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1 Introduction

This work concerns with the problem of monitoring an Advanced Gas-cooled
Nuclear Reactor (AGR) core. This plant (figure 1) makes use of the heat
given by the nuclear efficient reaction to produce electricity by means of steam
turbines. These are driven by steam, which is heated, from the AGR gas using
a heat exchanger. One of the advantages of a gas cooled reactor is the high
temperature that the gas can achieve so that when it is used in conjunction
with the heat exchanger and steamed turbine the thermal efficiency is very
high.

In the United Kingdom the advanced gas-cooled reactor (AGR) nuclear
power stations are approaching the end of their predicted operational live. The
reactor core is composed of a hundreds of hollow graphite bricks (that acts as
neutron moderator), and the graphite ages because of neutron irradiation and
radiolytic oxidation causing distortion and potentially cracking of the bricks
since it is impossible to repair or replace the graphite bricks the graphite
core is one of the main components that determinate the operational life of
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32 Bonivento et al.

Fig. 1. Schematic diagram of an Advance Gas Cooled Reactor.

a nuclear station. In other terms the major factor that dictates the life of
a nuclear power station is the condition of the graphite reactor core, which
distort over time with prolonged exposure to heat and radiation.

Currently, it has been proposed to extend the operational lifetime of the
nuclear plants if the distortions of the reactor cores are not as severe as initially
predicted, and if it is possible to prove that the reactors are still safe to
operate. From this, it is clear how important is to keep under monitoring the
integrity of the plant and especially of the core; this is actually made possible
by a routine performed during planned station outage. These outages occur
roughly every three years and result in a large volume of detailed information
collected by a system called Channel Bore Monitoring Unit (CBMU). This
data consists of accurate measures of the channel bore diameter and tilt angles;
this information is used to provide an overall assessment of the health of the
core.

To perform a more accurate monitoring of the core over their predicted
operational life, the estimation of its state should be more frequent; on the
other side it is important that the reactor is not offline frequently or for long
periods. On the other hand data is also gathered during core refueling oper-
ations. Nuclear fission is used to generate heat in order to produce steam to
generate electricity from a turbine and, in order to sustain a constant power
output, the uranium dioxide fuel needs to be periodically replaced. This pro-
cess, called reactor refueling, take place with a weekly rate. An important
source of information during the refueling phase is the fuel grab load trace
data, that consists in collecting information on the position of the uranium
bar inserted in the core and information on the force produced by the inter-
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Estimation approach to monitoring AGR nuclear reactor 33

Fig. 2. The upper two diagram show a cut-away of a graphite brick with points A
and C illustrating the interface between two bricks. The lower two diagrams show
the load force applied on brushes.

action between the wall of the fuel channel and the fuel assembly supporting
brushes. Although not originally intended for core condition monitoring pur-
poses, the fuel grab load trace data contains a contribution from frictional
interface between the fueling channel wall and the fuel assembly. Since in-
terfaces between adjacent brick layers result in changes in the bore diameter
of the channel, as the brushes supporting the fuel rods pass through these
features, there is an equivalent change in the friction forces between the walls
and the brushes, which correspond to an apparent change of the load force
on the fuel assembly. This change in load manifest itself as peaks within the
refueling load trace. Figure 2 shows traces of data recorded during a refueling
operation. The reader can observe how peaks in the applied force correspond
to brick layer interfaces (points A and C); moreover damages over the graphite
bricks (e.g. point B) reflect on smaller peaks in the force applied on brushes
(see also [1], [2] and [3]).

In [4], CBMU data was compared with load trace data coming from dif-
ferent refueling event and it has been shown how a load trace and a CMBU
trace can furnish the same information: as depicted in figure 3 it is possible
to recover from the grab force data information on the friction force applied
between the supporting brushes and the fuel assembly, which can be used to
monitor possible cracks of graphite bricks and hence the health of the nuclear
core.
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34 Bonivento et al.

Fig. 3. Comparison of a channel bore monitoring unit trace of channel bore diameter
and a refuelling load trace from the same channel.

The purpose of this work is to present a monitoring system based on an-
alytical redundancy and directional residual generation using measurements
obtained during the refueling process. In short this problem consists of build-
ing an unknown input observer with the role to estimate the friction force
produced by the interaction between the wall of the fuel channel and the fuel
assembly supporting brushes. This let to estimate the shape of the graphite
bricks that comprise the core and, therefore, monitor any distortion of them.

The theoretical machinery exploited in this work is the Kalman filter the-
ory (e.g. [5],[6]), which is used to estimate the information above mentioned.
In a different nuclear context, in particular in safeguards problems, a similar
approach has been used in [7]. In this paper we will discuss the model of the
system used for estimation purposes and the application of a discrete-time
Kalman filter to estimate the friction force from the fuel grab load signal
stored during the refueling process. Since the initial condition of the system
are not known, and considering the fact that the estimation process is per-
formed off-line, a smoothing algorithm based on Kalman filter is introduced
to improve the estimate. This is important as a matter of fact that, even if the
grab load data is a time signal, as shown in figure 3, it should be considered
as parametrized in the height dimension of the fueling channel wall. Hence a
perfect estimate both for t = 0 and t = N is necessary.

Moreover it will be presented how to deal with the quantization of the
filtered data that introduce a noise in data streams (see e.g. [8], [9]). Finally
some experimental results will be presented.
More details about this approach, can be found in [10].
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Estimation approach to monitoring AGR nuclear reactor 35

2 Refueling model

Each refueling phase provides two data traces, one obtained by lowering the
fueling assembly into the nuclear core, and the other one by raising the fuel
assembly out from there. The fuel grab load trace data is obtained during
the refueling by load cells positioned on the refueling machine which directly
measure the force applied by the fuel assembly. This force depends on several
factors, among which the most significant are in the following described

a) The weight of the fuel assembly: this term depends on the fuel rod mass
which changes due to the nuclear reactions in the core. During the ex-
traction process it can be determined once the fuel assembly is out of the
reactor.

b) The frictional forces: is the quantity that we want to estimate, is caused by
the interaction with the stabilizing brushes on the fuel channel wall. These
brushes are set directly on the wall and the magnitude of the frictional
component depends on the shape of the wall: any distortion in the channel
geometry will reflects in friction force changes.

c) The buoyancy force: is caused by the gas that, circulating in the fuel cham-
ber, makes the fuel assembly appear lighter. This force is unknown and
changes its effect on the fuel assembly with the position of the uranium
bar into the channel. But keeping under consideration only a small part of
the fuel channel, as a brick, the effect of the buoyancy force can be taken
into account as an addictive noise.

During refueling process, the fuel assembly is governed by the interaction of
forces that simultaneously act on the fuel assembly:

ma =
∑

F ; (1)

where m is the fuel assembly mass and a is its acceleration.
The forces acting on the fuel assembly are, together with the grab load

force Fl applied by the supporting brushes on the assembly, its weight mg
(where g is the gravitational acceleration), the brushes friction forces Ff and
the aerodynamic force Fa due to the gas flow in the fuel chamber:

ma = Fl +mg + Fa + Ff . (2)

Rewriting equation (2) expliciting the velocity and the acceleration of the
assembly, we obtain:

[
ẋ1

ẋ2

]
=

[
0 0
1 0

] [
x1

x2

]
+

[
1/m

0

]
Ff +

[
−Fl/m− g

0

]
+ w

y =

[
0 0
1 0

] [
x1

x2

]
+ v ,

(3)

where x1 is the position of the fuel assembly, x2 is its speed, w is system
noise and v is measurements noise. The sign of the friction force is positive
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36 Bonivento et al.

because we consider just the reactor discharge, where the friction opposes the
movement of the assembly, and therefore narrowing of the channel will result
in an increase in a apparent load of the fuel assembly.

In order to rewrite equation (3) in a machine-computable form, we consider
its discrete-time approximation, calculating the derivatives of the position and
velocity as:

ẋ1 =
x1(t+ 1) − x1(t)

∆t

ẋ2 =
x2(t+ 1) − x2(t)

∆t
,

(4)

where t is discrete time and ∆t is the sample period. This approximation leads
to the following discrete time model of the system:

[
x1(t+ 1)
x2(t+ 1)

]
=

[
1 0
∆t 1

] [
x1(t)
x2(t)

]
+∆t

[
−1/m

0

]
Ff (t) +∆t

[
−Fl/m− g

0

]
+ w(t)

y(t) =

[
1 0
0 1

] [
x1(t)
x2(t)

]
+ v(t) .

(5)
In the following sections it will be to presented the use of a discrete-time
Kalman filter on system (5) to estimate of the amplitude of friction force Ff .

3 Using Kalman filter and smoother to estimate the core
condition

Aim of this section is to present an estimation procedure that, starting from
model (5) and having available the set of measures described in Section 1 (i.e.
the position of the fuel assembly along the channel and the grab force applied
on it), is able to estimate the friction force Ff . In order to estimate the friction
force Ff applied along the fueling channel wall, we will first consider it as an
unknown input for system (5) and, using an adapted version of Kalman filter
for systems with unknown inputs (see [11]), we will estimate the system state.
Having the state estimation it is possible to evaluate the friction force term
Ff using the first equation in (5). In order to improve the estimation for small
time instants (i.e. for the initial position of the fuel assembly), having a first
estimation of the unknown input Ff , it is possible to use a Kalman smoother
(see Appendix A) to process the system in the reverse way, find an estimation
of the state and, consequently, of the friction force at time t = N ;N−1; . . .1; 0.
Finally, in order to find an optimal estimation of the system state, and hence
an optimal estimation of the friction force, the system will be processed using
a forward known input Kalman filter. Roughly speaking running the Kalman
filter forward in time we estimate the state of the system, while running it
backward in time we make a correction of the previous estimate of the friction
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Estimation approach to monitoring AGR nuclear reactor 37

force thanks to additional information of the system gathered during the first
forward estimation.

Recalling system (5), our aim is to write it in the form

[
zd(t+ 1)
zf (t+ 1)

]
=

[
F1 F2

F3 F4

] [
zd(t)
zf (t)

]
+

[
D̄
0

]
d(t) +

[
Ḡ1

Ḡ2

]
+ w

y(t) =
[
C̄1 C̄2

] [ zd(t)
zf (t)

]
+ v(t) .

(6)

where the disturbance d(t) acts as the friction force Ff . Defining the non-
singular real matrix U

U =

[
1 −1
0 1

]
, (7)

it is possible to find the relation between system (5) and (6):

[
F1 F2

F3 F4

]
= U

[
1 0
∆t 1

]
U−1 := Ā (8)

[
D̄
0

]
= U

[
−∆t/m

0

]
:= B̄ (9)

[
C̄1 C̄2

]
=

[
1 0
0 1

]
U−1 := C̄ (10)

[
zd(t)
zf(t)

]
= Ux(t) :=

[
x̄1(t)
x̄2(t)

]
. (11)

Note that the term

∆t

[
−Fl/m− g

0

]
(12)

in first equation of system (5) is not present in the correspondent equation of
system (6); this matrix, referred as E, will be consider as a known input of
the system (5). Following this reasoning, the system can be rewritten in the
form [

x̄1(t+ 1)
x̄2(t+ 1)

]
= Ā

[
x̄1(t+ 1)
x̄2(t+ 1)

]
+ B̄Ff (t) + Ē + w

y(t) = C̄

[
x̄1(t+ 1)
x̄2(t+ 1)

]
+ v(t) .

(13)

where

Ē = UE = ∆t

[
−Fl − g

0

]
(14)

In order to estimate the system state in presence of an unknown input, its
effect on the system must be isolated; to this aim it is possible to define a
non-singular real matrix V , such that
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38 Bonivento et al.

V y(t) :=

[
ȳ1(t)
ȳ2(t)

]
= ȳ(t)

V C̄ =

[
C̄11 C̄12

0 C̄22

]

V v(t) =

[
v̄1(t)
v̄2(t)

]
(15)

in this way we have transformed the second equation of (13) in the following
form:

ȳ1(t) = C̄11x̄1(t) + C̄12x̄2(t) + v̄1(t)

ȳ2(t) = C̄22x̄2(t) + v̄2(t) ;
(16)

where C̄11 is a matrix with rank l in order to preserve system observability.
Now it is possible to rewrite the first equation in (16) as

x̄1(t) = C̄−1
11

[
ȳ1(t) − C̄12x̄2(t) − v̄1(t)

]
(17)

and substituting this into the first equation of (13) it is possible to find that

x̄2(t+ 1) = Ãx̄2(t) + B̃ȳ1(t) + Ē2 + G̃w̃(t)

ȳ2(t) = C̄22x̄2(t) + v̄2(t) ,
(18)

where
Ã =

[
Ā22 − Ā21C̄

−1
11 C̄12

]

B̃ = Ā21C̄
−1
11

G̃ =
[
Ḡ2 − Ā21C̄

−1
11

]

w̃(t) =
[
w(t) v̄1(t)

]T
.

(19)

Now system (18) is exactly the same as (89) in Appendix A, hence we can find
the estimate of the state applying the known input Kalman filter according
to the following procedure.

First iteration: unknown input Kalman Filter

State estimation a priori:

x̂2(t+ 1) = Ãx̂2(t | t) + B̃ŷ1(t) (20)

Error covariance a priori:

P2(t+ 1) = ÃP2(t | t)ÃT +Q2 (21)

Kalman gain matrix:

K(t+ 1) = P2(t+ 1)C̄T
22

[
C̄22P2(t+ 1)C̄T

22 +R2

]−1
(22)
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Estimation approach to monitoring AGR nuclear reactor 39

State estimation a posteriori:

x̂2(t+ 1 | t+ 1) = x̂2(t+ 1) +K(t+ 1)
[
ȳ2(t+ 1) − C̄22x̂2(t+ 1)

]
(23)

Error covariance a posteriori:

P2(t+ 1 | t+ 1) = P2(t+ 1) − P2(t+ 1)C̄T
22

[
C̄22P2(t+ 1)C̄T

22 +R2

]−1

C̄22P2(t+ 1)

= P2(t+ 1) −K(t+ 1)C̄22P2(t+ 1)
(24)

Initial conditions
x̂2(0) = 0 P2(0) = 1e7 . (25)

Having the estimate x̂2(t) it is possible to compute x̂1(t) from equation (17)
as

x̂1(t) = C̄−1
11

[
ȳ1(t) − C̄12x̂2(t | t)

]
(26)

with conditional covariance

P1(t) = C̄−1
11 C̄12P2(t | t)C̄T

12C̄
T
12

−1
+ C̄−1

11 R1(t)C̄−1
11

T
, (27)

where R1(t) is the covariance matrix of the noise term v1(t).
From the estimates x̂1(t) and x̂2(t) it is possible to compute the friction

force Ff (t) using the first equation of (13):

F̂f (t) = B̄−1
[
x̂1(t+ 1) − Ā11x̂1(t) − Ā12x̂1(t | t) − Ē1

]
. (28)

Moreover the estimate state x(t) of system (5) and its error covariant matrix
can be computed as:

x̂(t) = U−1

[
x̂1(t)
x̂2(t)

]

P (t) = U−1

[
P1(t | t) L(t)
LT(t) P2(t | t)

] (29)

where
L(t) = −C̄−1

11 C̄12P2(t | t) . (30)

The Kalman filter based algorithm just presented is able to estimate the state
of the system even if a disturbance (represented in our case by the friction
force determined by the brushes) is acting on it. From this estimate it is
possible to compute the magnitude of the friction force Ff simply using (13).
It is important to note that the statistic property of the friction force at the
instant time t = 0 are not known, and therefore the state estimation in t = 0
is not appropriate. Remember that this fact reflects in a wrong estimation of
the friction force applied on the fuel assembly around its initial position.
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The idea to deal with this problem is to use the estimation of the friction
force to improve the state estimates just by gathering information in the
reverse way. Thus, applying the backward Kalman filter on system (5), here
rewritten as

x̄(t+ 1) = Ax̄(t) +BFf (t) + E(t) + w(t)

y(t) = Cx̄(t) + v(t) ;
(31)

it is possible to obtain the optimal estimate of the friction force at time t = 0.
The backward Markovian model considering now the friction force as a known
input is

x̄b(t) = A−1x̄b(t+ 1) −A−1BF̂f (t) − Ā−1E(t) + w(t)

y(t) = Cx̄b(t) + v(t) ;
(32)

applying the Kalman smoothing algorithm to system (32) it is possible to
estimate its state from t = N up to t = 0 using the following procedure.

Second iteration: known input Kalman Smoother

State estimation a priori:

x̂b(t− 1 | t) = A−1x̂b(t | t) −A−1BFf (t− 1) −A−1E(t) (33)

Error covariance a priori:

Pb(t− 1) = A−1Pb(t | t)A−1T
+A−1Q(t)A−1T

(34)

Kalman gain matrix:

Kb(t− 1) = Pb(t− 1)CT
[
CPb(t− 1)CT +R(t− 1)

]−1
(35)

State estimation a posteriori:

x̂b(t− 1 | t− 1) = x̂b(t− 1) +Kb(t− 1) [y(t− 1) − Cx̂b(t− 1)] (36)

Error covariance a posteriori:

Pb(t− 1 | t− 1) = Pb(t− 1) −Kb(t− 1)CPb(t− 1) (37)

Initial conditions:

x̂b(N) = x̂(N |N) Pb(N) = P (N |N) (38)

Applying this algorithm, a new state estimate for t = N through t = 0 has
been computed, and, consequently, the estimate of the friction force from time
t = N up to t = 0 has been obtained using the second equation of (31).
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Running forward in time and backward in time the Kalman filter algo-
rithm, we have obtained an estimate of the static property of the disturbance
that acts on the system, which was not known; with this additional informa-
tion, it is possible to estimate the state of the system in a proper way using
a standard forward in time Kalman filter for systems with known inputs.

Third iteration: known input Kalman Filter

State estimation a priori:

x̂(t+ 1) = Ax̂(t | t) +BFf (t+ 1) + E(t) (39)

Error covariance a priori:

P (t+ 1) = AP (t | t)AT +Q(t) (40)

Kalman gain matrix:

K(t+ 1) = P (t+ 1)CT
[
CP (t+ 1)CT +R(t+ 1)

]−1
(41)

State estimation a posteriori:

x̂(t+ 1 | t+ 1) = x̂(t+ 1) +K(t+ 1) [y(t+ 1) − Cx̂(t+ 1)] (42)

Error covariance a posteriori:

P (t+ 1 | t+ 1) = P (t+ 1) −K(t+ 1)CP (t+ 1) (43)

Initial conditions:

x̂(0) = x̂b(0) P (0) = Pb(0) (44)

Finally the estimation of the friction force can be computed as

F̂f (t) = B−1 [x̂(t+ 1) −Ax̂(t) − E(t)] . (45)

4 Simulation results of the proposed estimation scheme

The three steps algorithm just explained has been applied to real data stored
during refueling operations. In figure 4 and 5 measurements of the grab force
Fl and of the fuel assembly position x2 gathered during the refueling process
are shown.

In figure 6 and figure 7 is depicted the estimation of the friction force after
the first step of the algorithm, i.e. after having applied the unknown input
Kalman filter. It is possible to observe that the estimated friction force has
the same trend of the grab force, but its shape is not exactly the same. This
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Fig. 4. Grab load trace data gathered during refueling.
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Fig. 5. Position of the fuel assembly during refueling.

is due to the fact that statistic property of the disturbance Ff are not known
for t = 0.

In figure 8 and figure 9 is presented the estimation of the friction force
after having applied the Kalman smoothing algorithm. The result obtained is
absolutely better (figure 7).

Remembering that the smoother algorithm has the role to propagate the
estimation of the friction force from time t = N , to time t = 0, a better result
can be obtained by processing the system once more by a forward Kalman
filter, where now the statistic property of the friction force for t = 0 are known,
because they are given by the combined use of the first forward Kalman filter
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Fig. 6. First iteration estimation.

and the smoother. The results of this third step are shown in figure 10 and
figure 11. In this case the trend and the shape of the estimate friction force are
exactly the same as the grab load, and this demonstrates that it is possible
to obtain an optimal estimation of the acting disturbance without an a priori
knowledge on it.

In figure 11 it is possible to observe that still some small errors in the
estimate are present; these imperfections are due to the approximate model
of the system used to estimate the friction force. For example the model does
not consider the noise introduced by the quantization of data, moreover both
the mass m of the fuel assembly and the value of the buoyancy force Fa are
approximated and considered constant.

In the following section a procedure to deal with the noise introduced by
the quantization of data is presented and final simulation results are discussed.

5 Dealing with quantization

Aim of this section is to give some guidelines on how to face the problem of
state estimation using quantized measurements; this is necessary since grab
load data are quantized and the quantization introduces a noise that affects
the estimate. In the following some necessary condition for the maximum like-
lihood estimate (see [12]) when the observations have been quantized will be
given and a Quantization Regression (QR) algorithm (still based on Kalman
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Fig. 7. First iteration estimation (zoom in).

filter) which generates an estimate of an autoregressive time series from quan-
tized measurements will be described.

As reported in [13], the effect of a uniform quantization can be modeled
as an additive noise that is uniformly distributed, uncorelated with the input
signal, and has white spectrum. Consider the following model with quantized
measurements:

xt+1 = f(xt, wt)
zt = h(xt) + et

yt = Qm(zt)
(46)

where Qm(·) is the quantization function. The problem of optimally estimate
the state of (46) is a problem of nonlinear non-Gaussian filtering; as explained
in [5] such a problem has a Bayesian solution given by

p(xt+1 |Yt) =

∫

Rn

p(xt+1|xt)dxt

p(xt |Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
.

This problem is in general not analytically solvable, but there exists two dif-
ferent approach to deal with it:

a) use an extended Kalman filter (EKF) that is a sub-optimal filter for an
approximate linear Gaussian model designed using the assumption that
the quantization introduce an additive uniform noise;
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Fig. 8. Second iteration estimation.

b) use a numerical approach to find a miximum-likelihood estimates of pa-
rameters, approximating in this way the optimal solution to the Bayesian
filtering problem.

Regarding the first approach, it can be easily introduced considering the
following linear Gaussian model with quantized observations:

xt+1 = Ftxt +Gtwt Cov(wt) = Qt

zt = Htxt + et Var(et) = σ2

yt = Qm(zt)
(47)

where yt represents the quantized measurements. Using the assumption that
the quantization introduce an additive uniform noise, the optimal filter is
given by Kalman filter by increasing the measurement covariance Rt by term
equal to q2/12, i.e.

Rt =

(
σ2

t +
q2

12

)
I , (48)

where q is the quantization box size and I is a suitably dimensioned identity
matrix. From (48) it turns out that the measurements covariance matrix Rt is
increased of a quantity that depends on how small the quantization box size
is and hence on the variance of the quantization noise (cf. [14]). Using (48)
it is therefore possible to tune the filter to obtain the best estimation for the
problem.
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Fig. 9. Second iteration estimation (zoom in).

In the following a slightly different Kalman filter obtained by the Bayesian
equation as shown in [15] will be introduced; considering this filter, necessary
conditions for the maximum-likelihood estimate of parameters when the ob-
servations are quantized will be formulated.

Consider the following linear measurement equation

z = Hx+ v (49)

where x is the vector to be estimated, z is the measurement vector, and v is
the measurement noise. Recall that, with non-quantized measurements, the
maximum-likelihood estimate (cf [12]) is the value of x that maximizes the
likelihood function L(z;x):

x̂ = arg[max
x

L(z, x)] = arg[max
x

p(z : x)] , (50)

where the notation p(z : x) means the probability-density function of z with
x as a parameter of the distribution.

When the measurements are quantized numerical values of z are not avail-
able and the knowledge of the measurements is reflected in the inequalities

{
ai ≤ zi < bi

}
, (51)

where ai and bi are the lower and upper bounds of the quantum interval
in which the i-th component of z is known to lie. Considering this fact, the
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Fig. 10. Third iteration estimation.

likelihood function to be used is the probability that the measurements fall in
the hypercube defined by equation (51):

L(ai, bi, x) =
∏

i

P
[
ai − (Hx)i ≤ vi < bi − (Hx)i

]
. (52)

Hence the maximum-likelihood estimate of x with quantized measurements is

x̂ = arg

{
max

x

∏

i

P
[
ai − (Hx)i ≤ vi < bi − (Hx)i

]
}
. (53)

Denoting with Pi the term P
[
ai − (Hx)i ≤ vi < bi − (Hx)i

]
, such that

Pi =

∫ bi−(Hx)i

ai−(Hx)i

pvi(u)du ,

the necessary condition for maximum likelihood estimate is the following:

1

L(ai, bi, x)

(
∂L(ai, bi, x)

∂x

)
=
∑

i

∂Pi/∂x

Pi
=

=
∑

i

pvi(bi − (Hx)i) − pi
v(ai − (Hx)i)

Pi
hi = 0 ,

(54)

where the row vector hi is the i-th row of H. Hence the problem can be
formulated as following. Given
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Fig. 11. Third iteration estimation (zoom in).

i) the measurement equation z = h(x, v),
ii) the joint probability density function of parameter and noise vectors

px,v(ξ, v),
iii) the constraint z ∈ A, where A is some hypercube for quantized measure-

ments,

the estimation problem with quantized measurements consists in :

A) finding the conditional mean of f(x) given a measurement z: E [f(x) | z],
B) averaging this function of z considering the constraint z ∈ A.

Assume that the state vector and measurements variables satisfy the rela-
tionships

xi+1 = Φixi + wi

zi = Hixi + vi

E(x0) = x̄0 cov(x0) = P0

E(wi) = 0 E(wiw
T
j ) = Qiδij

E(vi) = 0 E(viv
T
j ) = Riδij

E(wiv
T
j ) = 0 E(wix

T
0 ) = E(vix

T
0 ) = 0

(55)

where xi is the system state vector at time ti, Φi is the system transition
matrix from time ti to ti+1, wi is a realization of the process noise at ti, zi

is the measurement vector at time ti, Hi is measurements matrix at time
ti and vi is a realization of the observation noise at time ti. Each of the m
components of the normally distributed vector z has zero mean and lies in a

si
nc

(i
) 

L
ab

or
at

or
y 

fo
r 

Si
gn

al
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
ht

tp
://

fi
ch

.u
nl

.e
du

.a
r/

si
nc

)
C

 B
on

iv
en

to
, M

. G
ri

m
bl

e,
 L

. G
io

va
ni

ni
, M

. M
on

ar
i &

 A
. P

ao
li;

 "
St

at
e 

an
d 

pa
ra

m
et

er
 e

st
im

at
io

n 
ap

pr
oa

ch
 to

 m
on

ito
ri

ng
 A

G
R

 n
uc

le
ar

 c
or

e"
 N

o.
 2

21
, 2

00
7.



Estimation approach to monitoring AGR nuclear reactor 49

interval whose limits are {ai} and {bi}, ai ≤ zi < bi, (i = 1, 2, 1 . . . ,m). Let
(γi) (i = 1, 2, 1 . . . ,m) be the m components of the geometric center vector γ
of the region A:

γi =
1

2
(bi + ai) , (56)

and let (αi) (i = 1, 2, 1 . . . ,m) be the m components of the quantum interval
half-widths vector α:

αi =
1

2
(bi − ai) . (57)

It is possible to show that, expanding the probability-density function in power
series in an interval containing γ and neglecting terms higher than the fourth
order, the mean and covariance of z conditioned on z ∈ A are given by

E(z | z ∈ A) ≈ γ −AΓ−1γ (58)

cov(z | z ∈ A) ≈ A =

{
(αi)2

3
δij

}
(59)

where Γ = E(zzT ) and δij is the Kronecker delta. In this case the minimum-
variance linear estimate x∗ and its covariance E∗ are given by

x∗ = x̄+K∗(γ −Hx̄) (60)

E∗ = M −MHT (Γ +A)−1HM (61)

where

K∗ = MHT (Γ +A)−1 (62)

Γ = cov(z) = HMHT +R . (63)

This problem can therefore be solved recursively with a modified Kalman fil-
ter, leading to the following result. Assuming the conditional distribution of
the state just before the i-th measurements being N(x̂i | i+1,Mi), then the
Gaussian fit alghorithm for a linear system with quantized system is the fol-
lowing:

x̂i | i = x̂i | i−1 +Ki[E(zi | zi ∈ Ai) −Hix̂i | i−1] (64)

Ki = MiH
T
i (HiMiH

T
i +Ri)

−1 (65)

Pi = Mi −MiH
T
i (HiMiH

T
i +Ri)

−1HiMi (66)

Ei = Pi +Kicov(zi | zi ∈ Ai)K
T
i (67)

x̂i+1 | i = Φix̂i | i (68)

Mi+1 = ΦiEiΦ
T
i +Qi , (69)

where x̂i | i is the conditional mean of xi for quantized measurements up to and
including ti, x̂i | i−1 is the conditional mean of xi for quantized measurements
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up to and including ti−1, Ai is the quantum region in which zi falls, Mi

is the conditional covariance of xi for quantized measurements up to and
including ti−1, Ki is the Kalman filter gain matrix at ti, Pi is the conditional
covariance of estimate, and Ei is the conditional covariance of xi for quantized
measurements up to and including ti−1.

Note that equations (64) correctly describe the propagation of the first two
moments of the conditional distribution under the assumption of Gaussian
noises. Let e = x− x̂ be the estimation error, and consider the dynamic

ei+1 | i = Φiei | i − wi .

Since ei | i is not Gaussian, so ei+1 | i is not Gaussian too, but it tends to a
Gaussian distribution because of the addition of Gaussian process noise wi

and of the action performed by the state transition matrix Φi. Considering
this, equations (64) yield a good approximation of the conditional moments.

Concluding it is important to remark that the recursive algorithm de-
scribed by (64) is very similar to the algorithm describing the Kalman filter,
with two important differences:

• the conditional mean of the measurements vector at ti is used as an input
for the filter;

• the conditional covariance equation is being forced by the random variable
cov(zi | zi ∈ Ai).

Following the theory just presented a set of simulation with the modified
algorithm has been performed and the results are presented in figure 12. It is
possible to see that now the estimation algorithm leads to a perfect estimate
of the friction force.

6 Concluding remarks

In this work we have presented an estimation algorithm based on Kalman filter
to monitor the condition of the core of AGR nuclear stations. In particular,
using data stored during the core refueling phase, it is possible to estimate
the friction force that the fuel rod apply on the supporting brushes which are
embedded in the core wall. In this way it is possible to estimate the shape of
the graphite bricks that compose the core and therefore the condition of the
core itself.

Future works will consists in gathering existing and historical data in a
single location and define patterns in order to determinate whether time,
location, operating condition have an effect on the trace.
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Fig. 12. Estimation of friction force using the modified Kalman filter to deal with
quantization (zoom in).
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A Kalman filtering, prediction and smoothing

In order to collect symbols and definitions used along the paper, in this Ap-
pendix the main formulas of the celebrated Kalman machinery for filtering,
prediction and smoothing are briefly reported.

Consider a stochastic system represented by the following model:

xk = φk−1xk−1 + wk−1 (70)

yk = Hkxk + vk . (71)

Let x ∈ Rn (state of the system) and y ∈ Rl (measurements) be jointly
Gaussian random vectors with mean vectors µx = E {x} and µy = E {y}
respectively, and covariance matrixes

Σ =

[
Σxx Σxy

Σyx Σyy

]
:=

[
cov {x, x} cov {x, y}
cov {y, x} cov {y, y}

]
. (72)

Assume the covariance matrix Σ ∈ R(n+l)×(n+l) to be positive definite. The
measurement and plant noises vk and wk are assumed to be zero-mean Gaus-
sian sequences, while the initial value x0 is considered a Gaussian variate with
known mean x0 and known covariance matrix P0. According to the previous
definitions, the following statements hold:
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E 〈wk〉 = 0

E
〈
wkw

T
i

〉
= ∆(k − i)Qk

E 〈vk〉 = 0

E
〈
vkv

T
i

〉
= ∆(k − i)Rk

(73)

where∆(k−i) stands for the Kronecker delta function, and the noise sequences
wk and vk are assumed to be uncorrelated.

The problem of optimal estimation is to find the minimum variance esti-
mate x̂(t + m | t) of the state vector x(t + m) based on the observations up
to time t of the system (70). This means designing a filter that produce the
estimate x̂(t+m | t) minimizing the performance index

J = E
{
|x(t+m) − x̂(t+m | t)|2

}
(74)

We will refer to this problem as prediction if m > 0, filtering if m = 0 and
smoothing if m < 0.

Define the estimation error x̃(t +m | t) as the difference between the real
state value x(t+m) and the estimate x̂(t+m|t):

x̃(t+m | t) = x(t+m) − x̂(t+m | t) (75)

and let the error covariance matrix be

P (t+m | t) := E
{

[x(t+m) − x̂(t+m | t)][x(t+m) − x̂(t+m | t)]T
}
. (76)

Denoting with Yt the linear space generated by the observations, the minimum
variance estimation x̂(t+m | t) is given by the orthogonal projection of x(t+m)
onto Yt

x̂(t+m|t) = Ê {x(t+m) | Yt)} , (77)

i.e. the optimality of x̂(t+m | t) is obtained when the estimation error x̃(t+
m | t) is orthogonal to the data space:

x̃(t+m|t) = x(t +m) − x̂(t+m|t) ⊥ Yt ; (78)

moreover this estimate is unbiased, which means that

E {x̃(t+m|t)} = 0 for t = 0, 1, ... (79)

Consider now a multivariable Gaussian Markov discrete-time linear system

x(t+ 1) = A(t)x(t) + w(t) (80)

y(t) = C(t)x(t) + v(t)

where x ∈ Rn is the state vector, y ∈ Rp is the observation vector, w ∈ Rn

is the plant noise vector, and v ∈ Rp is the observation noise vector. Let
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A(t) ∈ Rn×n, C(t) ∈ Rp×n be deterministic function of the time t and w(t)
and v(t) zero mean Gaussian white noise vectors with covariance matrixes

E

{[
w(t)
v(t)

] [
w(t)T v(t)T

]}
=

[
Q(t) S(t)
ST (t) R(t)

]
(81)

where Q(t) ∈ Rn×n is nonnegative defined, and R(t) ∈ Rpxp is positive defined
for all t = 0, 1, . . .. The initial state x(0) is Gaussian with mean E {x(0)} =
µx(0) and covariance matrix

E
{

[x(0) − µx(0)] [x(0) − µx(0)]
T
}

= Π(0) ; (82)

moreover x(0) is uncorrelated with the noise w(t), v(t), t = 0, 1, .... By using
orthogonal projection operators, it is possible to define the following algorithm
for the one step ahed Kalman predictor.

State estimation a priori:

x̂(t+ 1) = A(t+ 1)x̂(t | t) (83)

Error covariance a priori:

P (t+ 1) = A(t)P (t | t)AT (t) +Q(t) (84)

Kalman gain matrix:

K(t+ 1) = P (t+ 1)CT (t+ 1)
[
C(t+ 1)P (t+ 1)CT (t+ 1) +R(t+ 1)

]−1

(85)
State estimation a posteriori:

x̂(t+ 1 | t+ 1) = x̂(t+ 1) +K(t+ 1) [y(t+ 1) − C(t+ 1)x̂(t+ 1)] (86)

Error covariance a posterior:

P (t+ 1 | t+ 1) = P (t+ 1) −K(t+ 1)C(t+ 1)P (t+ 1) (87)

Initial condition:
x̂(0) = µx(0) P (0) = Π(0) (88)

Consider now a discrete-time stochastic linear system with forcing input

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t) (89)

y(t) = C(t)x(t) + v(t) (90)

where u(t) ∈ Rm is the input vector, and B(t) ∈ Rn×m is input distribution
matrix. We assume that u(t) is measurable in the sense that u(t) is a function
of the outputs.
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Exploiting the linearity of the system it is possible to decompose state
trajectories in two terms: the free-response xw(t) and the forced-response
xu(t):

xw(t+ 1) = A(t)xw(t) + w(t), xw(0) = x(0) (91)

xu(t+ 1) = A(t)xu(t) +B(t)u(t), xu(0) = 0 ; (92)

the solution x(t+ 1) of (89) is expressed by the superimposition of the effects:

x(t+ 1) = xw(t+ 1) + xu(t+ 1), t = 0, 1, . . . .

The forced term xu(t) is known since u(t) is measurable and, defining the
state transition matrix Φ(t, s), it can be computed as

xu(t) =

t−1∑

k=0

Φ(t, k + 1)B(k)u(k), t = 0, 1, ... (93)

Since xu(t) is known, the algorithm should compute the estimates of the
vector xw(t) based on the observations and defining the measurements

ℓ(t) = y(t) − C(t)xu(t) = C(t)xw(t) + v(t) . (94)

Since the system

xw(t+ 1) = A(t)xw(t) + w(t) (95)

ℓ(t) = C(t)xw(t) + v(t) (96)

it is completely equivalent to the stochastic system of (80), it is possible to
write the Kalman filter algorithm for the stochastic linear dynamic system as
previously described, but using the following a priori state estimation equa-
tion:

x̂(t+ 1) = A(t+ 1)x̂(t | t) +B(t+ 1)u(t+ 1) (97)

A smoother estimates the state of a system at time t using measurements
made before and after time t. The accuracy of a smoother is generally better
the one obtained by a forward filter, because it use more measurements for
its estimate. So the optimum linear smoothing provides an estimate of the
past value of the desired quantities. It is possible to represent the problem
using a backward Markovian model and therfore to solve the problem using a
Kalman filter designed for the backward Markovian model. This filter is called
backward Kalman filter and is defined by the following algorithm.

State estimation a priori:

x̂s(t− 1 | t) = A−1(t)x̂s(t | t) −A−1D(t− 1)u(t− 1) (98)

Error covariance a priori:

Ps(t− 1) = A−1(t)Ps(t | t)A−1(t) +A−1(t)Q(t)A−1(t) (99)
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Kalman gain matrix:

Ks(t−1) = Ps(t−1)CT (t−1)
[
C(t− 1)Ps(t− 1)CT (t− 1) +R(t− 1)

]−1

(100)
State estimation a posterior:

x̂s(t−1 | t−1) = x̂s(t−1)+Ks(t−1) [y(t− 1) − C(t− 1)x̂s(t− 1)] (101)

Error covariance a posterior:

Ps(t− 1 | t− 1) = Ps(t− 1) −Ks(t− 1)C(t− 1)Ps(t− 1) (102)

Initial condition:

x̂s(N) = x̂(N |N) Ps(N) = P (N |N) (103)
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