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Abstract

This paper presents a bijection between ascent sequences and upper triangular

matrices whose non-negative entries are such that all rows and columns contain

at least one non-zero entry. We show the equivalence of several natural statistics

on these structures under this bijection and prove that some of these statistics

are equidistributed. Several special classes of matrices are shown to have simple

formulations in terms of ascent sequences. Binary matrices are shown to correspond

to ascent sequences with no two adjacent entries the same. Bidiagonal matrices are

shown to be related to order-consecutive set partitions and a simple condition on

the ascent sequences generate this class.

1 Introduction

Let Intn be the collection of upper triangular matrices with non-negative integer entries
which sum to n ∈ N such that all rows and columns contain at least one non-zero entry.
For example,

Int3 =




(3),

(
2 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
0 2

)
,




1 0 0
0 1 0
0 0 1








 .

∗Both authors were supported by grant no. 090038011 from the Icelandic Research Fund.

the electronic journal of combinatorics 17 (2010), #R53 1



We use the standard notation [a, b] for the interval of integers {a, a+ 1, . . . , b} and define
[n] = [1, n]. Given a sequence of integers y = (y1, . . . , yn), we say that y has an ascent at
position i if yi < yi+1. The number of ascents of y is denoted by asc(y). Let An be the
collection of ascent sequences of length n:

An = {(x1, . . . , xn) : xi ∈ [0, 1 + asc(x1, . . . , xi−1)], for all 1 < i 6 n},

where x1 := 0 and asc(x1) := 0. For example,

A3 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 1, 2)}.

These sequences were introduced in the recent paper by Bousquet-Mélou et al. [1]
and were shown to unify three combinatorial structures: (2 + 2)-free posets, a class of
pattern avoiding permutations and a class of involutions that are sometimes termed chord
diagrams. This paper complements the results of [1] by presenting a fourth structure, the
matrices in Intn, that can be encoded by an ascent sequence of length n. To this end we
have attempted to use notation that is indicative of the transformations and operations
in the original paper [1]. The bijection presented in this paper is used in Dukes et al. [2]
to resolve a conjecture concerning the number of binary matrices in Intn, and presents a
generating function for the number of matrices whose entries are bounded by some value
k.

The class of matrices we study here have been touched upon in the literature before. The
binary case is known to encode a subclass of interval orders (the full class of interval
orders are in bijection with (2 + 2)-free posets), see Fishburn [3]. Mitas [5] used our
class of matrices to study the jump number problem on interval orders, but without a
formal statement or proof of any bijection, and without studying further properties of the
relation.

In section 2 we present a bijection Γ from matrices in Intn to ascent sequences in An.
In section 3 we show how statistics on both of these structures are related under Γ and
prove that some of the statistics are equidistributed. Section 4 looks at properties of
restricted sets of matrices and ascent sequences which give rise to interesting structures,
order-consecutive set partitions being one example. We end with some open problems in
section 5.

2 Upper triangular matrices

In this section we will define a removal and an addition operation on matrices in Intn
that are essential for the bijection. These operations have the effect of decreasing (resp.
increasing) the sum of the entries in a matrix by 1.

Given A ∈ Intn let dim(A) be the number of rows in the matrix A. Furthermore,
let index(A) be the smallest value of i such that Ai,dim(A) > 0 and define value(A) :=
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Aindex(A),dim(A). Let rowsumi(A) and colsumi(A) be the sum of the elements in row i and
column i of A, respectively.

Consider the following operation f on a given matrix A ∈ Intn.

(Rem1) If rowsumindex(A)(A) > 1 then let f(A) be the matrix A with the entry
Aindex(A),dim(A) reduced by 1.

(Rem2) If rowsumindex(A)(A) = 1 and index(A) = dim(A), then let f(A) be the matrix
A with row dim(A) and column dim(A) removed.

(Rem3) If rowsumindex(A)(A) = 1 and index(A) < dim(A), then we form f(A) in the
following way. Let Ai,dim(A) = Ai,index(A) for all 1 6 i 6 index(A) − 1. Now
simultaneously delete row index(A) and column index(A). Let the resulting
(dim(A) − 1) × (dim(A) − 1) matrix be f(A).

Example 1. Consider the following three matrices:

A =




1 0 1 0

0 2 0 3

0 0 1 4

0 0 0 2



 ; B =




5 1 3 0

0 1 0 0

0 0 1 0

0 0 0 1



 ; C =





1 0 0 1 0 0 0

0 1 0 1 1 0 0

0 0 1 2 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1




.

For matrix A, rule Rem1 applies since value(A) = 3 and

f(A) =




1 0 1 0

0 2 0 2

0 0 1 4

0 0 0 2



 .

For matrix B, since value(B) = 1 and index(B) = dim(B) = 4 rule Rem2 applies and

f(B) =




5 1 3
0 1 0
0 0 1



 .

For matrix C, since value(C) = 1, 4 = index(C) < dim(C) = 7, and all other entries
in row index(C) = 4 are zero, then we form f(C) in the following way: first copy the
index(C) − 1 = 3 highest entries in column index(C) to the top index(C) − 1 = 3 entries
in column dim(C) = 7. These are illustrated in bold in the following matrix:





1 0 0 1 0 0 1

0 1 0 1 1 0 1

0 0 1 2 1 1 2

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1




.
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Next we simultaneously remove column index(C) = 4 and row index(C) = 4 to get f(C):




1 0 0 0 0 1

0 1 0 1 0 1

0 0 1 1 1 2

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1




=⇒ f(C) =





1 0 0 0 0 1

0 1 0 1 0 1

0 0 1 1 1 2

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1




.

We now show that the above removal operation yields an upper triangular matrix in
Intn−1. If index(A) = i + 1 and the above removal operation, applied to A, gives f(A),
then we define ψ(A) = (f(A), i). Notice that 1 6 index(A) 6 dim(A).

Lemma 1. If n > 2, A ∈ Intn and ψ(A) = (B, i), then B ∈ Intn−1.

Proof. It is easy to see that the sum of the entries in B is one less than the sum of
the entries in A. It remains to show that there are no columns or rows of zeros in B.
This is trivial to see for the removal operations Rem1 and Rem2. For rule Rem3, it
is clear that rowsumi(B) = rowsumi(A) > 0 and colsumi(B) = colsumi(A) > 0 for all
1 6 i < index(A). Also we have rowsumi(B) = rowsumi+1(A) > 0 for all index(A) 6 i 6

dim(A)−1 and colsumi(B) = colsumi+1(A) > 0 for all index(A) 6 i < dim(A)−1. Finally
colsumdim(A)−1(B) = colsumindex(A)(A) + colsumdim(A)−1(A) − 1 > 0.

We now define the complementary addition rules for each of the removal steps. Their
consistency will be shown later. Given A ∈ Intn and m ∈ [0, dim(A)] we construct the
matrix φ(A,m) in the following manner.

(Add1) If 0 6 m 6 index(A)− 1 then let φ(A,m) be the matrix A with the entry at
position (m+ 1, dim(A)) increased by 1.

(Add2) If m = dim(A) then let φ(A,m) be the matrix

(
A 0
0 1

)
.

(Add3) If index(A) 6 m < dim(A) then form φ(A,m) in the following way:

In A, insert a new (empty) row between rows m and m+1, and insert a new
(empty) column between columns m and m + 1. Let the new row be filled
with all zeros except for the rightmost entry which is 1. Move each of the
entries above this new rightmost one to the new column between columns
m and m + 1 and replace them with zeros. Finally let all other entries in
the new column be zero. The resulting matrix is φ(A,m).

Example 2. Consider the following three matrices:

A =




1 0 1 0

0 2 0 0

0 0 1 5

0 0 0 1



 ; B =




1 5 0 4

0 1 0 3

0 0 1 2

0 0 0 3



 ; C =





1 0 0 0 6 0

0 1 0 1 0 7

0 0 1 1 1 2

0 0 0 0 3 0

0 0 0 0 0 1

0 0 0 0 0 1




.
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In order to form φ(A, 1), since m = 1 6 index(A) − 1 = 2 we see that rule Add1 applies
and

φ(A, 1) =




1 0 1 0

0 2 0 1

0 0 1 5

0 0 0 1



 .

In order to form φ(B, 4), since m = 4 = dim(B) we see that rule Add2 applies and

φ(B, 4) =





1 5 0 4 0

0 1 0 3 0

0 0 1 2 0

0 0 0 3 0

0 0 0 0 1



 .

In order to form φ(C, 3), since index(C) = 2 6 3 < 5 = dim(C) we see that rule Add3

applies and we do as follows. Insert a new empty row and column between rows 3 and 4
and columns 3 and 4 of C: 



1 0 0 0 6 0

0 1 0 1 0 7

0 0 1 1 1 2

0 0 0 0 3 0

0 0 0 0 0 1

0 0 0 0 0 1




.

Fill the empty row with all zeros and a rightmost 1, this is highlighted in bold. Next
move the entries above the new 1 to the new column and replace them with zeros.





1 0 0 0 6 0

0 1 0 1 0 7

0 0 1 1 1 2

0 0 0 0 0 0 1

0 0 0 0 3 0

0 0 0 0 0 1

0 0 0 0 0 1




→





1 0 0 0 0 6 0

0 1 0 7 1 0 0

0 0 1 2 1 1 0

0 0 0 0 0 0 1

0 0 0 0 3 0

0 0 0 0 0 1

0 0 0 0 0 1




.

Finally fill the remaining empty positions with zeros to yield φ(C, 3):

φ(C, 3) =





1 0 0 0 0 6 0

0 1 0 7 1 0 0

0 0 1 2 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 3 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1




.

We now show that this addition operation yields another upper triangular matrix where
every row and column contain at least one non-zero entry.

Lemma 2. If n > 2, B ∈ Intn−1, 0 6 i 6 dim(B) and A = φ(B, i), then A ∈ Intn and
index(A) = i+ 1.
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Proof. In each of the operations, Add1, Add2 and Add3, the sum of the entries of the
matrix is increased by exactly 1. It is straightforward to check that each row and column
contains at least one non-zero entry. The property of being upper-triangular is also
preserved. Thus it is clear that A = φ(B, i) ∈ Intn.

It is similarly straightforward to check that index(A) = i+1 in each of the three cases.

Lemma 3. For any B∈ Intn and integer i such that 0 6 i 6 dim(B), we have ψ(φ(B, i)) =
(B, i). If n > 1 then we also have φ(ψ(B)) = B.

Proof. First let us denote A = φ(B, i). From Lemma 2 above index(A) = i+ 1 and so the
removal operation when applied to A will yield ψ(A) = (C, i) for some matrix C. Thus
we need only show that B = C for each of the three cases.

Let us assume that 0 6 i 6 index(B) − 1. Then A is simply a copy of B with the entry
at position (i+ 1, dim(B)) increased by one. Similarly, rule Rem1 applies for A and so C
will be the same as A except that the entry at position (index(A), dimB) = (i+1, dimB)
is decreased by one. Thus B = C.

Assume next that i = dim(B), so that rule Add2 applies and A =

(
B 0
0 1

)
. Since

index(A) = dim(A), rule Rem2 applies and we remove both column and row dimA of A
to get C = (B).

If index(B) 6 i < dim(B) then rule Add3 applies. For this, B must have the following
form

B =





X Y
e1
...
ei

0 Z
ei+1

...
en





where at least one of {e1, . . . , ei} is non-zero. From this we find that

A =





X
e1
...
ei

Y
0
...
0

0 · · ·0 0 0 · · · 0 1

0
0
...
0

Z
ei+1

...
en





.

Since index(A) = i+1, value(A) = 1 and all other entries in this row are zero, the removal
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operation to be applied is Rem3 and we find that

C =





X Y
e1
...
ei

0 Z
ei+1

...
en





= B.

The second statement follows by applying a similar analysis of the addition and removal
operations.

We now define a map Γ from Intn to An recursively as follows. For n = 1 we let Γ((1)) =
(0). Now let n > 2 and suppose that the removal operation, when applied to A ∈ Intn,
gives ψ(A) = (B, i). Then the sequence associated with A is Γ(A) := (x1, . . . , xn−1, i),
where (x1, . . . , xn−1) = Γ(B). For example, Γ maps the ith element of Int3 to the ith
element of A3 as they are listed in the introduction.

Theorem 4. The map Γ : Intn 7→ An is a bijection.

Proof. Since the sequence Γ(A) encodes the construction of the matrix A, the map Γ is
injective. We want to prove that the image of Intn is the set An. The recursive description
of the map Γ tells us that x = (x1, . . . , xn) ∈ Γ(Intn) if and only if

x′ = (x1, . . . , xn−1) ∈ Γ(Intn−1) and 0 6 xn 6 dim(Γ−1(x′)). (1)

We will prove by induction on n that for all A ∈ Intn, with associated sequence Γ(A) =
x = (x1, . . . , xn), one has

dim(A) = asc(x) and index(A) = xn + 1. (2)

Clearly, this will convert the above description (1) of Γ(A) into the definition of ascent
sequences, thus concluding the proof.

So let us focus on the properties (2). They hold for n = 1. Assume they hold for some
n− 1 with n > 2, and let A = φ(B, i) for B ∈ Intn−1. If Γ(B) = x′ = (x1, . . . , xn−1) then
Γ(A) = x = (x1, . . . , xn−1, i).

Lemma 2 gives index(A) = i+ 1 and it follows that

dim(A) =

{
dim(B) = asc(x′) = asc(x) if i 6 xn−1,

dim(B) + 1 = asc(x′) + 1 = asc(x) if i > xn−1.

The result follows.

The inverse of this bijection is now straightforward. We omit the inductive proof.

Theorem 5. Let A(1) = (1) ∈ Int1. Given x = (x1, x2, . . . , xn) ∈ An, define the sequence
of matrices (A(2), . . . , A(n)) by A(i+1) = φ(A(i), xi+1) for 1 6 i < n. Then Γ−1(x) = A(n).
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3 Statistics and distributions

In this section we show how statistics on the two structures are related under Γ. Many of
the definitions concerning ascent sequences were stated in [1, §5] and we recall them here.

Let x = (x1, . . . , xn) be a sequence of integers. For k 6 n, define asck(x) to be the number
of ascents in the subsequence (x1, x2, . . . , xk). If xi < xi+1, we say that xi+1 is an ascent
top.

Let zeros(x) be the number of zeros in x, and let last(x) := xn. A right-to-left maximum
of x is an entry xi that has no larger entry to its right. We denote by rmax(x) the number
of right-to-left maxima of x.

For sequences x and y of non-negative integers, let x⊕ y = xy′, where y′ is obtained from
y by adding 1 + max(x) to each of its letters, and juxtaposition denotes concatenation.
For example (3, 2, 0, 1, 2) ⊕ (0, 0, 1) = (3, 2, 0, 1, 2, 4, 4, 5). We say that a sequence x has
k components if it is the sum of k, but not k + 1, nonempty nonnegative sequences, and
write comp(x) = k.

Define asc(x) = {i : i ∈ [n − 1] and xi < xi+1}. We denote by x̂ the outcome of the
following algorithm;

for i ∈ asc(x):
for j ∈ [i− 1]:

if xj > xi+1 then xj := xj + 1

and call x̂ the modified ascent sequence. For example, if x = (0, 1, 0, 1, 3, 1, 1, 2) then
asc(x) = (1, 3, 4, 7) and x̂ = (0, 3, 0, 1, 4, 1, 1, 2).

Note that the modified ascent sequence x̂ has its ascents in the same positions as the
original sequence, but that the ascent tops in x̂ are all distinct. An ascent sequence x is
self-modified if x̂ = x.

Let flip(A) be the reflection of A in its antidiagonal. Let blocks(A) be the number of
diagonal blocks in the matrix A.

Theorem 6. Let A ∈ Intn and x = Γ(A) ∈ An. Then

rowsumk(A) = |{j : x̂j = k − 1}|.

Proof. By induction. The result is true for the single matrix (1) ∈ Int1. Let us sup-
pose that the result is true for all matrices Intn−1 for some n > 2. Given B ∈ Intn−1,
let x = (x1, . . . , xn−1) = Γ(B) and set x̂ = (x̂1, . . . , x̂n−1). Let A = φ(B, i) and
y = (x1, . . . , xn−1, i) = Γ(A). Furthermore set ŷ = (ŷ1, . . . , ŷn).

If index(B) 6 i < dim(B) then Add3 applies. In this case we find that rowsumk(A) =
rowsumk(B) for all 0 6 k 6 i, rowsumi+1(A) = 1, and rowsumk+1(A) = rowsumk(B) for
all k > i + 1. Since i > xn−1 we have that n − 1 ∈ asc(x). This means that ŷ is formed
from x̂ as follows: for all 1 6 j 6 n− 1, if x̂j > i then set ŷj = x̂j + 1, and ŷn = i. By the
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induction hypothesis, for k 6 i we have rowsumk(A) = rowsumk(B) = |{j : x̂j = k−1}| =
|{j : ŷj = k − 1}|. Also, rowsumi+1(A) = 1 = |{j : ŷj = i}| since ŷn is the only entry
that takes the value i. Finally for k > i + 1, rowsumk+1(A) = rowsumk(B) = |{j : x̂j =
k − 1}| = |{j : ŷj = k}|.

The easier cases i < index(B) and i = dim(B) are dealt with in a similar manner so the
proofs are omitted.

Given a square matrix A and a sequence x, define the power series

χ(x, q) :=

|x|∑

i=1

qxi, χ(x, q) :=
∑

xi rl-max

qxi,

λ(A, q) :=

dim(A)∑

i=1

qrowsumi(A), λ(A, q) :=

dim(A)∑

i=1

Ai,dim(A)q
i−1.

Theorem 7. Suppose A is the matrix corresponding to the ascent sequence x. Then

(i) zeros(x) = rowsum1(A);

(ii) last(x) = index(A) − 1;

(iii) asc(x) = dim(A) − 1;

(iv) rmax(x̂) = colsumdim(A)(A);

(v) comp(x̂) = blocks(A);

(vi) χ(x̂, q) = λ(A, q);

(vii) χ(x̂, q) = λ(A, q).

Proof. Most of the results follow from the sequence of rules applied to construct the matrix
A from the ascent sequence x.

(i) An entry xj = 0 if and only if the corresponding entry of the modified ascent sequence
x̂j = 0. This result now follows from Theorem 6 with i = 1.

(ii) and (iii) follow directly from Theorem 4.

(iv) is an immediate consequence of the proof of (vii) below with q = 1.

(v) We now show that comp(x̂) = blocks(A). It suffices to prove that x̂ = ŷ ⊕ ẑ with

|y| = ℓ and |z| = m iff A =

(
Ay 0
0 Az

)
with Ay ∈ Intℓ and Az ∈ Intm, where Γ(Ay) = y

and Γ(Az) = z.
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Let us assume that x̂ = ŷ ⊕ ẑ. The first ℓ steps of the construction of A give Ay where
dim(Ay) = asc(y) + 1. Next, since x̂ℓ+1 = 1 + max{x̂j : j 6 ℓ}, the addition rule Add2 is
used, and we have

A′ =

(
Ay 0
0 1

)

where the new 1 is in position (asc(y) + 2, asc(y) + 2). All subsequent additions, xj for
ℓ+1 < j 6 ℓ+m are such that x̂j > 1+asc(y), and so do not affect the first asc(y)+1 rows
or columns of A′. Further to this, the construction that takes place for steps ℓ+1, . . . , ℓ+m
has the same relative order as the construction of Az. This gives

A =

(
Ay 0
0 Az

)
.

Conversely assume that A =

(
B 0
0 C

)
with B ∈ Intℓ and C ∈ Intm and n = ℓ + m.

The first m removal operations only affect entries in C since there is at least one non-
zero entry in every row and column of C. Thus x̂ℓ+1, . . . , x̂n > dim(B) and in particular,
x̂ℓ+1 = dim(B). Note that the sequence (xℓ+1 − dim(B), . . . , xn − dim(B)) = (z1, . . . , zm)
is an ascent sequence which is Γ(C). After these removals, we are left with the matrix
B, and since it is in Intℓ, the values x1, . . . , xℓ < dim(B). Let yj = xj for all j 6 ℓ.
Consequently one has x̂ = ŷ ⊕ ẑ.

(vi) is an immediate consequence of Theorem 6.

Finally, part (vii) is proved by induction as follows. The result is clearly true for the
single matrix (1) ∈ Int1. Assume it is true for all matrices in Intn−1 for some n > 2. Let
B ∈ Intn−1 with x′ = (x1, . . . , xn−1) = Γ(B). Let A = φ(B, i) with x = (x1, . . . , xn) =
Γ(A). Then

λ(A, q) =






λ(B, q) + qi if i 6 index(B) − 1

qi +

dim(B)∑

j=i+1

Bj,dim(B)q
j otherwise.

Similarly,

χ(x̂, q) =






χ(x̂′, q) + qi if i 6 xn−1

qi +
∑

rl-max cx′

j>i

q
cx′

j+1 otherwise.

From the induction hypothesis, for the case i 6 index(B) − 1 = xn−1, we have λ(B, q) =
χ(x̂′, q). Otherwise,

dim(B)∑

j=i+1

Bj,dim(B)q
j =

∑

rl-max cx′

j>i

q
cx′

j
+1
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since these power series are simply λ(B, q) and χ(x̂′, q), respectively, without the first i
powers of q. Thus χ(x̂, q) = λ(A, q).

The above results, used in conjunction with the flip operation, allow us to prove the
following equidistribution result on ascent sequences.

Theorem 8. For all n > 1, zeros(·) and rmax(̂·) are equidistributed on the set An.

Proof. The operation flip shows that rowsum1(·) and colsumdim(·)(·) are equidistributed on
Intn. Apply Theorem 7 (i) and (iv) to find that zeros(·) and rmax(̂·) are equidistributed
on An.

In dealing with compositions of an integer, the number of parts in a composition is a
natural statistic by which the collection of compositions may be refined. The next theorem
gives the relation between the number of non-zero parts in our ‘matrix composition of the
integer n’ and the ascent sequence to which it corresponds.

Theorem 9. Let x = Γ(A) where A ∈ Intn. The number of positive entries in A is equal
to n less the number of equal adjacent entries in x.

Proof. Suppose that x = (x1, . . . , xn). Let A(i) be the matrix corresponding to (x1, . . . , xi)
and define Ni to be the number of positive entries in A(i). Since A(1) = (1) we have N1 = 1.
Given i > 2, if xi < xi−1 then one of the zeros in A(i−1) becomes a one in A(i) so that
Ni = Ni−1 + 1. If xi = xi−1 then value(A(i−1)) is increased by one to give A(i), so in
this case Ni = Ni−1. Otherwise xi > xi−1 and a new row and column is inserted into
A(i−1) to give A(i), and a 1 is introduced, giving Ni = Ni−1 + 1. These equalities may be
summarized by Ni = Ni−1 +ai where ai = 1(xi 6= xi−1). So the number of positive entries
in A is

1 + a2 + . . .+ an = 1 + (n− 1) −
∑

i

1(xi = xi−1),

which is n less the number of equal adjacent entries in x.

Theorem 10. The trace tr(A) is equal to the number of entries xi in the corresponding
sequence x such that xi = asci(x).

Proof. First note that if i > 1, then xi = asci(x) if either xi = 1 + asci−1(x) or if
xi = xi−1 = · · · = xi−j = 1 + asci−j−1(x) for some j > 1.

Now consider the step-by-step process of building A. If xi = 1+asci−1(x), then the matrix
dimension increases, and a new entry 1 is inserted at the end of the diagonal. If j > 0,
and xi+j = · · · = xi = 1 + asci−1(x), then the same entry gets increased by one.

Entries at the diagonal can never decrease, and the two cases above are the only times an
entry on the diagonal can increase, so the result follows.
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Define a run in the sequence x = (x1, . . . , xn) to be a maximal subsequence of adjacent
equal elements, that is, a subsequence (xi, xi+1, . . . , xi+j) such that xi = xi+1 = · · · = xi+j ,
where xi−1 6= xi if i > 1 , and xi+j 6= xi+j+1 if i + j < n. If xi = y, we say the run is a
y-run.

Theorem 11. Let A ∈ Intn, and suppose that x = Γ(A) is the corresponding sequence.
The following three equalities hold.

(i) A1,1 equals the length of the starting 0-run.

(ii) value(A) equals the length of the ending xn-run.

(iii) Adim(A),dim(A) equals the length of the last y-run whose first entry xi = y satisfies
xi = 1 + asci−1(x).

Furthermore, the distribution of all three statistics on matrices are the same, as is the
distribution of all three statistics on ascent sequences.

Proof. Using the standard method of building the matrix according to the ascent sequence
it is straightforward to check that the three equalities hold.

To show that the first two statistics on ascent sequences are equidistributed, a simple
bijection can be used. Assume that x is of the form (0a, y, ib), where the subsequence y
starts with 1, and does not end with i. Map x to x̃ = (0b, y, ia). It is obvious that this is
a bijection (and also an involution), and that the result follows.

The third statistic also have the same distribution by symmetry — it is equal to flip(A)1,1.

Remark 12. The observant reader may have noticed that there is a fourth pair missing
from the above theorem: the last positive entry in the first row of the matrix, and its
counterpart for sequences. The counterpart is the length of a subsequence of zeros, but
the rule for deciding which is quite complicated.

Conjecture 13. For ascent sequences x, the distribution of zeros(x), or equivalently, the
distribution of rmax(x̂), is the same as the distribution of the length of the first strictly
increasing subsequence of x.

4 Binary, positive diagonal, and bidiagonal matrices

We now turn to some natural subclasses of matrices. These are binary matrices, matrices
that have no zeros on their diagonal, and bidiagonal matrices.

First, let us note that it is easy to see that the collection of diagonal matrices in Intn
correspond to compositions of the integer n. Given such a matrix A = diag(a0, . . . , ak) ∈
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Intn, the corresponding ascent sequence is

Γ(A) = (0a0 , 1a1 , . . . , kak), with a0 + a1 + · · · + ak = n.

It is known that the binary matrices in Intn correspond to interval orders with no repeated
holdings [3]. These are a subclass of interval orders, which were shown in [1] to be in
bijection with ascent sequences. From Theorem 9 we have the following two results:

Corollary 14. A matrix A ∈ Intn is binary if and only if the corresponding ascent se-
quence x = Γ(A) contains no two equal consecutive entries.

Corollary 15. Let A ∈ Intn be the matrix corresponding to the ascent sequence x. Then
the sum

∑
i,j max{0, (Ai,j − 1)} equals the number of pairs (xi, xi+1) in x such that xi =

xi+1.

Next we classify those matrices in Intn that have only positive diagonal entries. Let us
point out that the following class of ascent sequences correspond to permutations that
avoid the pattern 31524, see [1, Prop. 9].

Theorem 16. The matrix A = Γ−1(x) has only positive entries on the diagonal exactly
when the sequence x is self-modified, that is when x = x̂.

Proof. Consider the sequence of addition rules used to build A. If A has no zeros on the
diagonal, it means that Add3 was never used.

This means that for the sequence x, for all i, xi−1 > xi or xi = 1 + asci−1(x). In other
words all ascents are maximal. This is exactly the condition for a sequence to be self-
modified: a sequence is not self-modified if and only if there exist i and j < i such that
xj > xi+1 and xi < xi+1.

4.1 Bidiagonal matrices and order-consecutive set partitions

Consider the subclass Bin ⊆ Intn of matrices defined to be the bidiagonal matrices in Intn.
It turns out that there is a natural bijection between k × k matrices in Bin and so called
order-consecutive set partitions, [4], of [n] into k parts. A set partition is order-consecutive
if the parts P1, P2, . . . , Pk can be ordered as

Pπ1
, Pπ2

, . . . , Pπk

such that each set
⋃j

i=1 Pπi
is an interval in [n]. For example,

{{1, 2, 3}, {4, 9}, {5}, {6, 7}, {8}}

is order-consecutive, for we can order the parts as

{5}, {6, 7}, {8}, {4, 9}, {1, 2, 3}.
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The set partition {{1, 3}, {2, 4}} however is not order-consecutive.

An order-consecutive set partition of [n] into k parts can be represented as the sequence
1 to n, with k pairs of parenthesis inserted (see [4]). For example,

{{1, 2, 3}, {4, 9}, {5}, {6, 7}, {8}}

is represented as (123)(4(5)(67)(8)9). Note that each pair of parenthesis are placed as
close together as possible. Thus, (1(2)) is not a valid representation — the proper one
for this partition is (1)(2). These representations for order-consecutive partitions obey an
additional constraint [4, Lemma 5]:

Constraint ∗: If all )(-pairs are deleted, the remaining pairs are completely nested, i.e.
removing the numbers we are left with ((· · · ()) · · · ).

Given an order-consecutive set partition P = (P1, . . . , Pk) of [n], let us write α(P ) for this
representation involving parentheses. We form a bidiagonal matrix B = B(P ) as follows.
Let B(P ) initially be the k × k matrix with all elements zero except a one at the top left
corner. Read the sequence α(P ) from left to right, starting with 1. When reading the
sequence, if the next symbol is a number, increase the element in the current position of
B(P ) by one. If it is a parenthesis increase either the row index or column index of B(P )
by one, whichever allows us to stay on the diagonal and bidiagonal.

For example, the partition above with α(P ) = (123)(4(5)(67)(8)9) gives the matrix

B(P ) =





3 0 0 0 0

0 1 1 0 0

0 0 0 2 0

0 0 0 0 1

0 0 0 0 1



 .

Theorem 17. There is a one-to-one correspondence between k × k matrices in Bin and
order-consecutive set partitions of [n] into k parts.

Proof. It is clear from above construction that if P is an order-consecutive set partition,
then B(P ) ∈ Bin. We show it is one-to-one by defining the inverse. The numbers 1 to n
are to be written down in order, with parenthesis interspersed. Start by writing (. Next
visit the elements in the matrix in order (1, 1), (1, 2), (2, 2), (2, 3), . . .. If the number m is
encountered, write down the next m numbers and then a |. End with a ).

Now change each || into )(. Note that there can be no more than two consecutive |’s.

To finish, we need to change each remaining | into either ) or (. However, using constraint
∗ , there is a unique way of doing this.

Corollary 18 ([4]). The number of k × k bidiagonal matrices in Intn is

k−1∑

j=0

(
n− 1

2k − j − 2

)(
2k − j − 2

j

)
.
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Furthermore, from the construction above one may notice that the j+1th term in the sum
counts the number of matrices with exactly j zeros in the diagonal and bidiagonal.

Theorem 19. The set of ascent sequences x such that x = Γ(A) for A ∈ Bin are those
sequences x = (x1, . . . , xn) which satisfy

xi > asci(x) − 1, (3)

for 1 6 i 6 n.

Proof. Induction on n. The n = 1 case is trivial, so assume that A ∈ Intn is bidiagonal,
and that x = (x1, x2, . . . , xn) = Γ(A) obeys (3).

Consider two cases. First assume the last column of A ends with (0, a) for some a > 1.
This means that x ends with xn+1−a = xn+2−a = · · · = xn = ascn+1−a(x) = ascn(x).

Let y = (x1, . . . , xn, xn+1) and B = Γ−1(y). Consider the three subcases xn < xn+1,
xn = xn+1 and xn > xn+1.

If xn+1 = xn+1 then B = Γ−1(y) is

(
A 0
0 1

)
, and bidiagonal by the induction hypothesis.

Also, xn+1 = ascn(y) + 1 = ascn+1(y), so xn+1 > ascn+1(y) − 1.

If xn+1 = xn then B is A with the entry at position (dim(A), dim(A)) increased by one,
and again bidiagonal. Furthermore, xn+1 = ascn+1(y) > ascn+1(y) − 1.

If xn+1 = xn −m for m > 0, then B is A with the 0 at position (dim(A) −m, dim(A))
increased to a 1, and A is bidiagonal if and only if m = 1. Also, xn+1 = ascn(x) −m, so
xn+1 > ascn+1(y) − 1 only for m = 1.

This proves the theorem in first case. The second case, when the last column of A′ ends
with (a > 0, b > 0) is handled in a similar way.

5 Some challenging questions

We end this paper with two challenging questions.

Question 20. If x = Γ(A) for some A ∈ Intn, then what is the sequence y = y(x) for
which y = Γ(flip(A))?

In terms of (2 + 2)-free posets, this question is equivalent to asking for the ascent sequence
y that corresponds to the dual poset P ⋆, where the poset P is generated by the ascent
sequence x.

Adding two upper triangular matrices of the same dimension yields another upper trian-
gular matrix of the same dimension.

Question 21. Adding two matrices of the same size is a commutative mapping Intn ×
Intm 7→ Intn+m. How does this operation act on the corresponding ascent sequences?
Furthermore, how does this addition operation act on the corresponding posets?
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