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Abstract

In this paper a general Morse potential model of self-propelling particles is considered in the

presence of a time-delayed term and a spring potential. It is shown that the emergent swarm

behavior is dependent on the delay term and weights of the time-delayed function which can be set

to induce a stationary swarm, a rotating swarm with uniform translation and a rotating swarm with

a stationary center-of-mass. An analysis of the mean field equations shows that without a spring

potential the motion of the center-of-mass is determined explicitly by a multi-valued function. For

a non-zero spring potential the swarm converges to a vortex formation about a stationary center-

of-mass, except at discrete bifurcation points where the center-of-mass will periodically trace an

ellipse. The analytical results defining the behavior of the center-of-mass are shown to correspond

with the numerical swarm simulations.
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I. INTRODUCTION

In nature swarms of social entities such as insects, birds and fish, self-organize through

local communications as opposed to centralized behavioral control. Mathematical investi-

gations into the emergent spatio-temporal patterns of such swarms have been used to gain

an understanding of the mechanism that drives this natural phenomena1–7. In turn this re-

search has led to a number of efficient algorithms designed to control swarms of autonomous

systems8–13.

Many different mathematical approaches have been used to describe de-centralized swarm

behavior. A common approach to modeling coherent swarms is in the use of Artificial Po-

tential Functions (APFs)12–19. APFs have gained popularity in algorithms for de-centralized

swarm control of autonomous systems as they are simple to implement, their emergent be-

havior is often verifiable analytically, see for example,21 and they can be used for obstacle

avoidance22.

This paper focusses on approaches that have been used to model rotation in swarms of

self-propelled particles which are either translating or with a stationary center-of-mass23–25.

These models23–25 all use APFs combined with additional terms to induce rotating swarms.

In McInnes23 a Morse APF was combined with a velocity alignment function requiring in-

formation on the relative velocity of each particle to induce vortex formations. In Ebeling.

et al.24 it was shown that a translating swarm induced by a harmonic attractive APF tran-

sitioned to a rotational motion in the presence of noise (with a large enough intensity) and

in Schwartz and Forgotson25 a purely attractive APF in the presence of noise and the addi-

tion of a communication time-delay was investigated. This showed that the delay induced

transition from translational to rotational motion was associated with a super-critical hopf

bifurcation as the value of a coupling parameter was increased. The models used by24,25

have a computational advantage over the model in23 as the swarm control algorithms do

not require information on the relative velocity. However, the model in23 is deterministic

and the mean field equations can be investigated without imposing assumptions such as

the equivalence of deterministic averaging and statistical averaging or simply ignoring the

stochastic perturbations.

In this paper a method for inducing rotational motion of a swarm that interacts via

APFs and time-delay auto synchronization (T-DAS)26 is presented. Similarly to25 a delay
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parameter is introduced into the equations, but in this case it is a delay in a velocity term

rather than a delay in the relative position of each particle. The delay in25 is introduced to

account for communication time delays. However, the delay term here is considered purely as

a feedback mechanism26,27 requiring the ability to sense current state and store information

on historical state. An investigation of the effect of a time-delay directly on an APF without

the presence of noise is undertaken. It is shown that noise is not required to induce rotational

motion with a stationary center-of-mass and can be a purely delay dependent phenomena. In

comparison to previous deterministic algorithms to induce vortex formations in self-propelled

particles this method does not require relative velocity information so is computationally

more efficient. Furthermore, the completely deterministic mean field equations are shown to

be linear delay differential equations that allow a complete stability analysis to be undertaken

without the need for sophisticated numerical tools.

We consider a two-dimensional (2-D) model of a swarm that consists of homogeneous,

self-propelled agents (1 ≤ i ≤ N) that are interacting through the following APF, U(xi):

U(xi) =
∑

j,j 6=i






Cr exp

−
|xij |

Lr −Ca exp
−
|xij |

La






+ β

mi

2
|xi(t)|

2 (1)

where, xi is the position vector of agent i with corresponding mass mi and xij is the relative

position vector of agents i and j, Ca, Cr and La,Lr represent the amplitude and range of the

attractive and repulsive potential respectively. Two cases of the APF are considered when

β = 0 and β = 1. The Morse potential (Equ. (1) with β = 0) is used to provide long-range

attraction and weak short-range repulsion (collision-free motion) for the swarm of agents? .

The spring potential (mi

2
|xi(t)|

2) is used to bound the motion of the swarm about the origin.

The swarm behavior is induced by the following equations of motion

ẋi = vi (2)

where vi defines the mechanism of self-propulsion and

miv̇i = −∇iU(xi) + ui(t), (3)

where,

ui(t) = ami vi(t − τ) − bmi vi(t), (4)
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with a and b are arbitrary constants and τ a delay term. The dissipation term (4) is of

the form of a time-delayed feedback control or time-delayed auto synchronization (T-DAS)

a method originally posed by Pyragas26. The following section considers the case when

β = 0 (no spring potential) and investigates the interaction between T-DAS and the Morse

potential function.

II. SIMULATION AND ANALYSIS FOR β = 0

For this study the parameters of the potential function are taken to be β = 0, Ca = 1, La =

0.8, Cr = 1, Lr = 0.5 which yields the potential function illustrated in Figure 1 Numerical
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FIG. 1: The Morse potential as a function of agent separation

simulations were undertaken for agents in the x-y plane. An example is given in Fig. 2 where

the velocity of each agent is illustrated. In Figure 2 (i) b > a whereby the feedback control

magnitude and direction is dominated by its current velocity. As the feedback control acts in

the opposite direction to the current velocity it will act as a dissipative force and the speed

of each agent will converges to zero i.e. the center-of-mass stops. In Figure 2 (ii) a > b

the feedback control mechanism is dominated by the delayed velocity. As this component

of the feedback acts in the same direction as the agent’s motion the magnitude of velocity

will continuously increase. In this case the center-of-mass diverges exponentially. At the

bifurcation point a = b the velocity of each agent is non-zero yet bounded, as illustrated in

Figure 2 (iii), with the swarm converging to a uniform rotating and translating motion. This

qualitative behavior can be characterized by the stability of the center-of-mass. Furthermore,

the behavior of the center-of-mass can be verified analytically by analyzing the swarms mean
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FIG. 2: The magnitude of the velocity history for 30 agents in the swarm given by numerical

simulation with random initial conditions (i) b > a all velocities converge to zero (asymptotically

stable) (ii) a > b the velocities diverge rapidly (unstable) (iii) a = b the velocities are non-zero but

bounded (marginally-stable)

field equations. The mean field equations are derived by defining the position Rc, velocity

Ṙc and acceleration R̈c of the center-of-mass of the swarm by Eq. (5)

Rc =

∑

i

mixi

∑

i

mi

, Ṙc =

∑

i

mivi

∑

i

mi

, R̈c =

∑

i

miv̇i

∑

i

mi

. (5)
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then summing over all agents in Eq. (3), with delay term (4) included, yields

∑

i

miv̇i(t) = −b
∑

i

mivi(t) + a
∑

i

mivi(t − τ), (6)

where,
∑

i ∇iU(xij) = 0 due to internal symmetry in the swarm. The center-of-mass of

the swarm can, thus, be expressed combining equations (5) and (6) to yield the mean field

equations:

R̈c(t) = aṘc(t − τ) − bṘc(t), (7)

which after using the change of variable,

x(t) = Ṙc(t) and ẋ(t) = R̈c(t), (8)

is rewritten as

ẋ(t) = −bx(t) + ax (t − τ) . (9)

The stability analysis of this equation will then determine the behavior of the center-of-mass

of the swarm. Assuming equation (9) to have a wave function as a solution of the form,

x(t) = eλkt with λk a complex number, then the characteristic equation associated with

equation (9) is:

λk = −b + ae−λkτ (10)

The solution to the transcendental equation (10) can be given analytically in terms of a Lam-

bert function, as is well known for a one-dimensional linear time-delay differential equation27.

By definition, the Lambert function W (z), is a multi-valued function given implicitly by

equation

z = W (z)eW (z), (11)

with z any complex number.

So, equation (10) is first rewritten as

τλke
λkτ = τ

(

−beλkτ + a
)

, (12)

then into

(bτ + λkτ) eλkτebτ = aτebτ , (13)

or

(bτ + λkτ) eλkτ+bτ = aτebτ . (14)
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From the definition of the Lambert function in equation (11), the solution to equation (14),

is

bτ + λkτ = W (aτebτ ). (15)

or

λk =
−bτ + W (aτebτ )

τ
. (16)

Therefore, knowing properties of the Lambert function one can analyze the solution of equa-

tion (16) of the characteristic equation (10) and extract stability criteria which is primarily

defined as Re[λk] < 0 for all λk. As a multi-valued function, the branches or the set of

Lambert functions are denoted Wk(z) with k ∈ Z. For a given triplet, (b, a, τ), the set of

solutions in equation (16) admits a clear leading eigenvalue, the rightmost eigenvalue. The

value of this rightmost eigenvalue, that is given by λ0, by conjecture determines the stability

i.e. Re[λ0] < 0 implies the center-of mass will converge. Fig. 3 illustrates a surface (a = 1)

with the vertical axes corresponding to the real part of the right-most eigenvalue of the sys-

tem, and the horizontal axis the parameter b and the delay τ . This illustrates the stable and

unstable regions of the swarm, that is, when the center-of-mass stops and when it diverges

rapidly. The eigen-modes for a subset of these values are also illustrated in Figure 4. This

indicates that, in all cases, all of the eigen-modes converge to zero except in the case of the

right-most eigen-mode which is the controlling mode. However, the right-most eigen-mode

is dependent on the values of the parameters a and b as is illustrated. The equation of the

velocity of the centre-of-mass (recall x(t) = Ṙc(t)) can also be explicitly defined as a solution

of the Delay Differential Equation (DDE) equation (9) by,

x(t) =
+∞
∑

k=−∞

Cke
λkt. (17)

where λk is defined by Equ. (16) and the coefficients Ck are dependent on the initial

conditions.

III. SIMULATION AND ANALYSIS FOR β = 1

It has been shown in the previous section that the T-DAS term can be augmented to

induce either stable (stationary), marginally stable (uniformly rotating and translating -
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FIG. 3: (Color online) Real part of the right-most eigenvalue is represented by the multi-colored

surface (grayscale surface in print) with varying b and τ intersecting the plane defined by Re[λ0] = 0
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FIG. 4: (Color online) Evolution of the first 4 modes for different values of b and a = τ = 1
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bounded velocity) or unstable (exponentially diverging velocity). In this section we investi-

gate the transition of these swarm topologies to rotating swarms with a stationary center-

of-mass due to the addition of a spring potential. It is shown that introducing a spring

potential alongside the Morse potential, and used in combination with T-DAS, induces dy-

namic vortex formations about the origin. The spring potential function is purely attractive

and grows linearly with the separation between each particle and the origin. Explicitly the

APF (1) is used with β = 1, Ca = 1, La = 0.8, Cr = 1, Lr = 0.5 which yields the potential

function surface in Figure 5. Note that for b > a the velocities will always converge to zero
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FIG. 5: (Color online) The potential surface as a function of agent separation and the distance x

from the origin

as in the case when the spring potential is not included. Furthermore, when b << a the

velocity will diverge and for a slightly larger than b the velocity will be bounded but at a

larger velocity than for a = b. In other words as b increases (above a) the final bounded

velocity will increase until it reaches a critical value where it will diverge (escapes from the

potential well). Examples of bounded velocities are illustrated in the Figures 6 (i) and (ii).

The two behaviors are qualitatively unchanged with each agent converging to one of three

constant velocity magnitudes (this is most clearly observed in Fig. 6 (ii)). From here on we

assume a = b = 1 which corresponds to the marginally stable case for β = 0. Summing over
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FIG. 6: The velocity magnitude history for 30 agents in the swarm (i) a = b = 1 all velocities are

small and bounded (ii) a = 1.1, b = 1 velocities are bounded but their magnitudes become larger

all agents in Equ. (3) with β = 1 yields:

∑

i

miv̇i(t) = −
∑

i

mivi(t) +
∑

i

mivi(t − τ) −
∑

i

mixi (18)

where
∑

i

xi is the additional component to the previous case (6) corresponding to the ad-

dition of the spring potential and
∑

i ∇iU(xij) = 0 due to internal symmetry in the swarm.

The center-of-mass of the swarm can thus be expressed as:

R̈c(t) = −Ṙc(t) + Ṙc(t − τ) − Rc(t) (19)

defining X = [Rc(t), Ṙc(t)]
T , this can be expressed as a linear time delay system of the form:

Ẋ(t) =





0 1

−1 −1



X(t) +





0 0

0 1



X(t − τ) (20)

This system cannot be solved using the matrix generalization of the Lambert function as the

two matrices A and B in Ẋ(t) = AX(t)+BX(t− τ) corresponding to (20) do not commute,

see28. Therefore, the stability of the center-of-mass of the swarm is determined using a

numerical eigenvalue based approach for time-delay systems29. It is well known (see29) that
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as the system, shown in equation (20), is of the form Ẋ(t) = A0X(t) + A1X(t − τ) where

X(t) ∈ R2 can be expressed as X(t) =
∞
∑

−∞

Cke
λkt and A0, A1 ∈ R2×2 are real matrices and

0 < τ that the substitution of a sample solution of the form eλktv where v ∈ C2×1\{0} leads

to the characteristic equation:

det ∆(λk) = 0 (21)

where,

∆(λk) = λI − A0 − A1e
−λkτ . (22)

The particular case when τ = 1 and τ = 2π is illustrated in Figure 7 where the maximum

real part of all the eigenvalues is Re(λ0) = −0.0638512 and Re(λ0) = 0 respectively. Figure

-4 -3 -2 -1
ReHΛkL

-100

-50

50

100
ImHΛkL

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1
ReHΛkL

-40

-20

20

40
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FIG. 7: Characteristic roots of equation (21) for (i) τ = 1 the right most eigenvalue has negative

real part (ii) τ = 2π the two right most eigenvalues lie on the imaginary axis

7 illustrates that the center-of-mass will always stop, independently of the number of agents

in the swarm, for τ = 1. Figure 8 shows a plot of just the right-most eigenvalue against

τ and illustrates that the centre-of-mass will always stop for τ ∈ (0, 2π). Moreover, each

agent’s velocity has been shown to converge to a constant bounded velocity (with a = b) and

that the center-of-mass will stop independently of initial conditions. This implies that for

random initial conditions the swarm must converge to a rotating motion. Figure 9 illustrates

convergence to the rotating (vortex) motion for a swarm of 30 agents projected on the x y

plane. However, from Figure 7 (ii) (τ = 2π) it can be seen that the right-most eigenvalues
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FIG. 8: The rightmost characteristic roots of the system (20) as a function of the delay term τ

lie on the imaginary axis. In this case as t → ∞ all modes converge to zero except the right-

most and therefore the solution in the limit is a periodic motion. This periodic solution

exists for τ = 2nπ where n ∈ Z and is easily shown to be:

Rc(t) = Ṙc(0) sin t + Rc(0) cos t. (23)

This periodic motion can be considered stable in that all transient motion independently of

initial conditions will converge to it (except for the trivial case Ṙc(0) = Rc = 0). In this case

each agent winds round the origin as illustrated in Figure 10 (ii) with the periodic motion of

the center-of-mass tracing an ellipse. If a numerical continuation of the delay parameter is

extended beyond τ = 2π it is seen that the real part of the right-most eigenvalue is always

negative except at the discrete bifurcation points τ = 2nπ. Note that the bifurcations

involve two stable delay-dependent steady states: an equilibrium point and a periodic orbit.

However, the eigenvalues never cross the imaginary axis of the complex plane for any value of

the delay parameter so it is different from the classical hopf bifurcation reported in Schwartz

and Forgotson25.

IV. CONCLUSION

This work has investigated the combined effect of an Artificial Potential Function (Morse

potential and a spring potential) with a time-delayed auto-synchronous (T-DAS) term. The

Morse potential is conventionally used to ensure collision avoidance and long-range attrac-

tion in swarms while it is shown that the T-DAS term can be used to induce stationary,

uniformly rotating and translating swarms or swarms with exponentially increasing trans-

lational velocity. The corresponding center-of-mass motion of the swarm without a spring

potential is shown to be explicitly defined by a multi-valued function. In the presence of
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FIG. 9: Swarm of 30 agents forming a vortex independently of initial conditions (i) random initial

conditions (ii) t=10 (iii) t=20 (iv) t=40

a spring potential the swarm converges to a vortex formation where the center-of-mass is

guaranteed to stop, except at discrete bifurcation points where the delay term τ = 2nπ.

At the discrete bifurcation points, after an initial transient, the center-of-mass will peri-

odically trace an ellipse, whose semi-major and semi-minor axis are explicitly dependent

on the initial position and velocity of the center-of-mass. For the purpose of engineering

the presented model for vortex formation has advantages over noise induced rotations as it

is completely deterministic. This implies that results can be repeated and the mean field

equations can be analyzed without assumptions being placed on the stochastic perturbation.

In contrast to previous deterministic models for vortex formations it has low-computational
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FIG. 10: Trajectories of 30 agents with random initial conditions converging to a steady state (i)

τ = 1 the center-of-mass stops and the swarm forms a vortex formation (ii) τ = 2π the center-of-

mass oscillates about the origin and each agent winds around the origin

requirement as the active interaction only requires that each agent is capable of sensing

their relative position within their environment without the need for any relative velocity

information. This shows that it is possible to induce rotational motion with a stationary

center-of-mass without using noise or information on the relative velocity. Therefore, these

results may prove useful in controlling swarms of autonomous vehicles which posses only

low-computational power on-board. The model could also provide a deterministic insight

into swarm alignment of biological systems such as vortex formation in schools of fish using

a feedback mechanism that is a function of memory.
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