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Exploring metabolic pathway disruption in the
subchronic phencyclidine model of schizophrenia
with the Generalized Singular Value Decomposition
Xiaolin Xiao1, Neil Dawson2,3,4*, Lynsey MacIntyre3, Brian J Morris2,5, Judith A Pratt2,3,4, David G Watson3,4 and

Desmond J Higham1,4

Abstract

Background: The quantification of experimentally-induced alterations in biological pathways remains a major

challenge in systems biology. One example of this is the quantitative characterization of alterations in defined,

established metabolic pathways from complex metabolomic data. At present, the disruption of a given metabolic

pathway is inferred from metabolomic data by observing an alteration in the level of one or more individual

metabolites present within that pathway. Not only is this approach open to subjectivity, as metabolites participate

in multiple pathways, but it also ignores useful information available through the pairwise correlations between

metabolites. This extra information may be incorporated using a higher-level approach that looks for alterations

between a pair of correlation networks. In this way experimentally-induced alterations in metabolic pathways can

be quantitatively defined by characterizing group differences in metabolite clustering. Taking this approach

increases the objectivity of interpreting alterations in metabolic pathways from metabolomic data.

Results: We present and justify a new technique for comparing pairs of networks–in our case these networks are

based on the same set of nodes and there are two distinct types of weighted edges. The algorithm is based on

the Generalized Singular Value Decomposition (GSVD), which may be regarded as an extension of Principle

Components Analysis to the case of two data sets. We show how the GSVD can be interpreted as a technique for

reordering the two networks in order to reveal clusters that are exclusive to only one. Here we apply this

algorithm to a new set of metabolomic data from the prefrontal cortex (PFC) of a translational model relevant to

schizophrenia, rats treated subchronically with the N-methyl-D-Aspartic acid (NMDA) receptor antagonist

phencyclidine (PCP). This provides us with a means to quantify which predefined metabolic pathways (Kyoto

Encyclopedia of Genes and Genomes (KEGG) metabolite pathway database) were altered in the PFC of PCP-treated

rats. Several significant changes were discovered, notably: 1) neuroactive ligands active at glutamate and GABA

receptors are disrupted in the PFC of PCP-treated animals, 2) glutamate dysfunction in these animals was not

limited to compromised glutamatergic neurotransmission but also involves the disruption of metabolic pathways

linked to glutamate; and 3) a specific series of purine reactions Xanthine ¬ Hypoxyanthine ↔ Inosine ¬ IMP ®

adenylosuccinate is also disrupted in the PFC of PCP-treated animals.

Conclusions: Network reordering via the GSVD provides a means to discover statistically validated differences in

clustering between a pair of networks. In practice this analytical approach, when applied to metabolomic data,

allows us to quantify the alterations in metabolic pathways between two experimental groups. With this new

computational technique we identified metabolic pathway alterations that are consistent with known results.

Furthermore, we discovered disruption in a novel series of purine reactions that may contribute to the PFC

dysfunction and cognitive deficits seen in schizophrenia.
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Background
Background in neuroscience and metabolomics

Schizophrenia is characterized by deficits in cognition

known to be dependent upon the functional integrity of

the prefrontal cortex (PFC). Furthermore, compromised

PFC function in schizophrenia is supported by a multitude

of neuroimaging studies reporting hypometabolism (’hypo-

frontality’), as evidenced by decreased blood flow or glu-

cose utilization [1,2]. While the pathophysiological basis of

PFC dysfunction in schizophrenia is not completely under-

stood, a central role for NMDA receptor hypofunction is

widely supported. For example, subchronic exposure to the

NMDA receptor antagonist phencyclidine (PCP) induces

cognitive deficits and a ‘hypofrontality’ which directly par-

allels that seen in schizophrenia [3-5]. Furthermore, sub-

chronic PCP exposure induces alterations in GABAergic

cell markers and 5-HT receptor expression in the PFC

similar to those seen in this disorder [3,6,7]. While this evi-

dence places NMDA receptor hypofunction central to the

pathophysiology of PFC dysfunction in schizophrenia, the

mechanisms through which NMDA hypofunction pro-

motes PFC dysfunction are poorly understood.

Metabolomics is the comprehensive analysis of small

molecule metabolites in biological systems [8]. It involves

the study of the metabolome which is defined as all of

the small molecular weight compounds within a sample

that are required for metabolism, whose roles include

growth and functionality [9-11]. Sample sources include

bacteria, parasites, animals and humans and sample types

can include biofluids, cells or tissue extracts. Metabolo-

mics can be utilized as a tool for the characterization and

quantification of all of the metabolites in a biological sys-

tem. Its applications include profiling disease biomarkers

[12,13], monitoring disease progression [14], investigating

xenobiotic metabolism [15], investigating drug-induced

toxicity [16,17] and investigating metabolism in geneti-

cally modified animals [18]. Mass spectrometry (MS) has

been employed extensively as an analytical platform for

metabolomics studies [19-21]. The popularity of this

approach has increased over the last decade, in part due

to the advent of high resolution Fourier transform mass

spectrometers which offer improved reproducibility,

accuracy and sensitivity. This makes mass spectrometry

suitable for high throughput metabolomics studies [22].

In addition, the Orbitrap mass spectrometers that are

now available offer similar performance to FT-MS sys-

tems without the need for a high strength magnetic field

[23]. HILIC chromatography has been utilized as a

separation technique prior to MS detection of polar

metabolites in aqueous biofluids such as urine, serum

and plasma [24-30].

Additionally, it has also been used for the detection of

multiple neurotransmitters in primate cerebral cortex

[31]. HILIC chromatography has been chosen for meta-

bolomic studies as it is useful for the analysis of highly

polar metabolites which are poorly retained on reverse

phase columns [32]. Detailed reviews of the principles

and applications of HILIC have been previously outlined

[25,33]. Here, HILIC-chromatography is utilized in com-

bination with an LTQ-Orbitrap for metabolic profiling

of metabolite extracts from the PFC of control and

PCP-treated rats.

Metabolomics represents a robust approach through

which alterations in diverse metabolic pathways may be

determined at a biological systems level. In this way a

metabolomics approach may prove useful in further elu-

cidating the pathophysiological mechanisms contributing

to PFC dysfunction in schizophrenia. Furthermore, this

approach may also allow for the identification of PFC

metabolic biomarkers for the cognitive deficits in this

disorder. While the metabolomics approach can provide

a rich and comprehensive set of data, the appropriate

quantitative analysis of this data has not been adequately

developed. In particular, the identification of statistical

differences in metabolic pathways between experimental

groups rather than the identification of statistical differ-

ences in individual metabolites alone represents a major

challenge to quantitatively identifying metabolic altera-

tions at a systems level from metabolomic data. One

method through which statistical differences in meta-

bolic pathways can be identified from metabolomic data

involves the representation of this data as a large, com-

plex network of nodes (single metabolites) connected by

real-value edges (the correlation coefficient between two

metabolites). This form of representation has high face

validity as the relationship between two metabolites, in a

given pathway, is governed by a single or series of enzy-

matic reactions that can be viewed as being represented

by the correlation between the concentrations of the

two metabolites. Another advantage is that metabolomic

data consist of a range of metabolites detected in both

of the experimental groups of interest meaning that

these data can be expressed as two complex networks

based upon the same set of nodes. This data structure is

amenable to analysis through the application of the

Generalized Singular Value Decomposition (GSVD)

algorithm.

Background in network science and spectral methods

Large, complex interaction networks arise across many

applications in science and technology [34-36]. Spectral

methods, based on information computed from eigen-

vectors or singular vectors, have been used successfully

to reveal fundamental network properties. For example,

we may wish to cluster objects into groups [37], put

objects into order [38] or discover specific patterns of
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connectivity within subgroups [39-42]. In this work, we

look at the case where two interaction data sets are

available and the aim is discover differences between the

two sets in the form of mutually exclusive clusters. For

example, a given group of biologically defined entities,

such as genes, proteins, metabolites or brain regions,

may contain a subgroup that behaves in a coordinated

manner under one condition, or in one organism, but

not in another–the network with respect to one type of

interaction contains a cluster that is not present in the

other. We will show that the Generalized Singular Value

Decomposition, which is becoming more widely used in

computational biology [43,44] can be justified as the

basis of a network reordering approach. We also con-

sider how to quantify the statistical significance of net-

work patterns that are uncovered.

Overall, this work develops and applies a novel algo-

rithm in network science and shows that it reveals

meaningful insights when applied to cutting-edge meta-

bolomic data.

Results
Derivation of new algorithm

Suppose that the square, symmetric, real-valued

matrices A and B in ℝ
N×N represent two different types

of interaction between a set of N nodes. We have in

mind the case where the weights play the role of corre-

lation coefficients. Our aim is to discover clusters, in the

sense of subsets of nodes that are mutually, pairwise,

strongly connected through positive weights. The algo-

rithm will also discover clusters of strong negative con-

nectivity, although in practice this type of pattern is less

likely to be present. However, we note that the argu-

ments given below and the resulting algorithm remain

valid in the case where the weights are non-negative,

with zero representing the minimal level of similarity.

The novelty of our approach is that in order to reveal

interesting differences between the two types of connec-

tivity data, we look for a set of nodes that form a good

cluster with respect to A and a poor cluster with respect

to B, or vice versa. As a starting point for a computa-

tional algorithm, we consider the identity

||Ax||22 =

N
∑

k=1

x2
k degA

k +

N
∑

i=1

N
∑

k=1

N
∑

l=1,l�=k

aikailxkxl, (1)

for x Î ℝ
N. Here ||·||2 denotes the Euclidean norm

and degA
k :=

∑N
j=1 a2

kj is one way to generalize the con-

cept of out-degree to the case of a weighted network.

Suppose we wish to split the nodes into two groups

such that nodes within each group are well-connected

but nodes across different groups are poorly connected.

We could use an indicator vector x Î ℝ
N to denote

such a partition, with xs = 1 if node s is placed in group

1 and xs = -1 if node s is placed in group 2.

Fixing on two nodes, k and l, we could argue that the

existence of a third node, i, such that aik and ail are

both large and positive or both large and negative is evi-

dence in favor of placing k and l in the same group

(since they have in common a strong similarity or dis-

similarity with node i). On the other hand small or

oppositely signed values for aik and ail is evidence in

favor of placing k and l in different groups. In terms of

the indicator vector, this translates to

1. aikail large and positive ⇒ try to choose xkxl = +1,

2. aikail small or negative ⇒ try to choose xkxl = -1.

Returning to the right-hand side of (1), we see that
∑N

k=1 x2
k degA

k is independent of the choice of indicator

vector, and
∑N

i=1

∑N
k=1

∑N
l=1,l�=k aikailxkxl gives a measure

of how successfully we have incorporated the (possibly

conflicting) desiderata in points 1 and 2 over all pairs k,

l and third parties i. So we could judge the quality of an

indicator vector by its ability to produce a large value of

||Ax||22, provided other constraints, such as balanced

group sizes, were satisfied.

Analogously, we can argue that making
∑N

i=1

∑N

k=1

∑N

l=1,l�=k
aikailxkxl as negative as possible is a

good way to avoid forming well-connected subgroups,

and so the problem

max
xs∈±1, 1≤s≤N

||Ax||22
||Bx||22

(2)

is a good basis for picking out strong clusters in A

that are not present in B.

In general, optimizing over a large, discrete set of pos-

sibilities is computationally intractable, and hence we

will follow the widely used practice of relaxing to an

optimization over ℝ
N[37,45]. This approach goes back

as far as the pioneering work of Fiedler [46] and has

some theoretical underpinning in the case where a sin-

gle network is analyzed [47,48]. So, instead of (2) we

have

max
x∈RN , x �=0

||Ax||22
||Bx||22

. (3)

At this stage we recall that a general pair of matrices

A Î ℝ
m×n and B Î ℝ

p×n can be simultaneously factor-

ized using the Generalized Singular Value Decomposi-

tion (GSVD) into

A = UCX−1 and B = VSX−1, (4)

where U Î ℝ
m×m and V Î ℝ

p×p are both orthogonal,

X Î ℝ
n×n is invertible, C Î ℝ

m×n and S Î ℝ
p×n are diag-

onal with nonnegative entries such that C = diag(c1, c2,..,
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cn) and S = diag(s1, s2,..., sq) with q = min(p, n), and 0 ≤

c1 ≤ c2 ≤ ··· ≤ cn and s1 ≥ s2 ≥ ··· ≥ sq ≥ 0 [49]. The ratios

li = ci/si are the generalized singular values of A and B.

A key property of the GSVD is that the columns of X

are stationary points of the function f :ℝn
↦ ℝ given by f

(x) = || Ax ||2 /||Bx ||2, with the generalized singular

values li giving the corresponding stationary values.

Hence, we may tackle the problem (3) through the

GSVD. Columns 1, 2, 3,... of X are candidates for finding

good clusters in B that are poor clusters in A and,

analogously, columns N, N - 1, N - 2,... of X are

candidates for finding good clusters in A that are poor

clusters in B.

To transform back from real to discrete domains, we

may use the ordering of the elements in x to define a

new ordering for the two networks. More precisely, we

relabel row and column i of A and B as row and column

pi, where

pi ≤ pj ⇔ xi ≤ xj.

In this way, the existence or lack of clusters in each

network becomes apparent from inspection of the heat

map of the reordered matrix. This is the approach that

we use. We will also show that p-values can be com-

puted to quantify the statistical significance of the

results. The issue of fully automating the choice of clus-

ter size is left as future work.

A variant of the algorithm

In our context, the matrices A and B are square, with m

= n = p = N. In this case, if we make the additional

assumption that A and B are invertible it is known that

the GSVD is closely related to the standard Singular

Value Decompositions (SVD) of AB-1 and BA-1. To see

this, we could rearrange (4) into

AB−1 = UCS−1VT and BA−1 = VSC−1UT . (5)

Alternatively, we may let z = Ax or y = Bx in (3), to

obtain the quadratic problems

max
z∈ RN , z �=0

||z||22
||BA−1z||22

or max
y∈ RN , y �=0

||AB−1x||22
||y||22

,

which can be solved through the standard SVD.

It is known from spectral graph theory that the domi-

nant singular vectors give good directions in which to

look for clusters [37,50]. Inverting the weight matrix

reverses their importance (the singular values becomes

s
-1) and hence a spectral clustering approach applied

to A-1 will typically find the opposite of good clusters–

poorly connected nodes will be grouped together [51].

So, intuitively, forming AB-1 in (5) should produce a

data matrix for which the SVD approach finds good

clusters for A and poor clusters for B. Analogously, the

opposite holds for BA-1.

Having interpreted the algorithm this way, it is then

natural to consider the reverse products, A-1B and B-1A,

or, equivalently, to form the optimization problem

max
x∈ RN , x �=0

||B−1x||22
||A−1x||22

. (6)

We may interpret (6) from the point of view that

making B-1x large encourages poor clusters for B, while

making A-1x small encourages good clusters for A. In

this case, we would base our algorithm on the GSVD of

A-1 and B-1.

In the situation where A and B are both symmetric,

corresponding to undirected networks, we have, from

(4),

A−1 = (AT)−1 = (X−TCUT)−1 = UC−1XT

and

B−1 = (BT)−1 = (X−TSVT)−1 = VS−1XT .

Then we may appeal to the arguments given pre-

viously and use columns from the inverse of the third

factor in the GSVD as the basis for reordering. With

this approach we use columns of X -T rather than col-

umns of X. We emphasize that although this heuristic

derivation used an assumption that A and B are inverti-

ble, the GSVD, and hence the final algorithm, applies in

the non-invertible case. Also, the algorithms that we use

do not require the computation of matrix inverses.

In tests on both synthetic and real network pairs, we

found that this version of the algorithm was more effec-

tive, [52]. Hence, in this work we focus on the approach

of reordering networks pairs via columns of X -T. In

summary, the first few columns of X -T should give

orderings that favor clusters in B rather than A and vice

versa for the final few columns. In our computational

examples, we used the gsvd routine built in to MATLAB

http://www.mathworks.com/.

Synthetic test on binary networks

In this section we illustrate the algorithm in a simple,

controlled case where we know the “correct” answer.

We begin by considering binary networks, where results

can be clearly visualized. We generated binary adjacency

matrices A and B as shown in Figure 1. Here we have

20 nodes. In both networks, nodes 1-5 are well con-

nected. In A there is a well connected cluster consisting

of nodes 6-15, whereas in B there is a well connected

cluster consisting of nodes 15-20. To make the test

more realistic, the clusters are not perfect; there are

both missing edges (false negatives) within the clusters
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and spurious edges (false positives) outside the clusters.

Our aim is to test whether the algorithms can identify

the clusters that are particular to each data set. We then

show how statistical significance can be quantified.

We emphasize that the node labeling in Figure 1 was

chosen purely to make the inherent structure visually

apparent. Any spectral reordering algorithm should be

invariant to a relabeling of the input data. In our con-

text, this follows from the fact that for any permutation

matrix P, the factorizations A = UCX -1 and B = V SX -1

are equivalent to PAPT = (PU)C(PX) -1 and PBPT =

(PU)S(PX) -1. So, on the relabeled data matrices, (PX)

plays the role that was played by X, and our algorithm

reorders based on the appropriately permuted columns

of X -T, as required. In Figure 2 we show the same two

data sets with an arbitrary relabeling in order to illus-

trate that the inherent structure is no longer apparent.

In essence, we are hoping that the algorithm will find

the structure that has been buried in Figure 2.

In Figure 3 we display the two adjacency matrices

reordered with the algorithm; we show reordering with

eight different columns of X -T, four from each end of

the spectrum. We see that mutually exclusive structures

have been uncovered. The reordering from the first col-

umn begins with nodes 18, 20, 16, 15, 19, 17, which

form a cluster in B, but not A. The final column begins

by picking out nodes 7, 9, 10, 15, 14, 11, 6, 13, which

form the bulk of the 6-15 cluster in A. Nodes 8 and 12,

which are missing from this sequential ordering, are

placed at the head of the ordering in the penultimate

column, which begins 12, 8, 7, 10, 15, 14, 9, 11. So in

summary, the 19th and 20th columns of X -T each

reveal almost complete information about the exclusive

cluster in A, and between them they capture the full

cluster.

Cluster validation

Suppose we find τ nodes giving a good cluster s for B

but a poor cluster for A when the graphs are reordered

by column v from X -T. Is this type of substructure likely

to arise “by chance"? The following general approach

can be used in order to determine a p -value, where we

will regard a value below 0.05 as indicating statistical

significance.

Initialization: Compute a measure of cluster quality, c

(A, B), for the promising substructure consisting of

those τ nodes in networks A and B reordered by column

v.

Step 1: Randomize the networks and obtain new data

sets Â and B̂.

Step 2: Compute the GSVD for the randomized net-

works Â and B̂ and obtain a matrix X̂−T.

Step 3: Compute the measure c(Â, B̂) for the τ node

‘cluster’ in Â and B̂ reordered by column v from X̂−T.

p -value After performing M loops over Steps 1 to 3,

compute a p -value as the proportion of c(Â, B̂) samples

that exceed c(A, B).

For our cluster quality measure c(A, B) we used

(density of edges within the cluster inB)/(density of edges outside the cluster inB)

(density of edges within the cluster inA)/(density of edges outside the cluster inA)
.

For these binary graphs, the density f (s) of cluster s

was defined as

f (s) =
|E(s)|

|s|
. (7)

Here, |E(s)| represents the actual number of edges in

the object block s, and |s| is the maximum possible

number of edges.

For weighted graphs, in the case where the cluster is

dominated by positive weights, we will generalize this to

f (s) =
w(s)

|s|
. (8)

Here, w(s) denotes the average weight in block s. We

note the denominator |s| cancels when ratios are com-

puted in the p-value algorithm.

In Figure 3, we see that eight nodes

7,9,10,15,14,11,6,13 form a cluster in A, but not in B,

Figure 1 Adjacency matrices for the two synthetic networks.

Figure 2 Relabeled versions of the synthetic networks in

Figure 1.
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when the synthetic data is reordered with the final col-

umn of X -T. Applying the procedure above, using per-

mutation to randomize the networks M = 1000 times as

described below, we obtained a p-value of 0.007. Apply-

ing the same procedure, we also obtained a p-value of

0.029 for the first 6 nodes 18, 20, 16, 15, 19, 17 when

the synthetic data is reordered with the first column of

X -T, which visually form a cluster in B, but not in A.

These p-values (< 0.05) both indicate that the results are

statistically significant. As a further test, we arbitrarily

Figure 3 Networks reordered using columns of X -T.
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selected the subnetworks of A and B composed of nodes

2,4,12,16,1,3,18, which correspond to the 12th to 18th

components of the sorted final column from X -T. In

this case, we would not expect to find a significant

result. This is reflected in the large p-value of 0.844. In

more exhaustive experiments, three randomization

methods were tested [52]:

• Erdös-Rényi: generate a classical random graph with

the appropriate number of edges.

• Redistribution: redistribute the entries in each row

and each column of A, and perform the same operations

on B.

• Permutation: reorder the nodes in A and B and

choose the first τ nodes in this new ordering. In this

case, recomputation of the GSVD in Step 2 is not neces-

sary, due to the permutation invariance of the

factorization.

Of those three approaches, Erdös-Rényi may be the

most commonly used method to randomize a binary

network, whereas permutation extends most naturally to

the case of weighted edges, so we used permutation in

the test shown here. We also tested another simple clus-

ter quality measure which is the ratio of density of edges

within the cluster in one graph and that in the other

graph.

These variations were studied within this general

methodology on both real and synthetic data sets [52].

In all cases, comparable p -values were produced.

Synthetic test on correlation networks

Having tested the algorithm on binary networks, we

now consider the case where weighted edges arise as

correlation coefficients.

First, we generate two correlation matrices A and B as

shown in Figure 4. Here, each graph has 20 nodes, and

each entry is real valued, representing the correlation

coefficient between the corresponding nodes. The same

cluster patterns given for the synthetic binary matrices

in Figure 1 were built in to the synthetic correlation

data: nodes 1-5 are well connected in both networks; in

A there is a well connected cluster consisting of nodes

6-15, whereas in B there is a well connected cluster con-

sisting of nodes 15-20. Some noise was added to the

clusters to make this test more realistic.

More precisely, in our computation, the value of

each entry (the correlation coefficient) in A and B as

shown in Figure 4 is generated from a pair of 20 × 50

rectangular matrices Da and Db. The corresponding

cluster patterns are built from signals. Figure 5 shows

the nine signals that take part in the data. These are

row vectors with 50 elements. We use v[1], v[2], v[3],...,

v[9] to denote them. From these signals, we set up two

matrices

• Da Î ℝ
20×50: the first 5 rows are linear combina-

tions of v[1], v[2], v[3], v[4], v[5], v[6] and v[7]. Rows 6

to 15 are combinations of v[7] and v[8]. The remain-

ing rows (rows 16 to 20) are Gaussian pseudoran-

dom numbers.

• Db Î ℝ
20×50: the first 5 rows are linear combina-

tions of v[1], v[2], v[3], v[4], v[5], v[6] and v[7]. Rows 6

to 14 are Gaussian pseudorandom numbers. The

remaining rows (rows 15 to 20) are combinations of

v[4] and v[9].

Building up the rows from the underlying signals in

this manner allowed us to construct the correlation pat-

terns seen in Figure 4.

Although the algorithm is invariant to permutation,

for visual clarity, we also shuffled the synthetic correla-

tion data sets A and B before applying our algorithm to

them. Figure 6 shows the same synthetic correlation

data sets with an arbitrary relabeling.

We present the results from our algorithm in Figures

7 and 8. We show the relabeled A and B reordered with

two extreme columns of X -T, one from each of the two

ends of the spectrum. The reorderings reveal the

mutually exclusive cluster structures of A and B. We

also applied the cluster validation method to the struc-

tures uncovered by the reorderings using random

Figure 4 The original synthetic correlation data.
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permutation. In Figure 7 we see that the first column of

X -T picks out the continuous nodes 17, 15, 20, 18, 16,

19, which form a good cluster in B but not in A (p <

0.001). The reordering from the final column of X -T

shown in Figure 8 reveals that the 6-15 cluster in A but

not in B was completely uncovered by the nodes 10, 14,

12, 9, 8, 7, 6, 13, 15, 11 (at the top left hand side of the

heatmaps, p < 0.001).

In summary, this additional synthetic test illustrates

that our GSVD based algorithm can be extended to

Figure 5 The nine signals.

Figure 6 Relabeled versions of the synthetic networks in Figure 4.
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reveal the pattern difference between two relative corre-

lation matrices in terms of clustering.

Quantitative determination of metabolic pathways

disrupted in the prefrontal cortex of PCP-treated animals

SIEVE analysis (Thermo-Fisher Scientific) revealed sig-

nificant PCP-induced alterations in the level of specific

metabolites in the PFC of PCP-treated rats (Table 1

Additional File 1). These changes were evident in multi-

ple metabolic pathways as defined by the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) metabolite

pathways database. Significant changes were evident in

(i) glutamate metabolism (3 metabolites [m, n]), (ii) the

alanine, aspartate and glutamate pathway (2 metabolites

[n]), (iii) phenylalanine, tyrosine and tryptophan meta-

bolism (3 metabolites [a]), (iv) purine metabolism (2

metabolites [o]) and (v) butanoate metabolism (2 meta-

bolites [k]). This suggested that these metabolic path-

ways are disrupted in the PFC of PCP-treated animals.

However, this simple level of analysis prevents any

quantitative and statistically rigorous determination of

the predefined (KEGG) metabolic pathways disrupted in

the PFC of PCP-treated animals.

In the context of this study the aim of applying the

GSVD algorithm to metabolomic data from control and

PCP-treated animals was to quantitatively determine

which predefined metabolic pathways were altered in

PCP-treated animals. The inter-metabolite Pearson’s

correlation coefficient (partial correlation) was used as

the metric of the functional association between each

pair of metabolites and was generated from the metabo-

lite peak intensities, as determined by Liquid Chromato-

graphy Mass Spectrometry (LC-MS), across all animals

within the same experimental group (i.e. either control

or PCP-treated). These correlations were Fisher trans-

formed to give the correlation data a normal distribu-

tion. This resulted in a pair of symmetric, square, real-

valued {98 × 98} partial correlation matrices (Control

Figure 7 The synthetic correlation data reordered with the first column from X -T.

Figure 8 The synthetic correlation data reordered with the final column from X -T.
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animals: Additional File 2 PCP-treated animals: Addi-

tional File 3). Each within-group matrix represents the

specific association strength between each of the 9506

possible pairs of metabolites in that experimental group.

In the simplest biological case the correlation coefficient

between two metabolites (nodes) in the matrix repre-

sents the series of enzymatic reactions responsible for

converting one metabolite into another. However, it

should be noted that this simple interpretation does not

account for the complex relationships that may influ-

ence the correlation between two metabolites, such as

the involvement of metabolites in alternative, often par-

allel, metabolic pathways. There are important limita-

tions that must be recognized when modeling

metabolomic data as a complex network of interactions

between metabolites (as defined by the correlation that

exists between them) such as the potential for correla-

tions to exist between metabolites that are not biologi-

cally relevant. The impact of such erroneous

associations on the interpretation of the data as outlined

in this paper will be limited by the approach of charac-

terizing alterations at the level of metabolic pathways,

involving multiple metabolites (the approach taken in

this study), rather than considering the disruption of

single correlation coefficient between two metabolites.

Our network treats interactions between molecules as

bidirectional, and so the set of interactions between

molecules forms an undirected weighted network. In

essence the GSVD algorithm allows the reordering of

the two experimental matrices A (control animals) and

B (PCP-treated animals) with the aim of discovering a

new node (metabolite) ordering that reveals clusters of

nodes that exhibit strong connectivity (mutual weights)

in one network but not the other. In the context of this

data the GSVD algorithm was used to identify clusters

of metabolites present in one experimental group that

are not present in the other with the aim of identifying

those metabolic pathways in the PFC disrupted by PCP

treatment. Once the matrices had been reordered

through the GSVD algorithm the significant presence of

a cluster in the given network was statistically tested by

comparison of the cluster quality measure in the real

networks relative to that in 1000 random permutations

of the initial matrices. The original metabolomic net-

works are shown in Figure 9, where matrix A represents

control animals and B represents PCP-treated animals.

Figures 10 and 11 show the networks reordered by the

first and the final column of X -T, respectively. The ori-

ginal position of each metabolite detected by LC-MS

(Figure 9) and its new position in each of the reordered

matrices (Figures 10 and 11) are shown in Additional

File 4. Visually, in Figure 10 there was no obvious pat-

tern of clustering that would identify significant clusters

of metabolites present in PCP-treated animals that were

Table 1 PCP-induced alterations in PFC metabolite levels as determined by SIEVE analysis

Formula Metabolite Metaboite
KEGG ID

KEGG
Pathways

P -value Ratio

C9H11NO3 L-Tyrosine c00082 ko00350, ko00360, ko00400 0.001 0.584

C10H17N3O6 gamma Glutamylglutamine NA NA 0.007 0.673

C6H13N3O3 L-Citrulline c00327 ko00330 0.007 0.709

C3H7NO2S L-Cysteine c00097 ko00260, ko00270, ko00430, ko00480, ko00730, ko00770, ko00920 0.012 0.445

C8H9NO 2-Phenylacetamide c02505 ko00360 0.015 0.561

C9H8O3 Phenylpyruvate c00166 ko00360, ko00400 0.016 0.57

C4H6O2 2,3-Butanedione c00741 map00650 0.017 0.786

C4H5N3O Cytosine c00380 ko00240 0.019 0.665

C04H9NO2 GABA c00334 ko00250, ko00330, ko00410, ap00650, ko04080 0.021 0.804

C9H17NO4 O-Acetylcarnitine c02571 ko00250 0.022 2.649

C14H18N5O11P Adenylosuccinate c03794 ko00230, ko00250 0.029 3.276

C5H5N5O Guanine c00242 ko00230 0.035 0.593

C7H16NO3 Carnitine c00487 ko00310 0.037 0.819

Table 1 shows the molecular formula, tentative metabolite identity and the KEGG pathways in which a metabolite is involved. Only metabolites found to be

significantly different between the two experimental groups by SIEVE analysis (see Methods section) are shown. Full data for all metabolites detected in the PFC

of control and PCP-treated rats are shown in Table S1 (Additional File 1). The most prominent alterations in KEGG defined metabolic pathways appeared to be in

(i) alanine, aspartate and glutamate metabolism (3 metabolites [ko00250]), (ii) phenylalanine, tyrosine and tryptophan metabolism (3 metabolites [ko00360]), (iii)

purine metabolism (2 metabolites [ko00230]) and (iv) butanoate metabolism (2 metabolites [ko00650]). KEGG defined metabolic pathways; ko00250: Alanine,

Aspartate and Glutamate metabolism; ko00330: Arginine and Proline metabolism; ko00410: beta-Alanine metabolism; map00650: Butanoate metabolism; ko00270:

Cysteine and Methionine metabolism; k00480: Glutathione metabolism; ko00260: Glycine, Serine and Threonine metabolism; ko00430: Methionine metabolism;

ko04080; Neuroactive ligand-receptor interaction; ko00770: Pantoate and CoA biosynthesis; ko00360: Phenylalanine metabolism; ko00400: Phenylalanine, Tyrosine

and Tryptophan biosynthesis; ko00230: Purine metabolism; ko00240: Pyrimidine metabolism; ko00920: Sulphur metabolism; ko00430: Taurine and Hypotaurine

metabolism; ko00730: Thiamine metabolism; ko00350: Tyrosine metabolism; ko00400: Tyrosine and Tryptophan biosynthesis. NA denotes a metabolite not

associated with a KEGG compound ID or KEGG pathway.
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not present in controls. In contrast, in Figure 11 there

appeared to be clusters of metabolites present in the

PFC of control animals that were not present in PCP-

treated animals (top left and bottom right hand side of

the heatmap). For Figure 11 the significance of the top

cluster (first 22 nodes in the reordering, p < 0.001) and

the bottom cluster (last 18 nodes in the reordering, p <

0.001) was confirmed, indicating that there were clusters

of metabolites significantly present in control (A) ani-

mals that were not present in PCP-treated (B) animals.

The identity of the metabolites, the KEGG pathways in

which each metabolite is involved, and the PCP-induced

alteration in the overt level of each metabolite (as deter-

mined by SIEVE analysis) are shown in Tables 2 and 3

for the top and bottom cluster, respectively. In contrast

to the metabolite clustering shown in Figure 11 there

was no evidence in Figure 10 for any significant cluster

of metabolites present in PCP-treated animals (B) that

was not present in control (A) animals: (i) potential top

cluster [first 10 nodes] p = 0.421; (ii) potential middle

cluster [nodes 18-25] p = 0.494.

Rigorous significance testing, involving multiple poten-

tial metabolite clusters, confirmed that there were no

significant clusters of metabolites in PCP-treated ani-

mals that were not present in controls (Figure 10). Fol-

lowing significance testing of potential metabolite

clusters in the GSVD reordered matrices, hypergeo-

metric probability (described in the Methods section)

was applied to test the significance of KEGG defined

metabolite pathway over-representation in these clusters.

The results for hypergeometric probability testing are

shown in Tables 4 and 5.

Discussion
Through its application to metabolomic data we have

clearly demonstrated the added value that can be gained

from applying the GSVD algorithm to two sets of com-

plex, network data based upon the same set of nodes. In

particular, we have demonstrated that the combined

application of the GSVD algorithm with hypergeometric

probability analysis provides an analytical framework by

which statistical alterations in predefined metabolic

Figure 9 Control and PCP: original ordering.

Figure 10 Control (A) and PCP (B): reordered with the first column from X -T.
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Figure 11 Control (A) and PCP (B): reordered with the final column of X -T.

Table 2 Metabolite identities and their relevant KEGG pathways in the top cluster of Figure 11

Formula Metabolite Metaboite
KEGG ID

KEGG
Pathways

P
-value

Ratio

C5H10N2O3 L-Glutamine c00064 Ko00230, ko00240, ko00250, ko00330 0.522 0.959

H3PO4 Phosphoric acid c00009 ko00190 0.254 0.915

C5H7NO3 1-Pyrroline-4-hydroxy-2-
carboxylate

c04282 ko00330 0.781 0.981

C4H9N3O2 Creatine c00300 ko00330, ko00260 0.551 0.953

C4H9NO2 GABA c00334 ko00250, ko00330, ko00410, ko04080, map00650 0.021 0.804

C4H7NO4 L-Aspartate c00049 ko00250, ko00260, ko00270, map00300, ko00330, ko00340, ko00410,
ko00760, ko00770, ko04080

0.319 0.916

C4H7NO2 1-Aminocyclopropane-1-
carboxylate

c01234 ko00270, ko00640 0.590 0.951

C5H5N5O Guanine c00242 ko00230 0.035 0.593

C5H9NO4 Glutamate c00025 ko00250, ko00330, ko00340, ko00471, ko04080, ko00480, map00650 0.845 0.985

C4H7NO Hydroxymethylpropanitrile NA NA 0.098 0.842

C6H6N2O Nicotinamide c00153 ko00760 0.440 0.917

C4H6O2 2,3-Butanedione c00741 map00650 0.017 0.786

C6H12O4 Pantoate c00552 ko00770 0.722 0.963

C15H23N5O14P2 ADP-ribose c00301 ko00230 0.058 677.029

C3H7NO3 L-Serine c00065 ko00260, ko00270, ko00600, ko00920, ko00680 0.316 0.856

C4H5N3O Cytosine c00380 ko00240 0.019 0.665

C2H7NO3S Taurine c00245 ko00430, ko04080 0.936 0.995

C4H5NO3 Maleamate c01596 ko00760 0.372 0.927

C2H8NO4P Ethanolamine phosphate c00346 ko00260, ko00564, ko00600 0.373 0.889

Unknown ID NA NA 0.271 1.395

C5H11NO3 Hydroxyvaline NA NA 0.585 0.946

C6H13N3O3 L-Citrulline c00327 ko00330 0.007 0.709

Table 2 shows the top cluster of metabolites identified by the GSVD algorithm that are present in the PFC of control but not PCP-treated animals (Figure 11). The

molecular formula, tentative molecular identity, its KEGG compound identity and the KEGG metabolic pathways in which a given metabolite is involved are also

shown. The key for each KEGG pathway identity is shown in Table 4. The p -values and ratio change reported for each metabolite in this table are those

calculated by SIEVE analysis. Those metabolites found to be significantly different between the two groups by analysis are highlighted in bold. While SIEVE

analysis fails to attribute significance (p < 0.05) to PCP-induced alterations in the overt concentration of many metabolites in this cluster, GSVD analysis reveals

that the relationship between these metabolites is significantly altered by PCP treatment (p < 0.001), highlighting the specific metabolic pathways that may be

disrupted in the PFC of PCP-treated animals. The most prominent alterations in KEGG defined pathways in this cluster were in (i) Arginine and Proline

metabolism (7 metabolites [ko00330]) (ii) Glycine, Serine and Threonine metabolism (3 metabolites [ko00260]) and (iii) KEGG defined neuroactive ligands (4

metabolites [ko04080]).
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pathways between experimental groups can be defined

from complex metabolomic data. There is a great unmet

need for this type of analytical approach in metabolo-

mics, as well as in the other -omics fields (e.g. transcrip-

tomics), which allows the quantification of alterations at

the biological systems (pathways) level rather than sim-

ply identifying significant alterations of discrete mea-

sures (i.e. single metabolites).

Through the application of this analytical approach we

identified statistically significant alterations in specific,

pre-defined metabolic pathways (KEGG database path-

ways) that may contribute to PFC dysfunction in PCP-

treated animals, and so in schizophrenia. This included

the disruption of the (1) Alanine, Aspartate and Gluta-

mate [ko00250], (2) Arginine and Proline [ko00330], (3)

Butanoate [ko00650], (4) Nicotinate and Nicotinamide

[ko00760], (5) Glycine, Serine and Threonine metabolic

pathways as well as an imbalance in (6) metabolites

active as neurotransmitter ligands [ko04080]. The dis-

ruption of metabolic pathways involving glutamate in

the PFC of PCP-treated rats seems particularly pertinent

given the reported alterations in extracellular glutamate

availability in the PFC following repeated PCP treatment

[53] and the central hypothesis of hypofunctional gluta-

matergic PFC neurotransmission in schizophrenia

[54,55]. In addition to altered glutamate metabolism

there was also evidence to support an imbalance in mul-

tiple metabolites known to be active at glutamate recep-

tors. This included an imbalance in the relationship

between glutamate, L-aspartate and Tauring (Table 2)

which are all known to be active at glutamate receptors.

Furthermore, evidence for the disruption of glycine, ser-

ine and threonine metabolism may suggest that glycine

and serine activity as co-agonists at the NMDA recep-

tors may be disrupted in the PFC of PCP-treated ani-

mals. However, it is important to note that we failed to

detect glycine levels in our samples and serine levels

appear to be overtly unchanged. The possibility of

altered glycine levels in the PFC of PCP-treated rats

warrants further investigation given the ability of glycine

and NMDA receptor glycine site agonists to reverse

subchronic PCP-induced alterations in PFC dopaminer-

gic neurotransmission [56,57], which may be central to

the impact of subchronic PCP treatment on cognition.

Table 3 Metabolite identities and their relevant KEGG pathways in the bottom cluster of Figure 11

Formula Metabolite Metaboite
KEGG ID

KEGG
Pathways

P -value Ratio

C5H4N4O2 Xanthine c00385 ko00230 0.339 0.508

C10H16N2O7 Gamma-
glutamylglutamic acid

NA NA 0.143 0.54

C14H26O2 Myristoleic acid c08322 NA 0.689 0.623

C5H4N4O Hypoxanthine c00262 ko00230 0.115 0.569

C17H37NO2 Heptadecasphinganine NA NA 0.733 0.769

C10H13N4O8P Inosine monophosphate c00130 ko00230 0.461 0.73

C10H17N3O6 Peptide fragment (Arg-Arg-Gln) NA NA 0.775 1.183

C6H15NO3 Triethanolamine c06771 ko00564 0.691 1.207

C9H14N4O3 Carnosine c00386 ko00340, ko00410 0.872 1.128

C10H12N4O5 Inosine c00294 ko00230 0.090 0.6

C15H12O5 Narigenin c00509 NA 0.196 0.862

C10H17N3O6 gamma Glutamylglutamine NA NA 0.007 0.673

C26H42N7O20P3S 2-Hydroxyglutaryl-CoA c03058 map00650 0.179 0.715

C31H54N7O17P3S Decanoyl-CoA c05274 ko00071 0.410 1.312

C25H44NO7P 2- Aminoethylphosphocholate c05683 ko00440 0.243 0.662

C22H26O6 Eudesmin NA NA 0.084 0.493

C3H7NO2S L-Cysteine c00097 ko00260, ko00270, ko00430, ko00480, ko00730, ko00770, map00920 0.012 0.445

C3H7O6P ) Glycerone phosphate c00111 ko00010, ko00051, ko00052, ko00561, ko00562, ko00564, ko00620 0.063 0.381

Table 3 concerns the bottom cluster of metabolites identified by the GSVD algorithm that are present in the PFC of control animals but not PCP-treated animals.

The molecular formula, tentative molecular identity, its KEGG compound identity and the KEGG metabolic pathways in which a given metabolite is involved are

shown. The identity of each KEGG pathway ID is shown in Table 5. The p -values and ratio change reported for each metabolite in this table are those calculated

by SIEVE analysis. Those metabolites found to be significantly different between the two groups by analysis are highlighted in bold. While SIEVE analysis fails to

attribute significance (p < 0.05) to PCP-induced alterations in the overt concentration of many metabolites for many metabolites in this cluster, the PCP/Control

ratio suggests that the levels of many of these metabolites are markedly altered by PCP-treatment. GSVD analysis reveals that the relationship between the levels

of these metabolites in this cluster are significantly altered by PCP-treatment (p < 0.001) highlighting specific metabolic pathways that may be disrupted in the

PFC of PCP-treated animals. There appears to be an overabundance of Purine (4 metabolites [ko00230]) and Glycerophospholipid (2 metabolites [ko00564]) in the

bottom cluster.
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Altered glycine, serine and threonine metabolism in the

PFC of PCP-treated animals is also consistent with the

hypothesis that glycine and serine represent potential

therapeutic targets for the treatment of schizophrenia

[58]. In addition, we found evidence to suggest that

GABA neurotransmission was also significantly

decreased in the PFC of PCP-treated rats, which may

relate to the compromised integrity of GABAergic inter-

neurones in these animals [3,6], which closely resemble

the GABAergic interneuron alterations seen in schizo-

phrenia. The imbalance in glutamate, glutamine and

GABA levels identified in the PFC of PCP-treated rats

may directly contribute to the hypofrontality (glucose

hypometabolism) seen in these animals, as detected

using the 14C-2-deoxyglucose imaging technique [4], as

all of these metabolites are intimately linked through

metabolic pathways and have a central role in regulating

the coupling of neuronal activity to cerebral glucose

metabolism [59,60].

Our results also suggest that glutamatergic dysfunction

in the PFC of PCP-treated rats is not limited to the disrup-

tion of glutamatergic neurotransmission but also involves

the disruption of the metabolic pathways in which glutat-

mate is involved. For example, altered glutamate metabo-

lism may directly contribute to the disruption of the

Arginine-Proline metabolic pathway in the PFC of PCP-

treated animals. The significant disruption of the Arginine

pathway in PCP-treated animals suggests that prolonged

Table 4 Hypergeometric probability of KEGG defined metabolic pathways in the top cluster in Figure 11

KEGG Path-way
Identity

KEGG Pathway Number of metabolites
in cluster(A)

Total number of pathway
metabolites detected (B)

Hypergeometric
Probability (P (X) ≥ k)

ko00190 Oxidative phosphorylation 1 1 0.224

ko00230 Purine metabolism 3 13 0.598

ko00240 Pyrimidine metabolism 2 6 0.406

ko00250 Alanine, Aspartate and
Glutamate metabolism

4 7 0.043

ko00260 Glycine, Serine and
Threonine metabolism

4 7 0.043

ko00270 Cysteine and Methionine
metabolism

3 7 0.186

map00300 Lysine biosynthesis 1 3 0.538

ko00330 Arginine and Proline
metabolism

7 10 0.001

ko00340 Histidine metabolism 2 5 0.312

ko00410 beta-Alanine metabolism 2 5 0.312

ko00430 Taurine and Hypotaurine
metabolism

1 3 0.538

ko00471 D-glutamine and D-glutamate
metabolism

1 1 0.224

ko00480 Glutathione metabolism 1 5 0.728

ko00564 Glycerophospholipid metabolism 1 11 0.949

ko00600 Sphingolipid metabolism 2 3 0.126

ko00640 Propanoate metabolism 1 2 0.400

map00650 Butanoate metabolism 3 4 0.034

ko00680 Methane metabolism 1 1 0.224

ko00760 Nicotinate and Nicotinamide
metabolism

3 4 0.034

ko00770 Pantothenate and CoA
biosynthesis

2 5 0.312

ko00920 Sulphur metabolism 1 3 0.538

ko04080 Neuroactive ligand-receptor
interaction

4 7 0.043

Table 4 shows the hypergeometric probability of at least the observed number of metabolites arising by chance for a given KEGG defined metabolic pathway in

the top cluster of Figure 11, identified through the GSVD algorithm as being present in control but not PCP-treated animals. Further computational details are

given in the Methods section. The cluster size was 22 metabolites from a total population of 98. There was a significant over representation of metabolites of (i)

Alanine, Aspartate and Glutamate metabolism [ko00250], (ii) Arginine and Proline metabolism [ko00330], (iii) Butanoate metabolism [ko00650], (iv) Nicotinate and

Nicotinamide metabolism [ko00760], (v) Glycine, Serine and Threonine metabolism and (vi) those metabolites active as neurotransmitter ligands [ko04080] (all

highlighted in bold) suggesting that these pathways are disrupted in the PFC of PCP-treated animals.
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NMDA receptor hypofunction may result in disrupted

nitric oxide (NO) signalling in the PFC. There is increasing

evidence that NO signalling is directly linked to NMDA

receptor activity through regulation of the enzyme nitric

oxide synthase (NOS) [61] and that NO signaling contri-

butes to the deficits in cognition that arise from acute

NMDA receptor blockade [62,63]. The finding that Citrul-

line levels, a metabolite in the Arginine-Proline pathway,

are significantly decreased in the PFC of the PCP-treated

rats in this study further supports the suggestion that

NOS activity is altered in the PFC of these animals, as this

metabolite is formed by NOS when it releases NO from L-

arginine. This suggests that NMDA receptor hypofunction

may underlie the decreased NOS activity and protein

expression levels reported in the PFC of schizophrenia

patients [64] and may contribute to the cognitive deficits

seen in this disorder.

In addition to quantitatively defining the specific meta-

bolic pathways altered by experimental manipulation, our

results suggest that the GSVD algorithm can identify dis-

crete series of metabolic reactions altered by experimen-

tal manipulation. In this way, while we found no

significant evidence to support the widespread disruption

of purine metabolism, or the significant disruption of any

other KEGG defined metabolic pathway in the bottom

cluster as detected using the GSVD, we did find evidence

in this cluster to suggest that a specific series of purine

reactions were significantly disrupted in the PFC of PCP-

treated animals. These disrupted purinergic reactions in

the PFC of PCP-treated animals were:

Xanthine∗ ← Hypoxyanthine∗ ↔ Inosine∗ ← IMP∗ → adenylosuccinate∗
∗denotes significantly increased levels in the PFC of PCP - treated rats (SIEVE analysis)
∗denotes series of reactions disturbed in the PFC of PCP - treated rats(GSVD analysis)

This result suggests that the activity of adenylosucci-

nate synthase (ADSS), the enzyme responsible for the

conversion of IMP to adenylosuccinate, may be signifi-

cantly increased in the PFC of PCP-treated animals. An

increase in the functional activity of this enzyme could

Table 5 Hypergeometric probability of KEGG defined metabolic pathways in bottom cluster in Figure 11

KEGG Path-way
Identity

KEGG Pathway Number of metabolites
in cluster(A)

Total number of pathway
metabolites detected (B)

Hypergeometric
Probability (P (X) ≥ k)

ko00010 Glycolysis/Gluconeogenesis 1 1 0.184

ko00051 Fructose and Mannose
metabolism

1 1 0.184

ko00052 Galactose metabolism 1 1 0.184

ko00071 Fatty acid metabolism 1 1 0.184

ko00230 Purine metabolism 4 13 0.191

ko00260 Glycine, Serine and Threonine
metabolism

1 7 0.770

ko00270 Cysteine and Methionine
metabolism

1 7 0.770

ko00340 Histidine metabolism 1 5 0.646

ko00410 beta-Alanine metabolism 1 5 0.646

ko00430 Taurine and Hypotaurine
metabolism

1 3 0.460

ko00440 Phosphonate and
Phosphinate metabolism

1 2 0.335

ko00480 Glutathione metabolism 1 5 0.646

ko00561 Glycerolipid metabolism 1 2 0.335

ko00562 Inositol Phosphate
metabolism

1 2 0.335

ko00564 Glycerphopholipid
metabolism

2 11 0.642

ko00620 Pyruvate metabolism 1 2 0.335

map00650 Butanoate metabolism 1 4 0.562

ko00730 Thiamine metabolism 1 1 0.184

ko00770 Pantothenate and CoA
biosynthesis

1 5 0.646

map00920 Sulphur metabolism 1 3 0.460

Table 5 shows the hypergeometric probability of randomly seeing at least the observed number of metabolites of a given KEGG pathway in the bottom cluster

of Figure 11, identified though the GSVD algorithm as being present in control animals but not in PCP-treated animals. There was no evidence for a particular

over-abundance of metabolites from any given KEGG pathway in this cluster. Cluster size is 18 metabolites from a total population of 98.

Xiao et al. BMC Systems Biology 2011, 5:72

http://www.biomedcentral.com/1752-0509/5/72

Page 15 of 20



result in both the increased level of adenylosuccinate

and the altered balance in the enzyme’s downstream

metabolites (IMP, Inosine, Hypoxanthine, Xanthine)

seen in the PFC of PCP-treated animals. While the

influence of prolonged NMDA receptor hypofunction

on the functional activity of this specific enzyme

remains to be confirmed, and clearly warrants further

systematic investigation, the recent finding of altered

ADSS gene expression in schizophrenia [65] and the

association of ADSS gene polymorphisms with schizo-

phrenia [66] further highlights a potential role for this

metabolic pathway in this disorder. In addition, a role

for this metabolic pathway in cognition and schizophre-

nia is supported by the observation that inherited defi-

ciency in the enzyme responsible for the breakdown of

adenylosuccinate (ASL) results in mental retardation

and autistic features [67,68]. Furthermore, the ASL gene

maps to chromosome 22q13.1-q13.2 in humans [69] and

these chromosomal loci have been repeatedly linked to

schizophrenia [70-72]. The disruption of this metabolic

pathway may also contribute to the reduced rate of cer-

ebral glucose metabolism in the PFC of PCP-treated ani-

mals [3,4] as ASL deficiency results in hypometabolism

in frontal cortical structures [73]. Overall, these results

suggest that the potential role of this specific series of

metabolic reactions and its enzymes in cognition and

schizophrenia warrants further investigation.

Conclusions
This work addresses the scenario where a pair of net-

works describes two different patterns of connection

between a common set of nodes. We argued from first

principles that the Generalized Singular Value Decom-

position (equation (4)) can form the basis of a very

useful computational tool. In practice, we have shown

that this new computational network reordering tech-

nique was able to identify alterations in metabolic

pathways in the PFC of rats treated subchronically

with PCP that may contribute to the PFC dysfunction

and cognitive deficits seen in these animals. Further-

more, the metabolic pathways identified as being dis-

rupted in the PFC of PCP-treated rats trough the

application of this new computation technique clearly

overlap with those metabolic species known to be dis-

rupted in schizophrenia. Applying this new algorithm

in this way also identified novel pathways that may

also be relevant to schizophrenia. In this way we iden-

tified alterations in glutamate metabolism and meta-

bolic pathways central to glutamatergic

neurotransmission, alterations in arginine and proline

metabolism and the disruption of a novel series of pur-

ine reactions that may contribute to the PFC dysfunc-

tion and cognitive deficits seen in schizophrenia.

Methods
Chemicals

The solvents used for the study were purchased from

the following sources: Acetonitrile, methanol and

chloroform (Fisher Scientific, Leicestershire, UK) and

formic acid (VWR, Poole, UK). All chemicals used were

of analytical reagent grade. A Direct Q-3® water purifi-

cation system (Millipore, Watford, UK) was used to pro-

duce HPLC grade water which was used in all analysis.

Standards for 90 common bio-molecules were also pur-

chased which were used to characterize the ZIC-HILIC

column (Sigma Aldrich, Dorset UK).

Animals

All experiments were completed using male Lister

Hooded rats (Harlan-Olac, UK) housed under standard

conditions (21°C, 45-65% humidity, 12-h dark/light cycle

(lights on 0600h) with food and drinking water available

ad libitum). All manipulations were carried out at least

1 week after entry into the facility and all experiments

were carried out under the Animals (Scientific Proce-

dures) Act 1986. Animals received either sub-chronic

treatment with vehicle (0.9% saline, i.p., n = 5) or

2.58mg.kg-1 PCP.HCl (i.p., Sigma Aldrich, UK) once

daily for five consecutive days (n = 5). At 72 hours after

the final drug treatment dose animals were sacrificed

and the brain rapidly dissected out and frozen in isopen-

tane (-40°C) and stored at -80°C until sectioning. Frozen

brains were sectioned (20 μM) in the coronal plane in a

cryostat (-20°C). Tissue sections from the prefrontal cor-

tex (PFC, Bregma +4.70mm to Bregma +3.20mm) were

collected in 4ml glass vials with reference to a stereotac-

tic rat brain atlas [74] and stored at -80°C until further

preparation for LC-MS analysis.

Extraction of polar metabolites from brain samples for

LC-MS analysis

Extraction of polar metabolites from brain tissue was

carried out using the two-step extraction method

described previously [75], using methanol, water and

chloroform for the optimal extraction of polar metabo-

lites. A hand held homogenizer was used to homogenize

the samples once in solution. For preparation of samples

for LC-MS analysis 200 μl of the collected polar extract

was added to 600 μl of 1 : 1 acetonitrile:water solution

to produce a final solvent:sample ratio of 3 : 1. The

samples were then filtered using Acrodisc 13mm syringe

filters with 0.2 μm nylon membrane (Sigma Aldrich)

before LC-MS analysis.

LC-MS analysis of polar metabolites

Experiments were carried out using a Finnigan LTQ

Orbitrap (Thermo Fisher, Hemel Hempstead, UK) using
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30000 resolution. Analysis was carried out in positive

mode over a mass range of 60-1000 m/z. The capillary

temperature was set at 250°C and in positive ionization

mode the ion spray voltage was 4.5 kV , the capillary

voltage 30 V and the tube lens voltage 105 V . The

sheath and auxiliary gas flow rates were 45 and 15,

respectively (units not specified by manufacturer). A

ZIC-HILIC column (5 μm, 150 × 4.6 mm; HiChrom,

Reading, UK) was used in all analysis and a binary gradi-

ent method was developed which produced good polar

metabolite separation. Solvent A was 0.1% v/v formic

acid in HPLC grade water and solvent B was 0.1% v/v

formic acid in acetonitrile. A flow rate of 0.3 ml/min.

was used and the injection volume was 10 μl. The gradi-

ent programme used was 80% B at 0 min. to 50% B at

12 min. to 20% B at 28 min. to 80% B at 37 min., with

total run time of 45 minutes. The instrument was exter-

nally calibrated before analysis and internally calibrated

using lock masses at m/z 83.06037 and m/z 195.08625.

Samples were analysed sequentially and the vial tray

temperature was set at a constant temperature of 4°C.

Data preparation and analysis

Determination of overt alterations in metabolite levels

between experimental groups

The software program Xcalibur (version 2.0) was used

to acquire the LC-MS data. The raw Xcalibur data files

from version 1.2 (Thermo Fisher, Hemel Hempstead,

UK). SIEVE software (Thermo-Fisher Scientific) was

used to identify all metabolites affected by drug treat-

ment by calculating a p-value and ratio based on the dif-

ference in average intensities of individual peaks, which

correspond to different metabolites, between PCP-trea-

ted and control animals. A significant difference in the

level of each metabolite between groups was set at p

-value < 0.05 and/or ratio less than 0.5 for downregu-

lated metabolites and greater than 2 for upregulated

metabolites. The ratio is the fold change in average peak

intensities from control and treatment groups. For

metabolite identification the masses of the polar meta-

bolites were compared to the exact masses of 6000 bio-

molecules using an in-house developed macro (Excel,

Microsoft 2007).

Hypergeometric probability testing

The hypergeometric probability test was used to calcu-

late the probability of finding at least the observed num-

ber of metabolites of a given pre-defined metabolic

pathway (as defined on the KEGG pathway database) in

the clusters identified through the GSVD algorithm,

with knowledge of the total number of metabolites pre-

sent in that pathway detected by LC-MS in these sam-

ples. The hypergeometric probability test was used to

identify whether any of the KEGG defined metabolic

pathways were significantly over-represented in any of

the GSVD identified clusters. In its general form hyper-

geometric probability allows the calculation of the prob-

ability of observing at least (k) metabolites from a given

defined KEGG pathway in a defined cluster of metabo-

lites (n) given the total number of metabolites (N) and

the total number of metabolites from the pathway in

question (m). The probability mass function of hyper-

geometric distribution is:

f (k; N, m, n) = P(X = k) =

(

m
k

)

(

N−m
n−k

)

(

N
n

) . (9)

So here the probability is calculated using the formula

P(X ≥ k) =

m
∑

i=k

(

m
i

)

(

N−m
n−i

)

(

N
n

) . (10)

Significant over-representation of a given functional

group in any GSVD defined significant cluster was set

by a hypergeometric probability threshold of 0.05.

Additional material

Additional file 1: Table S1 - List of all metabolites detected by LC-

MS in the PFC of Control and PCP-treated animals. Table S1 Legend:

The molecular formula and tentative molecular identity for each

metabolite detected in the PFC of control and PCP-treated animals is

shown. In addition, the KEGG molecular identity and the KEGG metabolic

pathways in which a metabolite is involved are also shown. The ratio

difference in metabolite concentration and the significance of this

change (p-value), as determined by SIEVE analysis (see Methods section),

are also shown. Those metabolites found to be significantly different

between the two groups are highlighted in bold. The most prominent

alterations in KEGG defined metabolic pathways appeared to be in (i)

alanine, aspartate and glutamate metabolism (3 metabolites [ko00250]),

(ii) phenylalanine, tyrosine and tryptophan metabolism (3 metabolites

[ko00360]), (iii) purine metabolism (2 metabolites [ko00230]) and (iv)

butanoate metabolism (2 metabolites [ko00650]). KEGG defined

metabolic pathways; ko00250: Alanine, Aspartate and Glutamate

metabolism; ko00627: Aminobenzoate degradation; ko00330: Arginine

and Proline metabolism; ko00410: beta-Alanine metabolism; ko00780:

Biotin metabolism; map00650: Butanoate metabolism; ko04973:

Carbohydrate metabolism; ko00270: Cysteine and Methionine

metabolism; ko00071: Fatty acid metabolism; ko00051: Fructose and

Manose metabolism; ko00052: Galactose metabolism; ko00471:

Glutamine and Glutamate metabolism; k00480: Glutathione metabolism;

ko00561: Glycerolipid metabolism; ko00564: Glycerophospholipid

metabolism; ko00260: Glycine, Serine and Threonine metabolism;

ko00010: Glycolysis/Gluconeogenesis; ko00340: Histidine metabolism;

ko00562: Inositol Phosphate metabolism; map00300: Lysine

biosynthesis; ko00310: Lysine degradation; ko00430: Methionine

metabolism; ko04080; Neuroactive ligand-receptor interaction; ko00760:

Nicotinate and Nicotinamide metabolism; ko00190: Oxidative

phosphorylation; ko00770: Pantoate and CoA biosynthesis; ko00550:

Peptidoglycan biosynthesis; ko00360: Phenylalanine metabolism;

ko00400: Phenylalanine, Tyrosine and Tryptophan biosynthesis;

ko00440: Phosphonate and Phosphinate metabolism; ko00640:

Propanoate metabolism; ko00230: Purine metabolism; ko00240:

Pyrimidine metabolism; ko00620: Pyruvate metabolism; ko00500: Starch

and Sucrose metabolism; ko00600: Sphingolipid metabolism; ko00920:

Sulphur metabolism; ko00430: Taurine and Hypotaurine metabolism;

ko00730: Thiamine metabolism; ko00380: Tryptophan metabolism;

ko00350: Tyrosine metabolism; ko00400: Tyrosine and Tryptophan
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biosynthesis; ko00290; Valine, Leucine and Isoleucine biosynthesis;

ko00280: Valine, Leucine and Isoleucine degradation. NA denotes a

metabolite not associated with a KEGG compound ID or KEGG pathway.

Additional file 2: 98 × 98 matrix of between metabolite correlations

in the PFC of control animals. The 98 × 98 matrix of the Pearson’s

correlation coefficients (Fisher z-transformed) between all metabolites

detected in the prefrontal cortex of control (saline-treated) animals by

LC-MS analysis is shown.

Additional file 3: 98 × 98 matrix of between metabolite correlations

in the PFC of PCP-treated animals. The 98 × 98 matrix of the Pearson’s

correlation coefficient (Fisher z-transformed) between all metabolites

detected in the prefrontal cortex of PCP-treated animals by LC-MS

analysis is shown.

Additional file 4: Table S2 - Table showing the axes labels in

Figures 9, 10and 11. In Table S2 the position of each metabolite in the

original ordering (Figure 4) is shown. In the columns for Figures 5 and 6,

the corresponding numbers indicating the new position of each

metabolite (node) in the matrix when reordered by the first column of X
-T and the final column of X -T, respectively, is shown.
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