standard aperture filter with constrained output,
which suggests that unconstrained filters are more suscepti-

window aper. number of images in training
shape levels 10 20 30 40 50 60 70 80

initial error (blur) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
W1 3 67.8 67.2 67.5 67.9 68.1 67.8 67.6 67.4
W1 5 65.3 64.0 64.2 64.6 64.6 64.2 63.9 63.8
W1 7 66.0 63.6 63.5 63.9 63.8 63.3 63.0 62.9
W1 9 67.4 64.2 63.9 64.2 63.8 63.3 62.9 62.7
W2 3 66.4 65.9 66.1 66.5 66.6 66.3 66.2 66.1
W2 5 64.1 62.8 62.9 63.2 63.2 62.8 62.6 62.5
W2 7 65.4 62.9 62.6 62.9 62.7 62.1 61.9 61.7
W2 9 67.6 63.7 63.2 63.4 63.0 62.4 62.0 61.8
W3 3 66.4 65.3 65.3 65.7 65.7 65.3 65.1 65.0
W3 5 69.3 65.5 65.2 65.4 64.9 64.0 63.5 63.2
W3 7 74.2 69.1 68.6 68.9 68.0 66.5 65.6 65.1
W3 9 78.2 72.6 72.6 73.4 72.4 70.5 69.2 68.4
W4 3 57.4 56.4 56.2 56.3 56.3 56.1 56.0 55.9
W4 5 56.9 53.5 52.7 52.6 52.1 51.4 51.0 50.7
W4 7 60.2 55.7 54.7 54.5 53.7 52.5 51.7 51.3
W4 9 63.5 58.7 57.8 57.8 56.8 55.2 54.2 53.5
W5 3 64.9 61.2 60.7 61.0 60.4 59.5 58.9 58.5
W5 5 68.8 65.3 65.0 65.6 64.9 63.6 62.6 61.7
W5 7 71.4 68.9 68.6 68.8 68.4 67.5 66.9 66.1
W5 9 72.5 70.9 70.6 70.7 70.3 69.7 69.4 68.6
W6 3 69.9 65.9 65.7 66.2 65.5 64.3 63.3 62.7
W6 5 70.8 68.8 68.8 69.2 68.8 68.1 67.5 66.7
W6 7 72.6 71.3 71.0 70.9 70.5 70.1 69.9 69.3
W6 9 73.5 72.7 72.3 72.3 72.0 71.7 71.5 71.1

Table 2: MSE of filtering results with aperture with uncon-
strained output

ble for improper training.
The best unconstrained filter found was with window W4

and 5 aperture levels. This filter outperformed other tested
filters for all training sets. A comparison of best uncon-
strained filters for each window is in fig. 4. It can be seen
that the window shape plays a very important role in filter
performance, not only its size. Filters with windows W3 and
W4 with 5 aperture levels have the same search space size.
The only difference in those configurations is different win-
dow shape, and the filter with cross-shaped window performs
much better than the square-shaped.

In conclusion, aperture filters with unconstrained output
considerably outperform standard aperture filters. In this ex-
periment it was shown that in practice the ideal output value
does not always fit inside the aperture boundaries, and clip-
ping it to the aperture boundaries damages the filter perfor-
mance, even with the use of scaling. Output value clipping is
beneficial for the implementation of classification algorithms
like Decision Trees, where reducing the number of classes is
crucial for finding effective operator representation, both in
terms of classification accuracy and computational cost. For
more constrained configurations, it is however much more
cost effective to implement filter representation in the form
of simple lookup tables. In such implementations constrain-
ing output value reduces the memory requirement, but it in-
creases the filter error significantly.

4.2 Filter output invariance with respect to the aperture
position level
Another common assumption made with aperture filters is
that of translation invariance as applied to gray-scale. In or-
der to reduce this constraint without losing estimation quality
a simple approach was tested. The full gray-scale range (256
levels) was divided into 10 sections. Every pattern observed
during training was assigned 10 separate output values cor-
responding to the gray-scale section, where the aperture was
placed. If the number of examples in the training set for a
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Figure 2: Comparison of standard and unconstrained output
apertures with window W3.
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Figure 3: Comparison of standard and unconstrained output
apertures with window W4.

given section was lower than 10, the global estimate was used
(calculated over all sections). This way the operator’s output
value was dependent on the aperture position.

In order to test this approach the same dataset was used as
described above. In this experiment 16 filter configurations
were tested with windows W1 to W4 (see fig. 1) and with 3,
5, 7 and 9 aperture levels. As with previous experiment the
same scaling strategy and factors were used.

Filtering results in form of MSE measures calculated
over the entire test set are presented in table 3. It can be seen
that this approach was beneficial for small apertures (fig. 5).
The best filter configuration (window W4 with 5 aperture lev-
els) improvement with respect to the aperture with uncon-
strained output was still noticeable (fig. 6), especially with
large training sets (around 2% reduction in MSE). With this
filter configuration 34% of MSE reduction was achieved as
compared to 10% with the standard aperture filter of the same
configuration. In fig. 8 a fragment (400×300) of one of the
test images filtered with this configuration is presented. The
image was cropped to improve detail reproduction in this pa-
per. It can be seen that aperture with multiple output values
slightly improves filtering of small details (light reflections
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Figure 4: Comparison of best unconstrained output apertures
for each window.

window aper. number of images in training
shape levels 10 20 30 40 50 60 70 80

initial error (blur) 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0
W1 3 64.6 63.2 63.2 63.9 63.7 63.1 62.8 62.7
W1 5 64.9 62.5 62.3 62.8 62.5 61.6 61.2 61.0
W1 7 66.1 62.9 62.5 63.0 62.6 61.6 61.2 60.9
W1 9 67.8 63.9 63.4 63.8 63.2 62.1 61.6 61.2
W2 3 63.9 62.4 62.4 62.9 62.8 62.3 62.0 61.9
W2 5 64.6 62.1 61.8 62.2 61.9 61.0 60.6 60.4
W2 7 66.4 63.1 62.6 62.8 62.4 61.4 60.9 60.6
W2 9 68.6 64.3 63.7 63.9 63.3 62.3 61.7 61.3
W3 3 64.9 62.5 62.3 62.8 62.6 61.9 61.5 61.3
W3 5 69.7 65.3 64.8 65.0 64.4 63.2 62.5 62.0
W3 7 74.8 69.4 68.8 69.2 68.2 66.6 65.5 64.9
W3 9 78.8 72.9 72.9 73.7 72.7 70.7 69.8 68.9
W4 3 55.9 53.7 53.2 53.5 53.4 52.9 52.6 52.5
W4 5 57.2 53.1 52.1 52.0 51.2 50.2 49.7 49.3
W4 7 60.5 55.6 54.5 54.2 53.3 52.0 51.1 50.6
W4 9 63.8 58.8 57.9 57.8 57.1 55.4 54.3 53.5

Table 3: MSE of filtering results with aperture with multiple
output values

are more apparent on the front right wheel of the car).
With larger apertures the improvement was minimal (see

fig. 7) and in a few cases the filter performance was actu-
ally degraded. Possibly for larger search spaces the num-
bers empirically chosen for this approach (10 output values
and 10 minimal number of examples described above) were
not optimal. However for smaller apertures the improvement
achieved was over 6% for window W1 and 3 aperture levels,
which increases the performance by a factor of 2.

5. CONCLUSIONS AND FURTHER WORK

It was shown in this paper that releasing some of the aperture
filter constraints can improve filtering performance by a fac-
tor of up to 3. Output value constraint removal was beneficial
for this particular dataset for all of the tested filter configura-
tions, and it gave a massive performance improvement. Esti-
mating separate output values for several gray-scale ranges
was shown to be beneficial in most cases, however more
detailed research is required to address the reduced perfor-
mance with large apertures.

Further work will include combining the presented meth-
ods with other techniques described to further improve the
results.
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Figure 5: Comparison of multiple and single unconstrained
output apertures for window W1 and 3 aperture levels.
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Figure 6: Comparison of multiple and single unconstrained
output apertures for window W4 and 5 aperture levels.

REFERENCES

[1] R. Hirata, E. R. Dougherty, and J. Barrera, “Aperture fil-
ters”, Signal Processing, Vol. 80, pp. 697–721, 2000.

[2] A. C. Green, E. R. Dougherty, S. Marshall, and D.
Greenhalgh, “Optimal Filters with Multiresolution Aper-
tures”, Mathematical Imaging and Vision, Vol. 20, pp.
237–250, 2004.

[3] A. C. Green, S. Marshall, D. Greenhalgh, and E. R.
Dougherty, “Design of multi-mask aperture filters”, Sig-
nal Processing, Vol. 83, pp. 1961–1971, 2003.

[4] R. Hirata, M. Brun, J. Barrera, and E. R. Dougherty,
“Multiresolution design of aperture operators”, Mathe-
matical Imaging and Vision, Vol. 16, pp. 199-222, 2002.

[5] S. K. Murthy, S. Kasif, and S. Salzberg, “A System for
Induction of Oblique Decision Trees”, Journal of Artifi-
cial Intelligence Research, Vol. 2, pp 1–32, 1994.

[6] R. Hirata, J. Barrera, and E. R. Dougherty, “Design of
Gray-scale Nonlinear Filters via Multiresolution Aper-
tures”, EUSIPCO2000 Proceedings, 2000.

[7] R. Hirata, E. R. Dougherty, and J. Barrera, “Optimal

blurred

w4a9 unconstr
w4a9 multi10

40

45

50

55

60

65

70

75

80

0 5000000 10000000 15000000 20000000 25000000 30000000

Number of samples

MSE

Figure 7: Comparison of multiple and single unconstrained
output apertures for window W4 and 9 aperture levels.

original blurred

standard aperture unconstrained output

aperture with 10 output values

Figure 8: Example image from the test set filtered with aper-
ture filters with window W4 and 5 aperture levels.

range-domain window filters”, IS&T/SPIE Conference
on Non-linear Image Processing X, San Jose, CA, SPIE
Vol. 3646, pp. 3845, 1999.

[8] E. R. Dougherty, D. Sinha, “Computational mathemati-
cal morphology”, Signal Processing, Vol. 38, pp 21-29,
1994.

©2007 EURASIP 1496

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


