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Abstract

We describe in detail a general strategy for implementing a conditional

geometric phase between two spins. Combined with single-spin opera-

tions, this simple operation is a universal gate for quantum computation,

in that any unitary transformation can be implemented with arbitrary

precision using only single-spin operations and conditional phase shifts.

Thus quantum geometrical phases can form the basis of any quantum

computation. Moreover, as the induced conditional phase depends only

on the geometry of the paths executed by the spins it is resilient to certain

types of errors and offers the potential of a naturally fault-tolerant way

of performing quantum computation.

1 Introduction

Among the surprising effects recently discovered in quantum mechanics is that
a quantum system retains a memory of its motion when it undergoes a cyclic
evolution [1]. This is reflected in the existence of the Berry phase, a phase
acquired by the quantum state of the system in addition to the better known
dynamic phase. The Berry phase is a purely geometrical effect that can be linked
to the notion of parallel transport [2]: it depends only on the area covered by
the motion of the system, and is independent of details of how the motion is
executed. Berry phases have been demonstrated in a wide variety of systems
[3], including NMR [4, 5], the closely related technique of NQR [6–8], optical
systems [9], and others.

∗Department of Quantum Chemistry, Uppsala University, Box 518, Se-751 20 Uppsala,

Sweden

1

http://arXiv.org/abs/quant-ph/0004015v1


An equally exciting recent development in the field of quantum mechanics
has been the discovery that quantum systems can be used to perform novel
information processing tasks, including computations which are more efficient
than any algorithm known on a classical computer [10–12]. Quantum informa-
tion processing requires the ability to execute conditional dynamics [13] between
two quantum bits (qubits), where the state of one qubit influences the evolution
of another qubit during a quantum computation. Simple quantum information
processing has been demonstrated using NMR [14–17] and trapped ions [18].

Recent experimental work has managed to combine these two quantum phe-
nomena in the form of geometric quantum computation [19]. (For a more ab-
stract approach see [20,21].) In this paper we seek to detail the theoretical ideas
behind geometric quantum computation. In particular we show that Berry’s
phase may be used to implement conditional phase shifts, and thus any quan-
tum gate [24]. We begin with brief introductions to both quantum gates and
networks as well as to geometric phases, proceeding to analyse the dynamics of
a spin-half system in order to see in detail how the theory of geometric phases
applies there. Finally, we extend the ideas to pairs of spin-half particles, showing
how to introduce a conditional geometric phase between the two particles.

2 Phase gates and quantum computation

2.1 Qubits and networks

A qubit is a quantum system in which the Boolean states 0 and 1 are represented
by a prescribed pair of normalised and mutually orthogonal quantum states
labeled as {|0〉, |1〉}. Unlike a simple Boolean variable, a qubit, typically a
microscopic system such as an atom, a nuclear spin, or a polarised photon, can
exist in an arbitrary superposition α | 0〉 + β | 1〉, making it more powerful as a
computational resource.

In quantum computation, we set some register of qubits to an “input” state,
evolve the qubits unitarily using simple building-block operations and then take
the final state as “output”. More formally, a quantum logic gate is a device
which performs a fixed unitary operation on selected qubits in a fixed period of
time and a quantum network is a device consisting of quantum logic gates whose
computational steps are synchronised in time [23]. The outputs of some of the
gates are connected by wires to the inputs of others. The size of the network is
the number of gates it contains.

2.2 Quantum logic gates

The most common quantum gate is the Hadamard gate, a single qubit gate H
performing the unitary transformation known as the Hadamard transform. It
is defined as

H =
1√
2

(

1 1
1 −1

)

|x〉 H
(−1)x |x〉 + | 1 − x〉√

2
(1)
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The matrix is written in the computational basis {| 0〉 , | 1〉} and the diagram on
the right provides a schematic representation of the gate H acting on a qubit
in state |x〉, with x = 0, 1.

The addition of another single qubit gate, the phase shift gate φ, defined as
| 0〉 7→ | 0〉 and | 1〉 7→ eiφ | 1〉, or, in matrix notation,

φ =

(

1 0
0 eiφ

)

|x〉
φ

eixφ |x〉 (2)

is actually sufficient to construct the following network (of size four), which
generates the most general pure state of a single qubit (up to a global phase),

| 0〉 H H
2θ π

2 + φ

cos θ | 0〉 + eiφ sin θ | 1〉 . (3)

Consequently, the Hadamard and phase gates are sufficient to construct any

unitary operation on a single qubit.
Thus the Hadamard gates and the phase gates can be used to transform the

input state |0〉|0〉...|0〉 of n qubits into any state of the type |Ψ1〉 |Ψ2〉... |Ψn〉,
where |Ψi〉 is an arbitrary superposition of |0〉 and |1〉. These are rather special
n-qubit states, called the product states or the separable states. In general, a
register of n qubits can be prepared in states which are not separable, known
as entangled states.

However, in order to entangle two or more qubits it is necessary to have
access to two-qubit gates. One such gate is the controlled phase shift gate B(φ)
defined as

B(φ) =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ







 | y〉

|x〉
φ















eixyφ |x〉 | y〉 . (4)

The matrix is written in the computational basis {| 00〉 , | 01〉 , | 10〉 , | 11〉} and
the diagram on the right shows the structure of the gate.

2.3 Universality

An important result in the theory of quantum computation states that the
Hadamard gate, and all B(φ) controlled phase gates form a universal set of

gates: if the Hadamard gate as well as all B(φ) gates are available then any
n-qubit unitary operation can be simulated exactly with less than C4nn such
gates, for some constant C [24]. Consequently, being able to implement 1 and
2-qubit phase gates is of crucial importance in quantum computation. In this
paper we describe a new method for implementing the controlled phase gates
based explicitly on geometric phases [1–3] rather than dynamic ones.
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3 Geometric phase

3.1 Cyclic evolution

The states of a quantum system are usually described as being represented by
vectors of norm 1 (|〈ψ |ψ 〉|2 = 1) in a complex Hilbert space H. However, there
is redundancy in this description since the state |ψ〉 is physically indistinguish-
able from the state eiφ |ψ〉. It is therefore convenient to consider instead the
projective space P , in which vectors are grouped into equivalence classes under
the relation |ψ〉 ∼ reiφ |ψ〉 for any r > 0 and real φ, thereby eliminating the
ambiguity. The associated projection map is

Π : H → P
|ψ〉 7→ [|ψ〉] =

{

|ψ′〉 : |ψ′〉 = reiφ |ψ〉
}

.
(5)

If a system undergoes a cyclic evolution, the ket representing the system
state traces out a path, C : [0, τ ] −→ H, where Π(C) is a closed curve in P , as
illustrated in Figure 1. In other words, the initial and final states should be on
the same ray in H, but may be related by a phase, eiφ. We will measure this
phase with respect to a reference curve in H: for each point |ψ(t)〉 on C, we can

choose a smoothly varying representative
∣

∣

∣ ψ̃(t)
〉

from Π(ψ(t)) in such a way

that
∣

∣

∣ ψ̃(0)
〉

=
∣

∣

∣ ψ̃(τ)
〉

. We can then write

|ψ(t)〉 = eif(t)
∣

∣

∣ ψ̃(t)
〉

(6)

so that the phase change of |ψ(0)〉 associated with the cyclic evolution is given
by φ = f(τ) − f(0).

3.2 Dynamic and geometric phase

The time evolution of a quantum system is governed by the Schödinger equation,

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (7)

where H(t) is the Hamiltonian. Substituting Eq. (6) into the above, rearranging
and multiplying by 〈ψ(t) | gives the following [25],

df(t)

dt
= −1

~
〈ψ(t) |H |ψ(t)〉 + i

〈

ψ̃(t)
∣

∣

∣

d

dt

∣

∣

∣ ψ̃(t)
〉

, (8)

or, when integrated,

φ = −1

~

∫ τ

0

〈ψ(t) |H |ψ(t)〉 dt+ i

∫ τ

0

〈

ψ̃(t)
∣

∣

∣

d

dt

∣

∣

∣ ψ̃(t)
〉

dt. (9)

Thus, φ can be decomposed into a dynamical phase

δ = −1

~

∫ τ

0

〈ψ(t) |H |ψ(t)〉dt (10)
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z

Π

C

Π(C)

Figure 1: A schematic diagram of a spin-half particle undergoing a cyclic state
evolution. Points on the sphere correspond to physically distinguishable states.
Going through each point is a ray, on which phase information and normalisation
is recorded.
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which depends on the Hamiltonian, and a geometric phase

γ = i

∮

C

〈

ψ̃
∣

∣

∣ d
∣

∣

∣ ψ̃
〉

(11)

which depends only on the path C; γ is independent of the rate at which |ψ(t)〉
progresses along C, the Hamiltonian, or the choice of reference

{∣

∣

∣ ψ̃
〉}

.

3.3 Berry’s phase

A particular instance of this geometric phase is Berry’s phase [1], which occurs
when the adiabatic theorem (see [26]) is satisfied. In this case, if the initial state
|ψ(0)〉 of the system is an eigenstate of the Hamiltonian, the state |ψ(t)〉 remains
an eigenstate |ψ(t)〉 = |n(R)〉 of the instantaneous Hamiltonian H(R), where
R is a set of time-varying parameters controlling the Hamiltonian. Supposing R

traces a closed loop in the parameter space, the geometric phase of the system
can be written in terms of R. In this case, provided the energy eigenspace of the
instantaneous Hamiltonians is non-degenerate along the path C, the geometric
phase acquired by the nth-eigenstate is

γn = i

∮

C

〈

ñ(R)
∣

∣

∣∇R

∣

∣

∣ ñ(R)
〉

· dR, (12)

where ∇R is the gradient operator with respect to the parameters R, and
∣

∣

∣ ñ(R)
〉

is defined as in the previous section. This line integral can be trans-

formed into a surface integral over any surface in the parameter space whose
boundary is C.

Since experimentally it is much easier to control the Hamiltonian than the
actual state of a system, the adiabatic case is of importance. However, the
adiabatic conditions necessarily mean that the processes take a long time com-
pared to the characteristic dynamical time-scales, and thus are much slower
than dynamic methods of generating phases.

4 Single-qubit evolution

4.1 Qubit Dynamics

Here we will focus on developing an understanding of the time evolution of
a single qubit governed by a very general Hamiltonian. Recall that any 2 × 2
Hermitian matrix can be written in terms of the unit matrix and the three Pauli
matrices. In particular a single qubit density operator can be parametrised as

ρ =
1

2
(1 + s · σ) =

1

2

(

1 + sz sx − isy

sx + isy 1 − sz

)

, (13)

where the real vector s = (sx, sy, sz) is known as the Bloch vector. By the same
token any 2 × 2 Hamiltonian can be written as

H =
~

2
(Ω01 + Ω · σ), (14)

6



Ω

s

Figure 2: Solution to the equations of motion for a single spin-half particle.

where Ω is called the Rabi vector. Substituting Eq. (13) and Eq. (14) into the
equation of motion for the density operator,

i~
d

dt
ρ = [H, ρ] (15)

and using the identity

(a · σ)(b · σ) = (a · b) 1 + i(a× b) · σ, (16)

we find the following equation of motion for the Bloch vector,

d

dt
s = Ω× s. (17)

This equation has a simple geometric solution: vector s revolves around vector
Ω with angular frequency given by |Ω|, the length of Ω, as illustrated in Figure
2.

From Eq. (17), it is relatively easy to move to situations typical of those
encountered in quantum computation. Hamiltonians that describe qubits in-
teracting with external potentials are usually time dependent. Typical exter-
nal perturbations are periodic such as, for example, spins coupled to oscillating
magnetic fields in NMR or atomic dipole moments coupled to oscillating electro-
magnetic field in the optical domain. Within the Rotating Wave Approximation
the oscillating field can be replaced by a rotating field, and so the Hamiltonian
is of the form

H(t) =
~

2

(

ω0 ω1e
−i(ωt+φ)

ω1e
i(ωt+φ) −ω0

)

, (18)

where ω0/2π is the system’s transition frequency, while ω/2π and ~ω1 are the
frequency and the amplitude of the oscillating field, respectively. This gives

Ωx = ω1 cos(ωt+ φ), Ωy = ω1 sin(ωt+ φ), Ωz = ω0. (19)
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In order to solve Eq. (17) it is convenient to consider the evolution of s in
a frame which rotates with frequency ω around the z-axis. More precisely, we
write

s(t) = Rz(ωt)s
′(t), Ω(t) = Rz(ωt)Ω

′(t), (20)

where Rz(ωt) is the rotation matrix

Rz(ωt) =





cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1



 = exp(ωtMz), (21)

for

Mz =





0 −1 0
1 0 0
0 0 0



 . (22)

Substituting Eq. (20) into Eq. (17) and taking into account that

d

dt
Rz(ωt) = Rz(ωt)(ωMz), Mzs

′ = ẑ × s
′, (23)

where ẑ is a unit vector in the z-direction, we obtain

d

dt
s
′ = Ω

′ × s
′ (24)

with the time-independent vector Ω
′,

Ω′
x = ω1 cos(φ), Ω′

y = ω1 sin(φ), Ω′
z = ω0 − ω. (25)

If we can control the strength of coupling ~ω1, the frequency ω and the phase
φ of the external field we can prepare any vector Ω. This implies that if we
know the initial state of the qubit then with a single rotation we can position
the Bloch vector s in any prescribed direction.

4.2 Calculating geometric phases

We can now apply the results of the previous section to the task of developing
a geometric phase of a spin-half particle located in an external oscillating field.
By varying the parameters of the Hamiltonian adiabatically we will send a qubit
through a cyclic evolution, whose associated geometric phase can be calculated
using Eq. (11).

Working in the rotating frame, the components (Ω′
x,Ω

′
y,Ω

′
z) of the Hamil-

tonian are given by Eq. (25), where the frequency and power of the rotating
field can be used to control the value of the angle θ of Figure 3. In the absence
of a rotating field the Rabi vector lies along the z-axis, and as the power of
the rotating field is slowly increased from zero to ω1 the vector tilts towards the
xy-plane. If the Bloch vector s

′ is initially aligned with Ω
′ then by the adiabatic

theorem, it will remain aligned with Ω
′ provided Ω

′ varies slowly. Therefore,

8
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z

s

θ

Figure 3: Spin-half particle in a magnetic field

from the relation between the different components Ω
′ we find that the angle θ

between the Bloch vector and the z-axis will be

cos θ =
Ω′

z
√

Ω′2
x + Ω′2

y + Ω′2
z

=
ω0 − ω

√

(ω0 − ω)2 + ω2
1

. (26)

Varying the phase φ of the rotating field from Eq. (25) will then cause
s
′ to rotate around the z-axis. The geometric phase associated with a full

revolution is easily calculated by parameterizing the state in terms of the | ↑〉
and | ↓〉 eigenstates of quantization along the z-axis,

∣

∣

∣ ψ̃(α)
〉

= cos(θ/2) | ↑〉 +

sin(θ/2)eiα | ↓〉, where α changes smoothly from 0 to 2π. Using Eq. (11),

γ = i

∮

C

(

cos
θ

2
| ↑〉 + sin

θ

2
eiα | ↓〉

)†

d

(

cos
θ

2
| ↑〉 + sin

θ

2
eiα | ↓〉

)

= −
∫ 2π

0

(

cos
θ

2
〈↑ | + sin

θ

2
e−iα 〈↓ |

)(

sin
θ

2
eiα | ↓〉

)

dα

= −1

2
(1 − cos θ)

∫ 2π

0

dα

= −π(1 − cos θ). (27)

Furthermore, the result can be generalized to any closed path with the result
that the geometric phase is equal to half the solid angle enclosed by C on the
Bloch sphere [1].

9



4.3 Eliminating dynamic phases

In order to perform conditional quantum gate operations using geometric phases
only, it is necessary to find a way to eliminate the dynamic phase. One approach
is to use a refocussing technique known as spin-echo. The basic idea is to apply
the cyclic evolution twice, with the second application surrounded by a pair
of fast π transformations (this being simply the transformation that swaps the
basis states | ↑〉 and | ↓〉.) The net effect of this compound transformation would
be to cancel all the acquired phases except that the second cyclic evolution is
performed by retracing the first but in the opposite direction so that while the
dynamic phases cancel, the geometric phases do not.

To see why this is so, let C↑ be the closed curve in P traced out by
∣

∣

∣ ↑̃
〉

during

the first cyclic evolution and C↓ the one traced out by
∣

∣

∣ ↓̃
〉

, with corresponding

dynamic and geometric phases δ↑, γ↑, δ↓, and γ↓. Referring back to Eq. (27)
we see that γ↑ = −γ and γ↓ = γ for γ = π(1 − cos θ). Similarly, if we write C̄↑
and C̄↓ for the second cyclic evolution, these are simply C↑ and C↓ carried out in
opposite orientations so they have corresponding phases γ̄↑ = γ and γ̄↓ = −γ.

In summary, we can follow the states through the compound evolution as
follows:

| ↑〉 C↑−→ ei(δ↑−γ) | ↑〉 π−→ ei(δ↑−γ) | ↓〉 C̄↓−→ ei(δ↑+δ↓−2γ) | ↓〉 π−→ ei(δ↑+δ↓−2γ) | ↑〉
| ↓〉 C↓−→ ei(δ↓+γ) | ↓〉 π−→ ei(δ↓+γ) | ↑〉 C̄↑−→ ei(δ↑+δ↓+2γ) | ↑〉 π−→ ei(δ↑+δ↓+2γ) | ↓〉 .

(28)
Since the global phase factor ei(δ↑+δ↓) is not physical this sequence of operations
behaves as promised. The dynamic phases are eliminated and we are left with
an exclusively geometric phase difference of 4γ = 4π cos θ.

5 Conditional dynamics

5.1 2-Spin Hamiltonian

This geometric phase can be used to implement a 2-qubit controlled-phase gate.
Consider to begin with a system of two non-interacting spin-half particles Sa

and Sb. In a reference frame aligned with the static field, the Hamiltonian reads

H0 = ~ωaSaz ⊗ 1b + ~ωb1a ⊗ Sbz , (29)

or, in the basis {|Saz, Sbz〉}Saz,Sbz
= {| ↑↑〉 , | ↑↓〉 , | ↓↑〉 , | ↓↓〉},

H0 =
~

2









ωa + ωb 0 0 0
0 ωa − ωb 0 0
0 0 −ωa + ωb 0
0 0 0 −ωa − ωb









, (30)

where the frequencies ωa/2π and ωb/2π are the transition frequencies of the two
spins and we have used the scaled Pauli operators Si = σi/2. (From now on we
assume that ωa and ωb are very different with ωa > ωb.)
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| ↓↓〉 −ωa−ωb

2

−ωa−ωb+πJ
2

| ↓↑〉 −ωa+ωb

2 −ωa+ωb−πJ
2

| ↑↓〉 ωa−ωb

2 ωa−ωb−πJ
2

| ↑↑〉 ωa+ωb

2

ωa+ωb+πJ
26

ω+

6

ω−

Figure 4: The energy diagram of two interacting spin-half nuclei. The transition
frequency of the first spin depends on the state of the second spin.

If the two particles are sufficiently close to each other, they will interact,
creating additional splittings between the energy levels. In the case of two spin-
half particles, the magnetic field of one spin may directly or indirectly affect the
energy levels of the other spin; the energy of the system is increased by π~J/2 if
the spins are parallel and decreased by π~J/2 if the spins are antiparallel. The
Hamiltonian of the system taking into account this interaction reads

H = H0 + 2π~JSaz ⊗ Sbz, (31)

or, in the previously chosen basis,

H =
~

2









ωa + ωb + πJ 0 0 0
0 ωa − ωb − πJ 0 0
0 0 −ωa + ωb − πJ 0
0 0 0 −ωa − ωb + πJ









.

(32)
Figure 4 illustrates the energy levels of the system. When spin Sb is in state

| ↑〉, the transition frequency of the spin Sa is

ω+ = ωa + πJ, (33)

whereas when spin Sb is in state | ↓〉, the transition frequency of the spin Sa is

ω− = ωa − πJ. (34)

5.2 Conditional phase shift

Now suppose that in addition to the static field, we apply a rotating field that
is slowly varied as described in Section 4.2. We have seen that the Berry phase

11



acquired by a spin depends on its transition resonance frequency as given by
Eq. (26). Therefore, at the end of a cyclic evolution, the Berry phase acquired
by the spin Sa will be different for the two possible states of spin Sb. Indeed,
when spin Sb is in state | ↑〉, the Berry phase acquired by the spin Sa is γ+ =
∓π(1 − cos θ+), with the sign negative or positive depending on whether spin
Sa is up or down, respectively, and

cos θ+ =
ω+ − ω

√

(ω+ − ω)2 + ω2
1

. (35)

Similarly, when spin Sb is in state | ↓〉, the Berry phase acquired by the spin Sa

is γ− = ∓π(1 − cos θ−) where

cos θ− =
ω− − ω

√

(ω− − ω)2 + ω2
1

. (36)

As in the single-particle case, it is necessary to eliminate the dynamic phase
in order to construct a purely geometric conditional phase gate. This can be
accomplished using almost the same technique as in the single-particle case
described in Section 4.3. In this case, however, we must apply the sequence of
operations

C −→ πa −→ C̄ −→ πb −→ C −→ πa −→ C̄ −→ πb, (37)

where πa and πb are π-pulses applied to particles a and b, respectively, and C and
C̄ are adiabatic transformations as in Section 4.3. If we define the differential
Berry phase shift

∆γ = γ+ − γ− = π

(

ω+ − ω
√

(ω+ − ω)2 + ω2
1

− ω− − ω
√

(ω− − ω)2 + ω2
1

)

(38)

then the net transformation, up to global phases, is given by









e2i∆γ 0 0 0
0 e−2i∆γ 0 0
0 0 e−2i∆γ 0
0 0 0 e2i∆γ









. (39)

Thus, we have succeeded in engineering a conditional evolution since the state
of the qubit Sb influences the phase acquired by a second qubit Sa. [27] This
gate, which introduces a phase of e2i∆γ if the two spins are aligned and e−2i∆γ

if they are anti-aligned, is equivalent to the controlled phase gate introduced in
Section 2 [22].

5.3 Fault Tolerance

The form of the dependence of ∆γ on the detuning ωa − ω and the amplitude
of the oscillating field ω1 builds into the geometric phase gate a natural type of

12



Figure 5: Plot of differential phase shift ∆γ as a function of ωa−ω
πJ

and ω1

πJ
.

fault tolerance not present in the simple non-geometric conditional phase gate.
In many experiments, such as NMR, it is easy to control the detuning quite
precisely, but relatively difficult to control the amplitude of the oscillating field.
Figure 5 plots ∆γ as a function of these parameters in units of πJ for a range
of values: for fixed ωa−ω, we see that there is a peak in ∆γ as a function of ω1.
Therefore, if ω1 is chosen to coincide with this peak then ∆γ will be insensitive
to errors in ω1 to first order. As the height of the peak depends on the detuning,
any desired controlled phase gate can be achieved.

6 Conclusions

The techniques described in this paper constitute a novel approach to quan-
tum computation, one that builds entangling gates entirely out of conditional
geometric phases. These techniques are readily implementable with current
technology in quantum optics and have already been demonstrated by some
of the authors using NMR [19]. It would be interesting to further analyse the
robustness of geometric quantum computation to errors. While it has been ob-
served that geometric phases are robust to certain types of noise in the classical
parameters controlling the Hamiltonian, it has not been determined how geo-
metric phases behave in the presence of decoherence or depolarisation of the
quantum system.
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pp.11.

[6] R. Tycko, 1987, Phys. Rev. Lett. 58, pp.2281.
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