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We describe a mechanism for realizing a controlled phase gate for solid-state charge qubits. By
augmenting the positionally defined qubit with an auxiliary state, and changing the charge distri-
bution in the three-dot system, we are able to effectively switch the Coulombic interaction, effecting
an entangling gate. We consider two architectures, and numerically investigate their robustness to
gate noise.

PACS numbers: 03.67.Lx,03.65.Vf,85.35.Be

I. INTRODUCTION

The search for a workable quantum information pro-
cessor is an effort that has captivated the attention of
researchers in many disciplines. A quantum computer re-
quires individual quantum logic elements, usually qubits,
and entangling interactions between these elements [1, 2].

Solid-state proposals are widely seen as being some
of the most attractive from the point of view of con-
structional scalability, i.e., the ability to replicate many
qubits. Furthermore, schemes compatible with present
semiconductor technologies [3, 4, 5, 6] are especially at-
tractive because of their potential to leverage the associ-
ated industrial experience [7, 8].

In this paper we concentrate on charge-based archi-
tectures. Such systems were amongst the first pro-
posed for quantum computing [9] and numerous versions
have evolved recently [6, 10, 11, 12]. We are attracted
to charge-based systems for three reasons: (1) proven
high-fidelity readout compatible with single-shot opera-
tions [13]; (2) potential for high-speed (∼ picosecond) op-
erations [6]; and (3) the ability to define variable dimen-
sionality Hilbert spaces by appropriate partitioning [14].
The usual mechanism for coupling charge qubits is via the
Coulomb interaction. In general, this interaction cannot
be controlled without a variation in the charge distribu-
tion in the qubits. In this paper we specifically address
this issue and show how to make a scalable controlled
phase gate that makes use of the Coulomb interaction.

The Coulomb interaction is insensitive to minor vari-
ations in the distance between the quantum dots and
its strength lends itself to high-speed entangling oper-
ations; conversely, its long-range nature makes it diffi-
cult to effectively modulate interactions between qubits.
Most charge qubit schemes so far proposed implicitly
rely on a fixed, always-on Coulomb interaction between
qubits [6, 10, 15] Such schemes would necessarily require

∗Electronic address: sgs29@cam.ac.uk

global control techniques [16, 17, 18], which may be prob-
lematic given the strength of the Coulomb interaction.

In the following we first discuss local qubit operations
(Sec. II) and introduce the two-qubit interaction Hamil-
tonian (Sec. III). Then we describe how to realize a con-
trolled phase gate and analyze its operation in terms of
dynamic and geometric phases (Sec. IV). Finally, we
discuss various practical issues such as the detrimental
effects of finite rise and decay times on the gate fidelity
and how to correct them (Sec. V), gate implementation in
the presence of practical constraints on pulse lengths and
tunnelling rates (Sec. VI), and the effect of noisy controls
(Sec. VII) and imperfect architectures (Sec. VIII) on the
gate performance.

II. SINGLE QUBIT SYSTEM

As will be shown below, a three-dot system is required
to modulate the Coulomb interaction. We therefore sup-
plement the canonical charge qubit with an auxiliary
state and define a quantum element with three quantum
dots and one charge, where the position of the charge on
two sites defines the qubit and the third site defines an
auxiliary state used for two-qubit interactions. We work
only with the ground state of each dot. We further as-
sume that the ground states are energetically close and
sufficiently separated from higher-lying excited states, so
that the excitation of these states can be neglected. The
system can thus be approximated as a three level system
with Hamiltonian

Ĥ =

3
∑

d=1

ǫd|d〉〈d| + ~

∑

d′ 6=d

µdd′X̂dd′ , (1)

where |d〉 denotes the ground state of the electron local-
ized in dot d for d = 1, 2, 3, ǫd the energy of state |d〉, µdd′

the tunnelling rate between dots d and d′ (for d′ 6= d),

and X̂dd′ = |d〉〈d′|+ |d′〉〈d|. We shall assume that we can
control the ground state energies ǫd and the tunnelling

http://arXiv.org/abs/quant-ph/0410062v1
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FIG. 1: Schematic of a single qubit-plus-auxiliary unit (bot-
tom) and electronic potential (top). The large circles repre-
sent the quantum dots, the black dot the shared electron. S
and B surface electrodes serve to shift the ground state energy
of the dots and change the height of the tunnelling barriers
and thus the tunnelling rates between them.

rates µdd′, e.g., by varying the voltages applied to several
control electrodes as illustrated in Fig. 1.

To implement local unitary operations, we inhibit tun-
nelling to the auxiliary site by raising the barrier be-
tween dots 2 and 3 (and/or 1 and 3 if applicable), or
increasing the ground state energy of the auxiliary dot
3. In practice, the precise functional dependence of ǫd

and µdd′ on the control voltages applied should be deter-
mined experimentally using Hamiltonian identification
techniques [19]. When µ13 = µ23 = 0 the local Hamilto-
nian can be rewritten as

Ĥ = ǫ1|1〉〈1| + ǫ2|2〉〈2| + ~µ12X̂12 + ǫ3|3〉〈3|, (2)

and we can realize arbitrary unitary operations on the
qubit subspace by changing the energy levels ǫd and the
tunnelling rate µ12. For instance, shifting the energy level
of dot 2 by ǫ2(t) for t0 ≤ t ≤ t1 results in a local phase
rotation

Û2(φ) = |1〉〈1| + e−iφ|2〉〈2| + |3〉〈3|, (3)

with φ =
∫ t1

t0
ǫ2(t)/~ dt. Effecting a tunnelling rate of µ12

for t0 ≤ t ≤ t1 gives

Û12(α) = cos(α)Î12 − i sin(α)X̂12 + |3〉〈3|, (4)

where the rotation angle is α =
∫ t1

t0
µ

(k)
12 (t) dt and Î12 =

|1〉〈1|+ |2〉〈2|. By combining two phase rotations on the
2nd dot with a tunnelling gate between sites 1 and 2, for
example, we can implement any local unitary operation
on the qubit subspace modulo global phases [2]

Û(φ1, α, φ2) = Û2(φ2)Û12(α)Û2(φ1),

=





cos(α) −ie−iφ1 sin(α) 0
−ie−iφ2 sin(α) e−i(φ1+φ2) cos(α) 0

0 0 1



 ,

(5)

For example, a Hadamard transform on the qubit sub-
space corresponds to

Ĥ =
1√
2

(

1 1

1 −1

)

= Û
(

φ2 = −π

2
, α =

π

4
, φ1 = −π

2

)

.

(6)
It is possible to optimize the implementation of some lo-
cal unitary operations by simultaneously changing mul-
tiple control parameters. See appendix A.

III. INTERACTION HAMILTONIAN

To achieve entangling operations it is necessary to
change the charge distribution of adjacent elements. Al-
though almost any interaction will lead to entangle-
ment [20], the resulting dynamics may be neither easy
to utilize, nor robust against noise.

Rather than choose an arbitrary interaction, it is more
useful to consider geometries where the action of the
Coulomb force on the qubit states is trivial. One way
this might be achieved is by using shielding to eliminate
direct interactions between qubits but not between the
auxiliary sites as shown in Fig. 2 (a). Such a system could
be fabricated in a GaAs 2DEG system [11, 21] or a pil-
lar system [22], for instance. An alternative is to choose
a geometry for which the effect of the Coulomb inter-
action on the dynamics of the qubit subspace is trivial,
resulting only in a global phase factor, as in Fig. 2 (b).
To fabricate such a structure, we would propose an ex-
tension of the atomic placement techniques used for Si:P
systems [23, 24]. Both designs have the advantage of al-
lowing the implementation of controlled two-qubit gates
using simple pulse sequences. Note that using auxiliary
sites has also been proposed as a way to allow generalized
readout of quantum information in different bases [25].

The Hilbert space for two qubit-plus-auxiliary units
is spanned by the states |dd′〉 for d, d′ = 1, 2, 3, where
|d〉k denotes the dth basis state for the kth unit, and
|dd′〉 = |d〉1⊗|d′〉2 are the tensor product states as usual.
The total Hamiltonian of this system is

Ĥ = Ĥ(1) ⊗ Î3 + Î3 ⊗ Ĥ(2) + ĤC , (7)

where Î3 is the identity matrix in dimension three, Ĥ(k)

for k = 1, 2 is the local Hamiltonian for the kth qubit-
plus-auxiliary unit specified in Eq. (1), and ĤC is the
Coulomb Hamiltonian

ĤC =

3
∑

d,d′=1

γdd′ |dd′〉〈dd′|. (8)
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FIG. 2: (a) Two-qubit system with two auxiliary sites comprised of six quantum dots (filled circles). A grounded metal barrier
shields the Coulomb interaction between nearby quantum dots except between the two auxiliary sites (3). The thick (red and

blue) lines indicate the surface control electrodes B
(k)

dd′ and S
(k)
d

, respectively. (b) 3D geometry for a two-qubit system with
auxiliary sites, for which the Coulomb interaction between the two charges is constant if both are confined to their respective
qubit subspace comprised of dots 1 and 2, but differs from the Coulomb coupling between the auxiliary dots provided that√

4b2 + 2c2 6= 2a. Note that the inter-dot distances satisfy ‖s(1)
d

− s
(2)
d′ ‖ =

√
4b2 + 2c2 and ‖s(1)

3 − s
(2)
d

‖ = ‖s(1)
d

− s
(2)
3 ‖ =

√

(a + b)2 + c2 for d, d′ = 1, 2.

The Coulomb interaction energies γdd′ are given by

γdd′ =
e2

4πǫ
‖s(1)

d − s
(2)
d′ ‖−1, (9)

where s
(k)
d denotes the position of the dth quantum dot

in the kth qubit-plus-auxiliary unit, ǫ is the applicable
dielectric constant, and e is the electron charge. In pure
silicon we have ǫ = 11.8ǫ0, where ǫ0 is the dielectric con-
stant in vacuum.

If two sites s
(1)
d and s

(2)
d′ are separated by a sufficiently

thick, grounded metal barrier then γdd′ = 0. Hence, the
Coulomb interactions for the shielded 2D geometry in
Fig. 2 (a) effectively vanish except for γ33. Similarly, for
the 3D geometry shown in Fig. 2 (b), symmetry implies

γ11 = γ12 = γ21 = γ22 ≡ γ1,

γ13 = γ23 = γ31 = γ32 ≡ γ2.

We can cancel the effect of the Coulomb interaction be-
tween qubit states by applying suitable bias voltages to

the energy shift gates to offset the energy levels ǫ
(k)
1 and

ǫ
(k)
2 by −γ1/2 and ǫ

(k)
3 by γ1/2 − γ2 for k = 1, 2. Thus,

the Coulomb interaction Hamiltonian becomes

ĤC = γeff |33〉〈33|, (10)

where γeff is the effective Coulomb coupling between the
auxiliary states, i.e., ĤC acts trivially on the system ex-
cept if both electrons are in the auxiliary states.

For a 2D architecture with shielding γeff will usually
be less than the free-space Coulomb interaction γ33 due
to screening and image charges. For a 3D geometry with
energy offsets γeff will be less than or equal to γ33−2γ2+
γ1, with equality if the screening due to control electrodes
etc. is negligible.

For convenience, we choose the effective Coulomb en-
ergy γeff between the auxiliary sites as the unit of energy
such that the free evolution Hamiltonian of the two-qubit
plus auxiliary system is Ĥ0 = |33〉〈33|. All tunnelling
rates are given in units of γeff/~ and the canonical time
unit is ~/γeff .

IV. CONTROLLED TWO-QUBIT PHASE GATE

To motivate the design of a two-qubit phase gate, we
note that the phase acquired by an electron tunnelling be-
tween two quantum dots depends on the energy difference
between them. In our system the energy differences are
determined by a combination of energy bias voltages and
the Coulombic interaction between the auxiliary sites.
Hence, by adjusting the voltage on the energy bias gate

S
(1)
2 , for instance, we can shift of the energy of state |2〉1

such that the energy differences between states |21〉 and
|31〉, and |23〉 and |33〉, respectively, are equal in magni-
tude but opposite in sign, as illustrated in Fig. 3. In this
case the phase acquired by a charge tunnelling between
dots 2 and 3 of qubit 1 will have the same magnitude
regardless of the population of state |3〉2, but the latter
will determine its sign. This observation is central to the
operation of our controlled phase gate.

To achieve a maximally entangling gate, the acquired
phases in both cases must differ by an integer multiple of
π. Finally, except for the acquired phase, the charge must
return to its initial state |2〉1 at the end of the tunnelling
process, i.e., no population must remain in the auxiliary
state |3〉1. Combining all of these requirements leads to
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FIG. 3: Energy level configuration during the second step:

By applying an energy bias of ǫ
(1)
2 = 1/2 we ensure that the

energy gap between states |23〉 and |33〉, and |21〉 and |31〉 is
±1/2, respectively.

the following expressions for the tunnelling rate

µ
(1)
23 =

1

4

√

(

2n

2k − 1

)2

− 1, (11)

for suitable positive integers n and k satisfying 2n >
2k − 1, and tunnelling time

τ2 =
4πn

√

16
(

µ
(1)
23

)2

+ 1

= 2π(2k − 1). (12)

A detailed explanation of these results is provided in ap-
pendices C and D. Furthermore, the phase acquired by
state |21〉 is [2n − (2k − 1)]π/2, while that of state |23〉
is [2n + (2k − 1)]π/2, and hence the phase difference is
(2k − 1)π ≡ π as desired.

In the absence of constraints on the tunnelling rates
and pulse lengths, the gate operation time is optimized if

we choose n = k = 1 and µ
(1)
23 =

√
3/4. For details about

how to choose n and k when there are constraints on the
tunnelling rates and pulse lengths, see appendix E.

More explicitly, a maximally entangling controlled two-
qubit phase gate

Ûphase = |11〉〈11|+ |12〉〈12| + |21〉〈21| − |22〉〈22|
= diag(Î2, Ẑ12). (13)

can be realized as follows:

1. Acting on the second qubit, swap the populations
of the states |2〉2 and |3〉2 by lowering the tunnelling
barrier between the 2nd and 3rd quantum dot for

time τ1 = π/(2µ
(2)
23 ), where µ

(2)
23 is the tunnelling

rate.

2. Acting on the first qubit, simultaneously raise the

ground state energy of the 2nd dot by ǫ
(1)
2 = 1/2

and lower the tunnelling barrier between the 2nd
and 3rd dot to achieve the tunnelling rate given by
Eq. (11) for the time specified by Eq (12).
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FIG. 4: Schematic representation of the phase gate operation
for three initial basis states (a) |12〉, (b) |21〉, and (c) |22〉.
The operation for |11〉 has been omitted because it is trivial.
The filled (red) dots show the positions of the electrons at
the beginning of the first step (top), during the second step
(middle), and after completion of the third step (bottom). For
initial configurations |21〉 (b) and |22〉 (c), the first charge is in
a superposition of states |2〉1 and |3〉1 during the second step,
and hence acquires a phase conditional on the population of
state |3〉2, which is indicated by by lighter (pink) shading.
Notice, however, that the electron starts and ends in state
|2〉1, except for the conditional phase acquired.

3. Acting on the second qubit, repeat the first step to
swap the populations of states |2〉2 and |3〉2 back.

4. Acting simultaneously on both qubits, shift the en-

ergy of states |2〉1 and |2〉2 by ǫ
(1)
2 = ℓπ/τ4 and

ǫ
(2)
2 = π/τ4, respectively, for some time τ4, where

ℓ = 1/2 − (n + k) mod 2. (See appendix D.)

The first three steps are illustrated in Fig. 4, and Fig. 5
shows results for a simulation of the gate for ideal pulses
and no constraints.

Since this gate combined with local unitary operations
as described in Sec. II is universal, we can implement
any desired two-qubit gate. For instance, a controlled-
NOT gate is performed simply by applying a Hadamard
transformation on the second qubit before and after the
pulse sequence above.

Further analysis shows that the conditional phase ac-
quired by state |2〉1 is exactly twice the geometric phase
acquired by the two-level subsystem S1 = {|21〉, |31〉}
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FIG. 5: Operation of the proposed controlled phase gate for
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rameter settings (a) and the corresponding evolution of the
initial states (b) |12〉, (c) |21〉 and (d) |22〉. The evolution of
|11〉, being trivial, has been omitted. In each case, only the
relevant populations and acquired phases are plotted.

and S2 = {|23〉, |33〉}, respectively. To see this, note that
the Hamiltonians for S1 and S2 are

ĤS1
=

1

4
Î2 + µσ̂x +

1

4
σ̂z (14)

ĤS2
=

3

4
Î2 + µσ̂x − 1

4
σ̂z (15)

with µ = (
√

(2n)2/(2k − 1)2 − 1)/4, and we can visualize
their evolution on the Bloch sphere as in Fig. 6. Let
s = (sx, sy, sz) with sα = Tr(σαρ) for α ∈ {x, y, z} be the
usual Bloch vector. The initial states |21〉 and |23〉 for
S1 and S2, respectively, correspond to the Bloch vector
s0 = (0, 0, 1), and their evolution in R

3 to a rotation
about the axes d1 = 2(µ, 0, 1/4) and d2 = 2(µ, 0,−1/4),
respectively.

The pure-state non-adiabatic, cyclic geometric
phase [26] is φgeom = Ω

2 = 2πn(1− cos θ), where Ω is the
solid angle subtended by the Bloch vector, n is the num-
ber of times the Bloch vector rotates around the axis d,
and θ is the angle between the initial state vector s0 and
the rotation axis d. Both states rotate with the same

FIG. 6: Trajectory of the Bloch vectors associated with the
two-level subsystems S1 and S2 for ideal phase gate. For
n = k = 1 the Bloch vectors s1(t) (cyan) and s2(t) (black)
rotate about d1 and d2, respectively, simultaneously complet-
ing a single closed loop on the surface of the Bloch sphere and
sweeping out solid angles of π (area “inside” the blue loop)
and 3π (area “outside” the black loop), respectively. Hence,
the difference between the areas is 2π, and the conditional
phase acquired by state |2〉1 depending on whether state |3〉2
is occupied will differ by π.

frequency ‖d‖ = ‖d′‖ = (
√

1 + 16µ2)/2 = n/(2k − 1),
and hence the relative geometric phase depends on θ.
Noting that

cos(θ1) =
d1 · s0

‖d1‖
=

2k − 1

2n
= − cos(θ2), (16)

we see that the respective geometric phases acquired by
S1 and S2 are 2πn[1 − (2k − 1)/(2n)] = π[2n− (2k − 1)]
and 2πn[1+(2k−1)/(2n)] = π[2n+(2k−1)], i.e., exactly
twice the conditional phases acquired by states |21〉 and
|23〉.

V. REALISTIC CONTROLS AND
CORRECTION OF SYSTEMATIC ERRORS

So far we have assumed ideal, piecewise-constant con-
trol Hamiltonians. In reality, however, the pulses will
have finite rise and fall times, for example, as shown
in Fig. 7. A näive implementation of the above scheme
would perforce introduce systematic errors. These errors
are evident in Fig. 8 (I), which show the evolution of the
system for the same parameter values as in Fig. 5 except
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FIG. 7: Realistic square-wave pulse of amplitude A and length
τ with rise and decay time τs, modelled using error functions.

τs 0.25 0.50 0.75 1.00 1.25 1.50

Eu 0.0223 0.0825 0.1691 0.2659 0.3559 0.4251

Ec × 104 0.2225 0.2249 0.2273 0.2294 0.2311 0.2325

TABLE I: Gate error E = 1 − F as a function of the pulse
rise and decay time τs for non-ideal, uncorrected (Eu) and
corrected pulses (Ec) for simulations with time step ∆t =
0.005.

for pulse rise and decay times of τs = 1 time unit. Com-
paring the trajectories shows that there are significant
population and phase errors. In particular, the popula-
tions of the states |13〉, |31〉 and |33〉 do not return to 0,
i.e., population is lost to the auxiliary states, a poten-
tially difficult error to correct.

To quantitatively compare the gates implemented to
the ideal gate we consider the average gate fidelity [27, 28]

F = 〈Ψin|Û †ρ̂outÛ |Ψin〉, (17)

which is a measure of the overlap of the final state ρ̂out

with the desired target state Û |Ψin〉 averaged over all in-
put states. Since ρ̂out may extend to the auxiliary quan-
tum dots, the fidelity includes the effect of population
losses to these states.

In the example shown in Fig. 8 pulse rise and decay
times of one time unit reduce the average gate fidelity
from one in the ideal case to ∼ 73 %. Table I shows that
even relatively small rise and decay times of the fields
tend to reduce the average gate fidelity noticeably. This
increase in the gate error appears to be mainly due to
population loss to the auxiliary states.

The first step toward improving the results is to re-
alize that rise and decay times reduce the total pulse
area. An ideal square-wave pulse (τs = 0) of duration τ
with amplitude A has a pulse area of Aτ , while that of
a similar pulse with rise and decay time τs < τ/2 is only
A(τ − τs) [29]. Since the pulse area is an important con-
trol parameter, we must therefore adjust either the field
strengths or the pulse lengths, or possibly both. For the
1st, 3rd and 4th step of the CPHASE gate correcting the

pulse area is all that is needed to eliminate systematic er-
rors due to non-zero pulse rise and decay times, and we
can achieve this either by increasing the field strength or
the pulse durations.

During the crucial 2nd step, the energy of state |2〉1
should be kept constant ǫ

(1)
2 = 1/2 while tunnelling is

enabled, and the value of the tunnelling rate µ
(1)
23 should

be close to one of the desired values. Increasing the field
strengths to compensate for rise and decay times is thus
not an option for this step. For simplicity, we shall there-
fore correct the pulse areas by increasing the duration of
each pulse by τs, i.e., setting τ ′

k = τk + τs, where τk is
the duration of the corresponding ideal pulse.

To improve the accuracy of the 2nd step further, we

raise the energy ǫ
(1)
2 at least τs time units before we en-

able tunnelling between states |2〉1 and |3〉1, and lower
it only after the tunnelling barrier has been raised again
to inhibit tunnelling. Since changing the energy of state
|2〉1 is a local operation on the first qubit, it commutes
with the swap operation on states |2〉2 and |3〉2. We can
therefore begin to raise the energy of state |2〉1 before
the 1st swap operation is completed, and we can begin

the 3rd swap operation before ǫ
(1)
2 (t) has reached zero.

However, the increased duration of the energy shift will
induce an additional local phase shift, which has to be
taken into account in the final step to achieve the desired
gate. Let t1 = τ ′

1 − τs and t2 = τ ′
1 + τ ′

2 + τs and

∆φ =

∫ t2

t1

ǫ
(1)
2 (t) dt − 1

2
τ2, (18)

where τ2 is the time required to complete the second swap
operation for ideal, piecewise constant control pulses.
Then the local phase rotation on the first qubit required
in the final step is Φ = ℓπ − ∆φ instead of ℓπ, where
ℓ = 1

2 − (n + k) mod 2 as before. Thus, in the final step
the energy of state |2〉1 must be raised by

ǫ
(1)
2 =

πℓ − ∆φ

τ4
(19)

where τ4 is the duration of the step for ideal, piecewise
constant controls.

Numerical simulations indicate that these corrections
greatly enhance the performance of the phase gate. For
instance, Table I shows that the average gate error Ec

with these corrections is less than 10−4 for all rise and
decay times τs [33] and Fig. 8 (II) shows that the trajec-
tories very closely match those of the ideal gate.

VI. GATE OPERATION TIMES AND
PHYSICAL CONSTRAINTS

In the hypothetical case of no constraints on the tun-
nelling rates, energy shifts and pulse lengths considered
so far, the first and third swap operation as well as the
local phase rotations could, in principle, be implemented
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FIG. 8: Control parameter settings (a) and evolution of the initial states (b) |12〉, (c) |21〉 and (d) |22〉, as well as (e) evolution
of the two-level subsystems S1 and S2 on the Bloch sphere under the operation of the controlled phase gate (n = k = 1) for
controls with rise and decay time τs = 1 [~/γeff ] without correction of systematic errors (I) and with corrections described (II).
Due to the rise and decay time of the controls, the trajectories of the Bloch vectors in (I) do not form closed loops, and the
system does not return to its initial state (modulo the desired phase change). However, when the rise and decay times of the
pulses are taken into account, population loss to the auxiliary states is negligible and the trajectories of the Bloch vectors again
form closed loops (II).
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arbitrarily fast and the gate operation time would be lim-
ited mainly by the time required to complete the second
step, i.e., τ ≈ τ2 = 2π time units. In reality, however,
the gate operation time is usually limited by physical and
technical constraints that impose, for instance, a min-
imum pulse length τmin and maximum tunnelling rate
µmax between the qubit and auxiliary quantum dot.

To explore the consequences of finite tunnelling rates
and switching speeds, let us consider a specific example
of a 2D charge qubit architecture as shown in Fig. 2 (a)
with auxiliary quantum dots spaced about 2a = 170 nm
apart [34]. Neglecting screening effects, the Coulomb en-
ergy in this case is γeff ≈ 0.718 meV, and the charac-
teristic time scale ~γ−1

eff ≈ 1 ps [35] Thus, theoretically,
two-qubit gate operation times of less then 20 ps could
be achieved, as the previous sections show, and if one
assumes that local operations can be realized arbitrarily
fast then gate operation times of less than 7 ps would be
possible.

However, if the pulse lengths must be & 50 ps —
about the limit of what is accessible with current tech-
nology — then Eq. (E1) shows that the best possible
choice of the parameters n and k that satisfies this
constraint while minimizing the gate operation time is
k = n = 5. The total gate operation time in this
case increases to 3 × 50 + 18π ≈ 206.55 ps — as-
suming we can achieve the required tunnelling rate of

µ
(1)
23 = (1/4)

√

(10/9)2 − 1[γeff/~] ≈ 1.21 × 1011 rad s−1.
The evolution of the system for the resulting gate is
shown in Fig. 9 (I).

If the maximum tunnelling rate that can be achieved
(e.g., without applying control voltages that might lead
to a breakdown of the oxide layer separating the silicon
substrate and the surface control electrodes, or pulses
that might result in population loss to higher-lying ex-
cited states) are lower than this, then the gate operation
time will be increased further. For example, if we must

satisfy µ
(1)
23 ≤ 10−11 rad s−1 then Eqs. (E4), (E5) show

that the best choice for n and k is n = k = 7, which

yields µ
(1)
23 ≈ 0.99× 1011 rad s−1, and the gate operation

time increases to 231.68 ps, as shown in Fig. 9 (II).

VII. GATE ROBUSTNESS FOR NOISY
CONTROLS

Another important issue in practice is the robustness
of the gate for noisy controls. To study this effect we
artificially added noise to our controls. Fig. 10 shows the
increase of the gate error E as a function of the magnitude
of the noise added. The simulations were performed with
a fixed time step of ∆t = 0.005, for which the average
gate fidelity in the absence of noise exceeded 0.9999. The
noise functions η(t) were bounded

|η(t)| ≤ η0 (20)

with Fourier transforms η̃(ω) satisfying

|η̃(ω)| ≤











0 ω = 0

K/ω0 ω ≤ ω0

K/ω ω > ω0.

(21)

where K is a constant. This type of noise corresponds to
1/f noise with a low-frequency cut-off, which is common
in electronic devices.

Although the addition of noise necessarily increase the
gate error, the gate appears to be quite robust to this
noise, as a typical example of the evolution of the system
for noisy controls (Fig. 11) shows. Not unsurprisingly,
the curves for varying threshold frequencies ω0 in Fig. 10
suggest that the gate is more sensitive to low-frequency
than high-frequency noise, as the high-frequency compo-
nents tend to cancel.

VIII. GATE ROBUSTNESS FOR IMPERFECT
GEOMETRIES

A final issue that must be considered is the effect of
manufacturing tolerances, which result in deviations of
the qubit register from an ideal specification. In solid-
state charge-based architectures of the types considered
herein, the main issues appear to be imperfections in the
placement or geometry of the quantum dots. The former
is believed to be especially pronounced for quantum dots
based on donor impurities in a Silicon matrix, while the
latter will be relevant, e.g., for manufactured Ga/GaAs
heterostructure quantum dots. As modelling all the pos-
sible effects of imperfections in the fabrication process
for heterostructure quantum dots would far exceed the
scope of this paper, we shall focus on modelling the ef-
fect of imperfect placement of the quantum dots on the
gate performance.

For solid-state architectures based on donor impurities
(e.g., Phosphorus) in a Silicon matrix the accuracy of
placement of the donors is limited. In a shielded 2D ar-
chitecture inaccurate placement of the donors will mainly
cause variations in the tunnelling rates as the structure
of the silicon lattice introduces spatial oscillations in
the donor wavefunctions, and hence tunnelling rates [30]
analogous to those seen in exchange systems [31, 32].
There will also be minor changes in the strength of the
Coulomb interaction between the auxiliary sites. How-
ever, the actual Coulomb coupling strengths and tun-
nelling rates as a function of the control voltages ap-
plied can, in principle, be determined using Hamilto-
nian identification techniques similar to those described
in Ref. [19]), for instance, and the control scheme can
then easily be adapted to achieve the desired gate for the
actual system.

The situation is different for 3D architectures [cf. Fig. 2
(b)] that rely on symmetry to effectively cancel the
Coulomb interactions between the qubit sites. Manufac-
turing tolerances in this case will result in asymmetries of
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FIG. 9: Control settings (a) and corresponding evolution of the initial states (b) |12〉, (c) |21〉, and (d) |22〉, as well as evolution
of the two-level subsystems S and S′ on the Bloch sphere (e) under the operation of the controlled phase gate when (I)
minimum pulse length constraints of τmin ≥ 50 ps necessitate n = k = 5, and (II) simultaneous pulse length and tunnelling

rate constraints τmin ≥ 50 ps and µ
(1)
23 ≤ 10−11 rad s−1 necessitate n = k = 7. Note the decrease in the angle θ1 (increase in θ2)

between the rotation axis d1 (d2) and the (positive) z-axis compared to the n = k = 1 case, and the resulting greater difference
in the areas swept out by the Bloch vectors s1 (blue) and s2 (black) in a single loop: π/5 versus 19π/5 in (I); π/7 versus 27π/7
in (II). Consequently, five and seven loops, respectively, are necessary to archive an area difference that is a multiple of 2π, and
the time required to implement the phase shift increases to 18π and 26π, respectively. Also note the slight distortion of the
loops near the north pole due to the dynamic change of the rotation axis during rise and decay periods of the pulses. Although
present for all choices of n and k, it is more pronounced for larger n and k.
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the geometry, which cannot be compensated easily, even
if they could be identified precisely, and perforce reduce
the gate fidelity. To estimate the effect of such errors
we have performed computer simulations. For a 3D ar-
rangement of six quantum dots as shown in Fig. 2 (b), we
randomly perturbed the positions of all six quantum dots
by up to four lattice sites in the x- and y-directions, and
±1 monolayer in the z-direction, assuming a lattice con-
stant of 0.3 nm, values that appear feasible with current
fabrication technology [23], and numerically computed
the average gate fidelity F for each perturbed system.
Note that it was assumed here that the tunnelling rates
can be kept steady despite the effect of the silicon lattice
by adjusting the control voltages appropriately.

The numerical results in Table II suggest that the ro-
bustness of our phase gate with respect to asymmetries
depends significantly on the choice of interqubit spac-
ings and the distance between the auxiliary sites. Con-
cretely, the data suggest that the robustness of the gate
with respect to random pertubations of the geometry
is maximized by minimizing the distance between auxil-
iary sites while maximizing the distances between qubits.
There also appears to be a strong relation between the
robustness with respect to asymmetries and the effec-

tive Coulomb interaction between the auxiliary sites in
the system, suggesting that maximizing the later quan-
tity might be advantageous. However, it should be noted
that stronger Coulomb coupling implies shorter gate op-
eration times unless the gate parameters are changed,
which might affect the gate fidelity. A final computa-
tion for a (target) geometry with a = 20, b = 100 and
c = 10 showed that the average gate fidelity over 100
random perturbations ranged from 0.9944 to 1.0000 with
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FIG. 11: Control settings (a) and corresponding evolution of
the initial states (b) |12〉, (c) |21〉 and (d) |22〉, as well as
evolution of the two-level subsystems S1 and S2 on the Bloch
sphere (e) under the operation of our phase gate for noisy
controls (η0 = 0.1, ω0 = 50). The noise has no noticable
effect on the evolution of the populations. The relative phases
exhibit some wiggles but they mostly seem to average out
over the duration of the gate. The average gate error was
E = 0.708 × 10−3.
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a \ b 30 50 70 90

20 0.964022 0.996631 0.998153 0.998855

40 N/A 0.909071 0.992692 0.998410

60 N/A N/A 0.831827 0.989618

80 N/A N/A N/A 0.808333

TABLE II: Mean of the average gate fidelity F for different
geometries with fixed intra-qubit spacing of c = 10 nm. For
each target geometry the mean of F was computed for 30
randomly perturbed systems. The gate parameters for all
simulations were n = k = 1 and the time steps were chosen
such that the average gate fidelity of each unperturbed systems
was ≥ 0.99995. Notice that the mean of F increases sharply
for decreasing values of a, and noticably for increasing values
of b.

a mean (standard deviation) of 0.9989 (0.0013). These
results suggest that even 3D charge-qubit architectures
without shielding could be designed to be rather robust
with respect to fabrication errors.

IX. CONCLUSIONS

We have presented two scalable achitectures for solid-
state charge qubits that permit controlled entangling op-
erations between pairs of qubits. We add that these op-
erations could also be performed in parallel for cluster
state preparation, a concept that we will explore else-
where. The key feature of both geometries is that inter-
actions between qubits are mediated via auxiliary quan-
tum dots, while direct interactions between qubits are
suppressed either through the use of shielding, or a three-
dimensional design to cancel interactions. Controlled en-
tangling gates can therefore be implemented by switching
the charge distribution, and hence the Coulomb interac-
tion, between qubits using the auxiliary dots. Both sys-
tems should be realizable using existing or near-future
fabrication techniques.

In particular, we have shown explicitly how to realize
a controlled phase gate, i.e., a universal, maximally en-
tangling two-qubit gate by a simple four-step procedure.
The crucial step in the sequence is the controlled tun-
nelling between a qubit state and an auxiliary dot, which
induces a phase shift conditional on the occupation of an
adjacent (auxiliary) quantum dot. The scheme is suffi-
ciently flexible to accommodate practical constraints on
both pulse lengths and tunnelling rates. Analysis of the
gate operation shows that the controlled phase shift can
be explained in terms of dynamic and geometric phases.
Due to the strength of the Coulomb coupling the gate
operation is surprisingly fast. In the absence of pulse
length constraints gate operation times on the order of a
few picoseconds would be theoretically possible, and even
with currently realistic constraints on the pulse lengths
and tunnelling rates, gate operation times around 200 ps
should be attainable.

Using computer simulations, we have also studied the

effects of systematic errors on the gate performance. The
simulations show that finite pulse rise and decay times
tend to result in population loss to the auxiliary states,
and can noticeably reduce the average gate fidelity. The
average gate error increases sharply with increasing pulse
rise and decay times. The ideal scheme, however, can
easily be generalized to compensate for such system-
atic errors. Simulations show that these corrections can
greatly improve the average gate fidelity; the corrected
pulse sequences always achieved average gate fidelities of
> 99.99%, and in some cases the average gate fidelity
increased from ∼ 70% without corrections to > 99.99%.
These results suggest that (experimental) characteriza-
tion of the rise and decay times of the pulses is very
important to achieve high gate fidelity.

We have also performed simulations to assess the ro-
bustness of the gate to noisy control pulses. The re-
sults suggest that the gate is quite robust with regard
to both bandwith-limited 1/f noise and white noise.
High-frequency noise tends to effectively cancel. Low-
frequency fluctuations of the control pulses can reduce
the gate fidelity. Surprisingly, however, the resulting av-
erage gate errors are generally very small compared to the
systematic errors. In most of our simulations, the average
gate error increased only from < 10−4 to < 10−3, even
for very noisy controls. Our simulations further suggest
that even a 3D geometry without shielding, which relies
mainly on symmetry to cancel the effect of the Coulomb
interaction between qubits, can be made to be quite ro-
bust to misalignment errors during fabrication if the pa-
rameters of the geometry are chosen sufficiently carefully.
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APPENDIX A: LOCAL OPERATIONS

We observed in Sec. II that any local unitary operation
can be realized by concatenating three elementary rota-
tions. It is worth noting, however, that some local uni-
tary operators can be implemented more efficiently if we
allow simultaneous changes of more than one control pa-
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rameter such as the energy difference ∆ǫ12 = (ǫ2 − ǫ1)/2
and the tunnelling rate µ12 between states |1〉 and |2〉.
To see this note that we can rewrite Eq. (2) as follows:

Ĥ(ǫd, µ12) = ǭ12Î12+∆ǫ12Ẑ12+~µ12X̂12+ǫ3|3〉〈3| (A1)

where ǭ12 = (ǫ1 + ǫ2)/2 and Ẑ12 = |2〉〈2| − |1〉〈1|. Thus,
if we apply constant energy shifts ǫd and effect a fixed
tunnelling rate µ12 between dots 1 and 2 (while all other
tunnelling rates are kept zero) for 0 ≤ t′ ≤ t then we
generate the unitary operator:

exp[−itĤ(ǫd, µ12)/~]

=

[

cos(αt)Î12 − i
sin(αt)

α~
(∆ǫ12Ẑ12 + ~µ12X̂12)

]

×

exp(−itǭ12/~) + exp(−itǫ3/~)|3〉〈3| (A2)

where α =
√

(∆ǫ12/~)2 + µ2
12. Thus, we can realize a

Hadamard transform, for instance, in a single step by
setting ∆ǫ12 = −~µ12 6= 0 for time t = π/(2

√
2µ12).

APPENDIX B: FIRST SWAP OPERATION

The total Hamiltonian for the first swap operation is
Ĥ1 = Ĥ0 + I3 ⊗ Ĥ(2) where

Ĥ(2) = ~µ
(2)
23 (|2〉〈3| + |3〉〈2|) (B1)

and Ĥ0 = |33〉〈33| as before. Applying this Hamiltonian
for time 0 ≤ t′ ≤ t gives rise to the unitary operator

Û1(t) = exp[−(it/~)Ĥ1]. If we set t = τ1 = π/(2µ
(2)
23 ) we

obtain the block-diagonal matrix

Û(τ1) = diag(1,−iX, 1,−iX, 1, W ) (B2)

where X =

(

0 1

1 0

)

and W is a symmetric 2× 2 matrix

with

W11 = e−iτ1/2

[

cos
(τ1u1

2

)

+
i

u1
sin
(τ1u1

2

)

]

W12 = e−iτ1/2

[

−2i
µ

(2)
23

u1
sin
(τ1u1

2

)

]

W22 = e−iτ1/2

[

cos
(τ1u1

2

)

− i

u1
sin
(τ1u1

2

)

]

and u1 =

√

1 + 4[µ
(2)
23 ]2. Û1(t1) swaps the population

of states |2〉2 and |3〉2 provided that state |3〉1 is not
occupied.

APPENDIX C: SECOND SWAP OPERATION

The total Hamiltonian for the second gate is Ĥ2 =
Ĥ0 + Ĥ(1) ⊗ I3 where

Ĥ(1) =
1

2
|2〉〈2| + ~µ

(1)
23 (|2〉〈3| + |3〉〈2|) (C1)

and Ĥ0 = |33〉〈33| as before. Applying this Hamiltonian
for time 0 ≤ t′ ≤ t gives rise to the unitary operator
Û2(t) = exp[−(it/~)Ĥ2], which has the general form

Û2(t) =







I3 0 0

0 A B

0 B C






(C2)

where A = diag(a, a, a′), B = diag(b, b, b′) and C =
diag(c, c, c′). We must choose the gate operation time
τ2 such that B = 0, i.e., b = b′ = 0. Since

b = −4i exp

(−it

4

)

µ
(1)
23

u2
sin

(

u2t

4

)

(C3)

b′ = −4i exp

(−3it

4

)

µ
(1)
23

u2
sin

(

u2t

4

)

(C4)

with u2 =

√

1 + 16[µ
(1)
23 ]2, this is equivalent to u2T2 =

4nπ for some integer n, or

τ2 =
4πn

√

1 + 16[µ
(1)
23 ]2

. (C5)

This choice of gate operation time gives

U2(τ2) = diag(1, 1, 1, a, a, a′, a, a, a′) (C6)

where we have

a = (−1)n exp(−inπ/u2),

a′ = (−1)n exp(−i3nπ/u2).
(C7)

APPENDIX D: LOCAL PHASE ROTATIONS

Composing the three swap operations, noting Û3(τ3) =

Û1(τ1), gives

Û = Û1(τ1)Û2(τ2)Û1(τ1)

= diag(1,−1,−1, a,−a′,−a, a, W diag(a, a′)W )

(D1)

whose projection onto the two-qubit subspace
{|11〉, |12〉, |21〉, |22〉} is Ũ = diag(1,−1, a,−a′) with a
and a as in (C7), which is not quite a controlled phase

gate yet. However, if we multiply Ũ by U (1) ⊗ U (2),
where

U (1) = diag (1, (−1)n exp(iπn/u2)) ,

U (2) = diag(1,−1)
(D2)

which corresponds to simultaneous local phase rotations
on state |2〉1 and |2〉2, we obtain

U (1) ⊗ U (2)Ũ = diag (1, 1, 1, exp(−i2πn/u2)) (D3)



13

where u2 =

√

1 + 16[µ
(1)
23 ]2 and

µ
(1)
23 =

1

4

√

(

2n

2k − 1

)2

− 1 (D4)

for positive integers n and k satisfying 2n > 2k−1. Then
clearly 2πn = (2k − 1)πu2, i.e., we have

U (1) ⊗ U (2)Ũ = diag(1, 1, 1,−1) = Ûphase. (D5)

To achieve a controlled phase gate on the qubit space we
thus require

exp(−i2πn/u2) = −1 ⇔ 2πn = (2k − 1)πu2. (D6)

Substituting u2 = 2n/(2k − 1) yields (−1)neiπn/u2 =

eiπ(n+k−1/2), which shows that Û (1) = Û
(1)
2 (ℓπ) with ℓ =

1/2 − (n + k) mod 2 and Û (2) = Û
(2)
2 (π), i.e., we must

set ǫ
(1)
2 = ℓπ/τ4 and ǫ

(2)
2 = π/τ4 for some time t = τ4 in

the final step.

APPENDIX E: TUNNELLING RATE AND
PULSE LENGTH CONSTRAINTS

In absence of constraints on the tunnelling rate µ
(1)
23 it

is easy to see that the optimal choice of the parameters n
and k in the second step is k = n = 1, which implies u2 =

2 and µ
(1)
23 =

√
3/4. In practice, however, the control

pulses usually cannot be arbitrarily short and there the
tunnelling rates cannot be made arbitrarily large, and we
can accommodate these constraints by choosing suitable
values for the parameters n and k.

If the mimimum pulse length is τ2 ≥ Tmin but the
tunnelling rates are unconstrained then we simply set

k =

⌈

τmin

4π
+

1

2

⌉

, n = k. (E1)

where ⌈x⌉ is the smallest positive integer ≥ x, to optimize
the gate operation time while satisfying the pulse length
constraint.

If we must satisfy µ
(1)
23 ≤ µmax but there is no con-

straint on the length of the control pulses, we set

k =
⌊⌈

(umax − 1)−1
⌉

/2
⌋

+ 1 (E2)

n = ⌊(2k − 1)umax/2⌋ (E3)

where umax =
√

16µ2
max + 1 and ⌊x⌋ is the largest (pos-

itive) integer ≤ x, to satisfy the constraint and optimize
the gate operation time.

Finally, if we must satisfy τ2 ≥ τmin and µ
(1)
23 ≤ µmax,

we choose

k = max {k1, ⌈τmin/4π + 1/2⌉} (E4)

n = ⌊(2k − 1)umax/2⌋ (E5)

where k1 =
⌊⌈

(umax − 1)−1
⌉

/2
⌋

+ 1 as in (E2) and

umax =
√

16µ2
max + 1 as before.
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