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Abstract: Despite the availability of detailed non-linear finite element analysis (FEA), some
aspects of high-temperature design can still be best addressed through more simplified methods.
One such simplified method relates to the problem of elastic follow-up where, typically in strain-
controlled situations, elastic behaviour in one part of a structure can lead to large strain accu-
mulation in another. Over the past 30 years, it has been shown that in regions with significant
elastic follow-up, a plot of maximum stress against strain (a ‘stress-strain trajectory’) is virtually
independent of the constitutive relation – a characteristic which can be used to estimate elastic
follow-up for design purposes without detailed non-linear FEA. The majority of studies which
have reported this independence on material behaviour have used simple constitutive models for
creep strain, primarily based on power-law creep or variations. Recently, studies of the behaviour
of high-temperature structures with a stress range-dependent constitutive law have begun to
emerge. This article examines the problem of elastic follow-up using such a constitutive law for a
classic two-bar structure and for a more complex structure using FEA. It is found that the inde-
pendence of the stress–strain trajectory on constitutive equation is lost with a stress range-
dependent relation.

Keywords: creep, power-law breakdown, structural analysis, stress relaxation, elastic follow-up,
high-temperature design

1 INTRODUCTION

Comprehensive assessment rules for high-tempera-

ture design are usually, of necessity, a compromise

between detailed inelastic analysis and simplified,

generic rules. One such area of compromise relates

to the issue of elastic follow-up in complex structures,

where dominant elastic behaviour in one part of a

structure can lead to excessive creep strain accumu-

lation in local regions in another part. This can be a

particular problem in structures which are predomi-

nantly under stress relaxation conditions. Elastic

follow-up is not a special problem if a detailed inelas-

tic analysis can be performed to evaluate, and thereby

limit, the level of inelastic strain. However, the aim in

current high-temperature assessment design codes is

to avoid such detailed inelastic analysis for localized

regions and instead rely upon more simplified rules.

For example, the JSME NC2-2005 [1] treats elastic

follow-up through a so-called ‘elastic follow-up

parameter’, q, unique to each structure, which can

be estimated from simplified elastic analysis and uni-

axial creep data. In fact, the JSME standard takes a

‘conservative’ estimate of this factor as q= 3 for fast

breeder reactor components based on more detailed

inelastic studies. The R5 Assessment Procedure for the

High-Temperature Response of Structures [2] similarly

defines an ‘elastic follow-up factor’ for general stress

relaxation, which can be estimated by simplified

analysis. A common feature of these elastic follow-

up factors is the assertion that these are approxi-

mately independent of the creep law and represent

a predominantly geometrical effect. The aim of this

article is to demonstrate that, for certain types of

1
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creep law, there can be a strong dependency on the

form of the law and that, in these cases, design and

assessment procedures may need to be re-examined.

Elastic follow-up was introduced in 1955 by

Robinson [3] in a study of the creep of high-

temperature steam piping systems. He demonstrated

that despite being deformation controlled, large

creep strains could, in fact, occur and explained this

type of behaviour, which he called ‘follow-up elastic-

ity’ by the tendency of certain configurations to

maintain stress in a highly strained component

through an elastic action even though the overall

loads relaxed – thereby slowing down the expected

rate of creep relaxation. The terminology ‘elastic

follow-up’ initially passed into piping design – the

ASME Boiler and Pressure Vessel Code has repeatedly

cautioned the piping designer about the potential

design problems associated with this behaviour.

Nevertheless, design guidance in the Code remained

unhelpful for some time since. Despite reminding the

designer that such a condition should be avoided, no

means was given for determining if elastic follow-up

existed either qualitatively or quantitatively. Over

the years, several researchers, including the author,

attempted to resolve this problem, not only for piping

systems but also for any component which exhibits

this behaviour, in particular structural discontinu-

ities. A full review will not be given here, but reference

can be made to other reviews of elastic follow-up over

the past two decades by Boyle and Nakamura [4],

Kasahara [5, 6] and more recently by Hadidi-Moud

and Smith [7]. Of relevance to the current work

described in this study, Kasahara [5, 6] analysed

elastic follow-up in structural discontinuities, extend-

ing previous work to include plasticity in addition to

creep. To begin with, a simple two-bar structure (first

introduced in that form by Boyle and Nakamura [4])

was analysed to demonstrate the independence of

elastic follow-up from the plastic or creep law. This

was followed by detailed inelastic finite element

analyses (FEA) of an axisymmetric Y-piece under

thermal loading. Various creep laws were used and

it was demonstrated that in terms of quantifying

elastic follow–up ‘ . . . the structures have the unique

characteristic of being insensitive to the creep strain

equations . . .’ [6, Section 2.2]. Further, Hadidi-Moud

and Smith, following their review paper [7], have writ-

ten a series of papers [8–10] which extend the simple

two-bar structure of Boyle and Nakamura [4] to a

number of similar simple ‘benchmark’ bar structures,

representative of the behaviour of real structures, as

part of a study into the relaxation of residual stress in

a range of structural components. The concept of

an ‘elastic follow-up factor’ from R5 [2] is further

developed and it is argued that the factor ‘. . . is

independent of the creep law and is reflecting a

purely geometrical effect . . .’ [10, p. 363]. In reference

[8], a series of experimental studies of these bench-

mark bar structures are reported – these experiments

reflected the essential features of the theoretical stud-

ies, although the elastic follow-up factors were

greater than predicted. In addition, it was found

that initial residual stresses did not significantly con-

tribute to elastic follow-up.

Most studies of elastic follow-up have been based

on simple creep constitutive models. These simple

constitutive models, for example the time- and

strain-hardening constitutive equations, are based

on adaptations for time-varying stress of equally

simple models for the secondary creep stage from

constant load/stress uniaxial tests where the mini-

mum creep rate is constant. In fact, the majority of

studies of the characteristics of elastic follow-up (the

exception being the work of Kasahara [5, 6]) simply

use a secondary creep law combined with elastic

behaviour. The most common secondary creep con-

stitutive model has been the Norton–Bailey law,

which gives a power-law relationship between mini-

mum creep rate and (constant) stress. The unique

mathematical properties of the power-law allowed

the development of robust simplified methods,

many of which can be found in high-temperature

design codes. Now that detailed FEA for creep is read-

ily accomplished on the desktop, it is perhaps surpris-

ing that the simple time- or strain-hardening

constitutive models based on power-law creep

remain the most widely available in common com-

mercial finite element software, such as ANSYS or

ABAQUS, even though more comprehensive time-

dependent non-linear constitutive models are avail-

able (and can be included as user-defined materials).

The most common reason for persisting with the

more simple constitutive models is the ease with

which material constants can be derived from exper-

iments, the ability to check detailed solutions with

simplified (robust) methods, and an underlying

understanding of the expected behaviour of simple

structures subject to power-law creep [11–13].

Nevertheless, it has long been known that creep

over a range of stress does not follow one simple

power-law relationship, typically following one

power-law at low stress and another at high stress –

a phenomenon known as ‘power-law breakdown’. A

common observation is a shift from a power-law

(usually dislocation) mechanism at ‘moderate’

stress to a diffusion mechanism at ‘low’ stress, char-

acterized by a linear viscous relationship between

creep rate and stress [14, 15] with a more significant

power-law breakdown at ‘high’ stress. Such a

stress range-dependent constitutive model, with a

2 J T Boyle
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transition from linear to power-law behaviour, has

recently been studied by Naumenko et al. [16]:

stress analyses using this modified power-law were

compared to linear and pure power-law over a

range of stress and load for several simple structures –

simple stress relaxation, the beam in bending, and a

pressurized thick cylinder. In this article, the first

analysis – stress relaxation – is extended to examine

the implications for elastic follow-up.

2 SECONDARY CREEP CONSTITUTIVE MODEL

The minimum creep rate ( _"min) during the secondary

(or steady state) deformation stage is frequently

related to the (constant) applied stress (�) by a

power-law relationship in the form

_"min ¼ B�n ð1Þ

where B and n are constants determined from uniax-

ial creep testing. Use of a power-law relation reflects

an almost linear relationship between log(minimum

creep rate) and log(stress) which is often found in

creep tests: typical results for an austenitic stainless

steel AISI 316L(N) taken from Rieth et al. [17] are

shown in Fig. 1.

However, many metals and alloys typically exhibit

different regimes with n � 1 at low stresses and n � 4

or 5 at higher stress levels with n increasing again in

the power-law breakdown regime [14]. This is illus-

trated in Fig. 2, taken from reference [14] based on

data on 0.5Cr0.5Mo0.25 V steel from Evans et al. [18].

Indeed, at lower temperatures (although still above

that for creep), even the data from reference [17]

show similar behaviour, Fig. 3. Numerous attempts

have been made to find a continuous curve to

describe this behaviour over the complete stress

range, principal among these being the hyperbolic

sine relationship

_"min ¼ B sinhðC�Þ ð2Þ

and the equation proposed by Garofalo [19]

_"min ¼ B sinhðC�Þn ð3Þ

where B, C, and n are constants. A more complete

summary can be found in reference [20].

It is often argued that the change in behaviour from

low to moderate stress can be explained by diffu-

sional creep theories, while the transition from mod-

erate to high stress (power-law breakdown) can be

accounted for by diffusion-controlled mechanisms

and movement of lattice dislocations, for example

Fig. 3 Steady creep of austenitic AISI 316 L(N) 550–
750�C after reference [17]

Fig. 1 Steady creep of austenitic AISI 316 L(N) 550–
650�C after reference [17]

Fig. 2 Steady creep of 0.5Cr0.5Mo0.25 V after
reference [14]

Stress relaxation and elastic follow-up using a stress range-dependent constitutive model 3
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in pure metals. These explanations are not generally

agreed to [14]. Nevertheless, there remains an obvi-

ous need to perform stress analysis with this type of

constitutive behaviour and reliable (if not perfect)

constitutive models are required. Williams and

Wilshire [21] proposed the ‘transition stress’ model

for power-law breakdown

_"min ¼ Bð� � �0Þ
p

ð4Þ

where B and p are constants and �p the transition

stress. Unfortunately, the transition stress cannot be

reliably measured. To model the transition from low

to moderate stress, Naumenko et al. [16] proposed a

constitutive relationship which assumed that the

physical mechanisms were independent and that

the corresponding creep rates could simply be added

_"min

_"0
¼

�

�0
þ

�

�0

� �n

ð5Þ

where �0, "0, and n are material constants. The stress

�0 is a kind of transition stress different from that

studied by Williams and Wilshire [21], since it speci-

fies the stress level at which the behaviour changes

from linear (viscous) to power-law (Fig. 4). Equation

(5), which shall be referred to as a ‘modified power-

law’ for simplicity, was used by Naumenko et al. [16]

to examine how the stress system in simple compo-

nents – uniaxial stress relaxation, a beam in bending

and a pressurized thick cylinder – would change com-

pared to pure linear and pure power-law behaviour.

In this article, the stress relaxation problem will be re-

examined in more detail in the context of a more

detailed analysis of elastic follow-up – the beam and

thick cylinder problems are considered in more detail

elsewhere [22], in particular the applicability of sim-

plified methods and deformation behaviour.

3 EFFECT OF THEMODIFIED POWER-LAWON

STRESS RELAXATION

The classic problem of simple uniaxial stress relaxa-

tion is well known [11–13]. The problem was briefly

re-examined using the modified power-law, equation

(5), by Naumenko et al. [16]. While equation (5)

includes the necessary features for stress relaxation

of elastic follow-up, namely hardening and non-

linear steady state creep, primary creep is neglected.

Thus, reference [16] and the further studies to be

described in this article are limited to a qualitative

analysis of essential characteristics.

Stress relaxation of a single uniaxial bar occurs

when the strain is held constant – that is the problem

is deformation, or strain, controlled. Then, the creep

strain rate, equation (5), is added to the elastic strain

rate such that

_�

E
þ _"0

�

�0
þ

�

�0

� �n� �
¼ 0 ð6Þ

where E is the Young’s modulus. Equation (6) can be

solved subject to a suitable initial condition for �(0).

Introducing the normalized quantities

� ¼
E _"0

�0
�¼�t

Equation (6) can be re-written in the form

dS

d�
þ S þ �n�1Sn ¼ 0 ð7Þ

where Sð�Þ ¼ �ð�Þ=�ð0Þ and a load parameter,

� ¼ �ð0Þ=�0, the ratio of the initial elastic stress in

the bar to the transition stress in the modified

power-law. The initial condition for equation (7) is

simply S(0) = 1; so its solution is

Sð�Þ ¼
e��

1 þ �n�1ð1 � e�ðn�1Þ�Þ
� � 1

n�1

ð8Þ

The result is plotted in Fig. 5 for various values of n

and�. Comparison may be made with the special cases

of pure linear viscous creep, where the non-linear com-

ponent is ignored in equation (5), and pure power-law

where the linear part is ignored – the latter of course

being the classic solution for creep stress relaxation.

For linear viscous creep, the solution is

SLinearð�Þ ¼ e�� ð9Þ

and for pure power-law creep, the solution is [11–13]

SPowerð�Þ ¼
1

1 þ ðn � 1Þ�n�1�½ �
1

n�1

ð10Þ

It should be noted that the latter is not the conven-

tional form for power-law stress relaxation since the
Fig. 4 Steady creep of 9 per cent Cr steel at 600�C after

reference [16]

4 J T Boyle
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timescale has been normalized with respect to the

parameter � rather than using � ¼ E�ð0Þn�1t , which

would render the solution independent of �. The

pure viscous, equation (9), and pure power-law,

equation (10), solutions are also shown in Fig. 5.

Results are shown in Fig. 5 for n= 3 and 11 and

�= 1.0 and 1.5. The values of � reflect two different

cases, where the initial stress equals the modified

power-law creep transition stress, �0, and where it is

50 per cent above the transition stress. As noted by

Naumenko et al. [16], it could be expected that, at

least in the latter case, the power-law solution, equa-

tion (10), would dominate, but the results of Fig. 5

show otherwise. The relaxation curve for the modified

power-law only follows the pure power-law solution

for values of normalized time, � � 1, but it tends to

approach the linear viscous solution, equation (9), as

normalized time increases. For �= 1.0, it can be seen

that the linear viscous solution dominates and indeed

for values of �< 1, the relaxation curves are practically

identical. This result may seem surprising at first. In

reference [22], it is shown in a study of a beam in bend-

ing and a pressurized thick cylinder that, for load-con-

trolled steady creep and values of maximum elastic

stress 50 per cent above the transition stress in the

modified power-law, the pure power-law solution

does dominate as expected. However, this is apparently

not the case for stress relaxation (at least in the present

simple example). In fact, in reference [16], it is sug-

gested that the influence of linear creep on a presumed

power-law material could be detected by performing a

relaxation test; this has been further investigated by

Altenbach etal. [23]. The aim of this study is to examine

this effect in the context of elastic follow-up.

4 EFFECT OF THE MODIFIED POWER-LAW

ON ELASTIC FOLLOW-UP

4.1 Elastic follow-up of a two-bar structure:

Power-law creep

The problem of the relaxation of a simple two-bar

structure was introduced by Boyle and Nakamura [4]

Fig. 5 Stress relaxation of a uniaxial bar: comparison of modified power law with linear viscous and
pure power law for various values of n and �

Stress relaxation and elastic follow-up using a stress range-dependent constitutive model 5
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to illustrate the characteristic behaviour of elastic

follow-up. Consider a structure consisting of two

bars of the same material and length L but of different

cross-sectional areas A1 and A2, connected in series

(Fig. 6). One end of the structure is fully fixed, while

the other suffers a fixed displacement in the axial

direction, �. To begin with, assume that the total

strain in each bar is composed of an elastic compo-

nent and a pure power-law creep component

_" ¼
_�

E
þ _"c ð11Þ

_"c
_"0

¼
�

�0

� �n

As in Section 3, primary creep is neglected. It can

easily be shown that the maximum stress in bar no. 2

relaxes in time according to

�2ðt Þ

�2ð0Þ
¼

1

1 þ ðn � 1Þ& 1
�

� � 1
n�1

ð12Þ

assuming A2 � A1, where

& ¼ E _"0
�2ð0Þ

�0

� �n�1

The geometrical parameter � is given by

� ¼
1 þ A2=A1

1 þ ðA2=A1Þ
n

In reference [4], it was shown that there is a simple

linear relationship between stress and strain at any

instant given by

"2ðt Þ

"2ð0Þ
¼ 1 þ ð�� 1Þ 1 �

�2ðt Þ

�2ð0Þ

� �
ð13Þ

which is plotted in Fig. 7 as a ‘stress–strain trajectory’,

or isochronous stress–strain curve, of the type used

for elastic follow-up by several earlier writers and is

now common in the literature.

In the case of this simple structure, the total strain

is limited, since from compatibility

"1 þ "2 ¼
�

L

where � is the applied displacement. Initially, the

maximum elastic strain accounts for the fraction

1=ð1 þ A2=A1Þ of the total strain �/L; however, as

time progresses, this fraction increases

"2ð0Þ ¼
1

1 þ A2=A1

�

L
"2ð1Þ ¼

1

1 þ ðA2=A1Þ
n

�

L

Therefore, as t ! 1, "2ðt Þ="2ð0Þ ! �. As time

progresses, the strain in bar no. 1 decreases – this is

the phenomenon of elastic follow-up as described by

Robinson [3].

It should be particularly noted that the stress–strain

trajectory in Fig. 7 is almost independent of n for this

simple structure. This feature indicates that the elas-

tic follow-up phenomenon is largely geometrical in

nature, since it is independent of material. Indeed, if

primary creep is added to the creep law used, for

example using time hardening in equation (11)

_"c
_"0

¼ g ðt Þ
�

�0

� �n

then the stress–strain trajectory, equation (13),

remains the same [4].

The elastic follow-up parameter, q, of JSME NC2-

2005 [1, 5] is related to the slope of the graph shown

in Fig. 7

q ¼
1

�� 1

This definition was derived from an extensive study

of this two-bar structure for both plasticity and creep,

together with several variations on this model by

Kasahara et al. [5]. A similar definition is given for

the elastic follow-up factor in R5 [2].

4.2 Independence of constitutive relation

The near independence of the stress–strain trajectory

of the constitutive equation is significant here. This

characteristic behaviour has been found in several

Fig. 7 Two-bar structure: isochronous stress–strain
curve

Fig. 6 Simple two-bar structure subject to a fixed axial
displacement, �

6 J T Boyle
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more detailed studies of elastic follow-up in other,

often more complex, structures. In a recent series of

publications by Hadidi-Moud and Smith, summa-

rized in reference [9], this feature is also noted.

Hadidi-Moud and Smith analysed three sets of uni-

axially loaded multi-bar structures – extensions of the

two-bar structure studied in the above. The models

considered included bars in series, parallel, and com-

bined series/parallel assemblages; elastic behaviour

coupled with simple power-law creep, equation

(11), was assumed as the basic material behaviour.

In all the cases, it was found that the elastic follow-

up factor was independent of creep law, once again

highlighting the geometric nature of elastic follow-

up. As mentioned previously, Kasahara [6] carried

out detailed inelastic FEA of an axisymmetric Y-

piece under thermal loading using various creep

laws – a power-law with different stress indices but

no primary creep, combined elastic–plastic creep

and a Blackburn-type primary creep law coupled

with power-law secondary creep. On plotting stress–

strain trajectories for each at the location of maximum

strain over a time period of 210 000 h, it was found that,

regardless of the constitutive equation used, the tra-

jectories were essentially identical, although there was

slight variation with the Blackburn-type creep law at

larger times. It is important to recognize that it is the

stress–strain trajectories which are independent of

constitutive relation – strain accumulation at a specific

time does vary, as would be expected. This problem

will be re-examined later in this article to investigate

the effect of a modified secondary creep law.

The usefulness of the stress–strain trajectory has

been common in other areas of inelastic design

as well as elastic follow-up. One of the first applica-

tions was reported by Neuber [24] in an attempt to

estimate elastic–plastic strain concentration using

elastic analysis. The concept was also found useful

in the identification of primary and secondary stres-

ses in pressure vessel design by analysis [25]. Further,

Seshadri [26] developed the generalized local stress–

strain (GLOSS) analysis method, which gave an

estimation of the stress–strain trajectory at a stress con-

centration from two elastic analyses alone. Since only

elastic analysis is required, the trajectory is indepen-

dent of the constitutive relation in the GLOSS method.

More recently, Ando et al. [27] compared several sim-

plified methods to predict strain range, used in high-

temperature design to estimate fatigue and creep-fati-

gue damage, at localized (peak) stress concentrations.

The methods used were Neuber’s Rule [24], the JSME

elastic follow-up approximation (q= 3), and the stress

reduction locus (SRL), which is based on elastic analy-

sis coupled with a uniaxial stress–strain curve. The

simplified methods were compared to experimental

studies and detailed elastic–plastic analyses of notch

bar specimens with various notch sizes. Ando et al.

[27] concluded that, in terms of estimating the stress–

strain trajectory, the SRL method gave good compari-

sons with the experimental results while Neuber’s Rule

and the JSME elastic follow-up method were quite con-

servative at higher strains, the latter perhaps being

overly conservative. Like Seshadri’s GLOSS method,

by definition, the SRL method ‘. . . is insensitive to the

constitutive equations . . .’ [27, p. 2] in estimating the

stress–strain trajectory.

All these studies seem fairly conclusive – for a

number of varying simple, detailed finite element,

and experimental structural problems, the stress–

strain trajectory is essentially independent of the con-

stitutive relation: this is an observation which has been

put to good use in high-temperature design rules. In

the following section, the effect of using a modified

power-law on elastic follow-up will be examined.

4.3 Elastic follow-up of a two-bar structure:

Modified power-law creep

The two-bar structure of Section 4.1 will now be re-

examined by introducing the modified power-law

creep model, equation (5), so that equation (11)

takes the form

_" ¼
_�

E
þ _"c ð14Þ

_"c
_"0

¼
�

�0
þ

�

�0

� �n

for each bar in Fig. 6.

Using the same normalized timescale as for the

bar relaxation problem in Section 3 � ¼ E _"0

�0
�¼�t

and defining Sð�Þ ¼ �2ð�Þ
�2ð0Þ

, it can be shown that the

stress in bar no. 2 relaxes according to the first-

order differential equation

dS

d�
þ S þ

�n�1

�
Sn ¼ 0 ð15Þ

subject to the initial condition, S(0) = 1. This has solu-

tion (verified by MAPLE)

Sð�Þ ¼
e��

1 þ �n�1

� ð1 � e�ðn�1Þ�Þ
� � 1

n�1

ð16Þ

where, as before, a geometrical parameter � is defined

� ¼
1 þ A2=A1

1 þ ðA2=A1Þ
n

together with a load parameter

� ¼
�2ð0Þ

�0
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similar to that used in Section 3 for bar relaxation.

The load parameter represents the ratio of maximum

initial elastic stress in the structure to the transition

stress. Equation (16) can be contrasted with equation

(8) for bar relaxation noting similarity but the addi-

tion of the geometrical parameter, �.

In order to plot a stress–strain trajectory, it is nec-

essary to calculate the strain variation. It can be

shown that the corresponding maximum strain in

bar no. 2 satisfies the equation

dE

d�
¼ 1 �

1

�

� �
�n�1Sn ð17Þ

where E ð�Þ ¼ "2ð�Þ
"2ð0Þ

, subject to initial condition E(0) = 1.

Equation (17) can be numerically solved as a first-

order differential equation on combining with equa-

tion (16) (both Mathcad and Matlab were used for

comparison). Stress–strain trajectories for various

values of power index, n, area ratio, A2=A1, and load

factor, �, are shown in Fig. 8.

Solutions are given for three values of the load

factor � = 1.0, 1.5, and 2.0 in Fig. 8(a), (b), and (c),

respectively. The first represents an initial stress in

bar no. 2 equal to the modified power-law transition

stress, the last an initial stress double that of the tran-

sition stress. For each load factor, two values of area

ratio, A2=A1 = 0.2 and 0.5, and three values of power

index, n= 3, 7, and 11 are used. It can be immediately

seen that, for the modified power-law, independence

of the stress–strain trajectories on the constitutive

equation is lost. As the load factor increases, a linear

relation between normalized stress and strain

becomes more evident, but in each case, the linear

viscous part of the modified power-law eventually

dominates so that the normalized strain tends to a

constant value. For higher values of the load factor,

Fig. 8(b) and (c), the initial stress–strain trajectory is

reasonably linear, becoming more evident as the

power-law index, n, increases. However, although

the trajectory is linear, it varies with the power

index and is different from that found for pure

power-law (Fig. 7). The slope of the trajectory in

Fig. 7 is determined by the value of the geometry

factor such that E ð�Þ ! � as time increases. For the

values of area ratio and power index shown in Fig. 8,

the geometry factor, �, takes the values

� ¼
1 þ A2=A1

1 þ ðA2=A1Þ
n

as given in Table 1.

In fact as n ! 1, � ! 1 þ A2=A1; in Fig. 8, the max-

imum range of the normalized strains is taken as this

limiting case for comparison purposes. Noticeably,

the trajectories for the modified power-law indicate

reduced strain accumulation due to the presence of

the linear viscous component of the constitutive rela-

tion as the result of a more rapid relaxation of stress in

bar no. 2. In this sense, the elastic follow-up effect is

reduced in a structure with material corresponding to

a modified power-law.

4.4 Axisymmetric Y-piece: Modified

power-law creep

As a more complex example, the axisymmetric Y-

piece structure under thermal loading discussed by

Kasahara [6] will now be similarly re-examined using

the modified power-law. Sufficiently detailed infor-

mation is given in reference [6] to allow the analysis

to be reconstructed. The Y-piece is composed of a

vertical thin cylinder of length 2.25 m, radius 3 m,

and thickness 50 mm together with a skirt at a dis-

tance 0.75 m from the bottom and at an angle of

30�, with wall thickness 30 mm. The initial tempera-

ture of the whole structure is 50 �C; subsequently, the

temperature of the inner surface of the cylinder is

increased to 550 �C while the skirt edge is maintained

at 50 �C. Quasi-static conditions are assumed and the

structure is allowed to creep for 210 000 h under

strain-controlled conditions, thus leading to stress

relaxation. This complete structure was re-modelled

using ABAQUS: the finite element mesh at the junc-

tion between cylinder and skirt, where maximum

strain occurs, is shown in Fig. 9.

Several creep laws are used in reference [6]:

Norton’s law with varying power index, a Blackburn-

type equation, and a Ramberg–Osgood elastic-creep

law. Here, the results will only be reproduced using

the power-law

_"c ¼ B�n ð18Þ

where B= 5.86 � 10�15, with the power index taking

the values n= 3, 5, and 7 (units for time are hour and

stress megapascal).

A trajectory of equivalent stress against equivalent

strain at an evaluation point, Fig. 10, being the loca-

tion of maximum elastic strain, is given in reference

[6, Fig. 4] showing the initial elastic response and

stress relaxation during creep. Results obtained

from a new creep analysis using ABAQUS are shown

in Fig. 10: these are very similar to those given in ref-

erence [6] again, showing that the stress–strain tra-

jectory is effectively insensitive to the power index as

found for the two-bar structure (Fig. 7). However, the

trajectory is no longer a straight line – this feature can

be found in some other simple structures but in gen-

eral, it has been found that a non-linear relationship,

with an initial steep fall representing rapid rise in

strain followed by a slower accumulation of strain

as time progresses, would be more common.
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This analysis is now repeated for the modified

power-law, equation (14). This was included as a

user material in ABAQUS. For the purposes of com-

parison, the following nominal values of the material

parameters �0 and _"0 are adopted

_"0 ¼ 2 � 10�71=h, �0 ¼ 100MPa

but with the power index again taken as n= 3, 5, and 7.

The resulting stress–strain trajectories are shown in

Fig. 11. It can be seen that the stress–strain trajecto-

ries now deviate somewhat from those corresponding

to the pure power-law (Fig. 10). During the early

stages of stress relaxation, the trajectories do follow

Fig. 8 Two-bar structure: stress–strain trajectory using modified power law: (a) �= 1.0, (b) �= 1.5,
and (c) �= 2.0

Stress relaxation and elastic follow-up using a stress range-dependent constitutive model 9
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a slope similar to pure power-law, but start to deviate

as time progresses with an indication that the strain

accumulation is not as significant as that for the pure

power-law.

5 CONCLUSIONS

The treatment of elastic follow-up in high-

temperature design has, for several years, been

based on the use of stress–strain trajectories which

can be estimated from simplified analysis, avoiding

detailed non-linear FEA. An underlying assumption,

which has been observed and validated on a range of

structures both simple and complex, has been the

insensitivity of these stress–strain trajectories to the

constitutive model. However, the majority of studies

which exhibit this insensitivity have been based on

familiar creep constitutive relations usually derived

from power-law creep, or variations. In this study,

the work of Naumenko et al. [16] on the nature of

stress systems in structures composed of stress

range-dependent constitutive models, such as those

shown in Figs 2 to 4, has been extended to examine

the consequences for elastic follow-up. In reference

[16], it was shown that stress relaxation of a simple

bar with a constitutive equation which included both

linear viscous and power-law creep, equations (5)

and (14), was significantly different from the classic

solution based on power-law creep and further did

not approach expected limits for high or low initial

stress. This result has been re-examined in this study

Fig. 9 Detail of ABAQUS finite element mesh at junc-
tion between cylinder and skirt of Y-piece

Fig. 10 Equivalent stress–strain trajectories for the
evaluation point of Y-piece from ABAQUS
FEA with pure power-law creep

Fig. 11 Equivalent stress–strain trajectories for evalu-
ation point of Y-piece from ABAQUS FEA with
modified power-law creep

Table 1. Values of � for various values of n and cross-

sectional area ratio

�

n A2=A1 = 0.2 A2=A1 = 0.5

3 1.19 1.333
7 1.2 1.488
11 1.2 1.499
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in Section 3 and it is seen that the linear viscous part

of the modified power-law has a significant effect in

stress relaxation, more so than what is observed for

constant load steady creep [16, 22]. The simple two-

bar structure [4] has long been used as a reference

benchmark in studies of elastic follow-up [4–10]:

assuming a creep law based on power-law secondary

creep alone, it can be shown that this structure has a

stress–strain trajectory which is indeed independent

of the power index. However, it is shown in Section

4.3 that the relaxation characteristics of the stress–

strain trajectory are radically different when using

the modified power-law. Specifically, insensitivity to

the constitutive relation is lost and as a result, there is

a strong dependency on some load factor (the ratio of

maximum elastic stress to the transitions stress in the

modified power-law). To investigate this further, a

finite element stress relaxation analysis of an axisym-

metric Y-piece under thermal loading studied by

Kasahara [6] has been re-examined. In reference [6],

it was determined that insensitivity to creep law was

also found, as in the simple two-bar structure. If a

modified power-law is used, this insensitivity is

again lost, although not as extensively as in the two-

bar structure. In conclusion, for materials which exhi-

bit stress-range dependency with appropriate load

conditions, some care should be taken if simplified

approaches used to estimate elastic follow-up are

used for design. Some reassurance can be taken

from the observation that strain accumulation at

large times is less than that for the pure power-law,

which could perhaps be used as a (hopefully not over)

conservative estimate.

� Authors 2011
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