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What is a Categorical Model of Arrows?

Robert Atkey1

LFCS, School of Informatics, University of Edinburgh

Abstract

We investigate what the correct categorical formulation of Hughes’ Arrows should be. It has long been
folklore that Arrows, a functional programming construct, and Freyd categories, a categorical notion due
to Power, Robinson and Thielecke, are somehow equivalent.
In this paper, we show that the situation is more subtle. By considering Arrows wholly within the base
category we derive two alternative formulations of Freyd category that are equivalent to Arrows—enriched
Freyd categories and indexed Freyd categories. By imposing a further condition, we characterise those
indexed Freyd categories that are isomorphic to Freyd categories. The key differentiating point is the
number of inputs available to a computation and the structure available on them, where structured input
is modelled using comonads.

1 Introduction

Ever since Hughes introduced Arrows [2] and Power, Robinson and Thielecke intro-
duced Freyd categories [11,12] it has been folklore that the two definitions are in
some way equivalent. The aim of this paper is to explore the connections between
the two definitions. Our main result is that Arrows are in fact more general than
Freyd categories. This is due to Arrows allowing two separate inputs to computa-
tions, one of which may be structured, while Freyd categories only allow a single
input to computations. Generalising further we get indexed Freyd categories that
allow two inputs, both of which may be structured. Structure on input can be
modelled using comonads.

Looking at the definitions of Arrows and Freyd categories it is certainly tempting
to think that they are actually the same thing. In Haskell, Arrows are defined as
members of the following type class (the actual type class in the Haskell libraries
has extra members, but these are definable from the ones we have given):

class Arrow a where
arr :: (x -> y) -> a x y
(>>>) :: a x y -> a y z -> a x z
first :: a x y -> a (x,z) (y,z)
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In our categorical definitions we write Ar(x, y) for a x y, arr for arr, >>> for >>>
and first for first, and we use this notation from now on.

Thus a type operator Ar that takes two arguments is an Arrow if it has definitions
for these functions which satisfy some equations (we give these equations in Section
2). A way to read these definitions is to see Ar(x, y) as the type of “arrows” from x

to y. The arr function then takes normal functions to arrows and the >>> function
composes two arrows. Thus it seems that each instance of Arrow defines a category
within Haskell, whose objects are Haskell types and whose arrows are members of
Ar(x, y), and a functor from the category of Haskell types and functions to this new
category. The first function demands some extra structure on the new category
which is used when sequencing arrows.

The definition of Freyd category is beguiling similar. A Freyd category consists
of a pair of categories C and K and an identity-on-objects functor J : C → K,
where C has finite products, K is symmetric premonoidal and J maps the finite
products to the symmetric premonoidal structure. We give the full definition of
symmetric premonoidal in Section 3; for now, we just need that it has a functor
−o z : K(x, y)→ K(x× z, y × z).

It appears that Freyd categories and Arrows are the same thing: the category
C corresponds to the category of Haskell types and functions, the category K is the
category described by Ar(x, y), the functor J is the function arr , composition in K
is the function >>> and K’s premonoidal structure is the function first .

This naive view misses a crucial point: Freyd categories are defined using or-
dinary categories where there is a set of morphisms between objects; Arrows are
defined so that there is a Haskell type of morphisms between objects. Therefore the
correct way to see Arrows is as enriched Freyd categories; where the enrichment
is over the base category. We recall the definitions of enriched category, functor
and so on in Section A.2. We show that Arrows are directly equivalent to enriched
Freyd categories in Section 3.2.

However, this view is not particularly enlightening; the assumption that Arrows
and Freyd categories are equivalent has persisted for some time, so it seems clear
that there must be some direct relationship between the two. Observe that a crucial
difference between Freyd categories and Arrows is that a computation described by
an Arrow is a morphism in C(w,Ar(x, y)), whereas a computation described by a
Freyd category is a morphism in K(x, y). The Arrow computation has additional
input w that the Freyd category does not have. To see that this additional input
can be significant consider a Freyd category built from a comonad (W, ε, δ) so that
K(x, y) = C(Wx, y); the analogous Arrow has C(w,Ar(x, y)) = C(w, [Wx→ y]) ∼=
C(w ×Wx, y), where W must also be strong. Thus, the arrow computation has
access to unstructured input w and structured input x, while the Freyd category
computation only has access to structured input x.

To model this situation we generalise from Arrow computations of the form
C(w,Ar(x, y)) to a C-indexed category H where Hw(x, y) denotes computations
with unstructured input w, possibly structured input x and possibly structured
output y. This forms the core of the definition of indexed Freyd category that we
give in Section 4. Every Arrow gives an indexed Freyd category, but to go back
again we must assume that the indexed Freyd category is closed, meaning that there
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Fig. 1. Relationships between notions of computation in this paper

is a representation for morphisms in H:

Hw(x, y) ∼= C(w,Ar(x, y)).

Indexed Freyd categories that are not closed have more flexibility when it comes to
their input. For instance, Hw(x, y) = C(W (w × x), y) for a comonad W defines an
indexed Freyd categories that is not closed.

Not every Arrow demands structure on its input. In particular, Arrows built
from strong monads (T, η, µ, τ) have computations as morphisms in C(w, [x →
Ty]) ∼= C(w × x, Ty). In Section 4.2 we examine translations between Freyd cate-
gories and indexed Freyd categories and arrive at a characterisation of indexed Freyd
categories that are equivalent to Freyd categories, which are those that satisfy the
isomorphism:

Hw×x(y, z) ∼= Hw(x× y, z).

(where the direction Hw(x × y, z) → Hw×x(y, z) is always determined). In other
words, indexed Freyd categories that do not distinguish between the two inputs.
Examples include closed indexed Freyd categories derived from monads and non-
closed indexed Freyd categories derived from comonads: Hw(x, y) = C(W (w×x), y).
In Section 5, we translate this requirement back to Arrows, getting the isomorphism:

Ar(x× y, z) ∼= [x→ Ar(y, z)].

(where, again, the direction [x → Ar(y, z)] → Ar(x × y, z) is always determined).
Using the fact that closed Freyd categories are equivalent to strong monads [12],
we can conclude that Arrows that satisfy this condition are equivalent to strong
monads.

We summarise the relationships between the various definitions given in this pa-
per in Figure 1. Each node of the diagram is the category of the named objects over
a fixed category C and appropriate morphisms. Hooked arrows denote subcategory
inclusions, which are all full here. Arrows marked with “'” denote equivalences
and those marked with “=” denote strict equalities. In the bottom left corner, the
inclusion functor has a right adjoint which forgets about fibres Hw where w 6= 1.
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1.1 Related Work

Heunen, Jacobs and Hasuo [1,3] have previously investigated the categorical seman-
tics of Arrows. They take the categorical definition of Arrow to be a monoid in the
category of bifunctors Cop × C → V , where V is symmetric monoidal closed and
C is V -enriched. In the case when V = Set, it was proved in [1] that under this
definition, Arrows are exactly Freyd categories. This approach has the advantage
is being more flexible about what is regarded as “inside” (the category C) the lan-
guage we are modelling and what is “outside” (the category V ). However, matters
are complicated by size issues when V = C for cartesian closed C, since, in order
to have the colimits necessary to talk about monoids in the category of bifunctors,
C can only be a pre-order.

This work was originally inspired by Lindley, Wadler and Yallop’s work on the
Arrow Calculus [6]. In this calculus there are two typing judgements

Γ ` e : A Γ; ∆ `M ! A.

These correspond to the two categories in the definition of indexed Freyd category;
in fact the Arrow calculus is the internal language of closed indexed Freyd categories.

1.2 Overview

In the next section we present the formal definition of Arrows in a cartesian closed
category. We also present an alternative but equivalent definition that only requires
finite products to be present on the base category. This will be more technically
convenient for the rest of the development. In Section 3 we recall the definition of
Freyd category and show that Arrows correspond directly to a natural definition
of enriched Freyd category. In Section 4 we define indexed Freyd categories and
investigate their relationship with normal Freyd categories. Section 5 returns to the
connection between Freyd categories and Arrows and characterises those Arrows
that are equivalent to closed Freyd categories and hence to strong monads. Section
6 concludes. Auxiliary definitions and notations are given in Appendix A.

2 Arrows

We give two definitions of an Arrow on a category. The first follows the Haskell
definition closely, requiring that the base category be cartesian closed. The second
definition only requires us to assume that the base category has finite products.
We will prove that these two definitions are equivalent, and in Sections 3 and 4 we
will use the two alternatives to give two ways of interpreting the statement that
“Arrows are Freyd categories”.

2.1 Arrows in Cartesian Closed Categories

Let C be a cartesian closed category.

Definition 2.1 An Arrow in C consists of a mapping of objects Ar : |C|×|C| → |C|
and three families of morphisms:

arrxy : [x→ y]→ Ar(x, y)

4
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>>>xyz : Ar(x, y)×Ar(y, z)→ Ar(x, z)
firstxyz : Ar(x, y)→ Ar(x× z, y × z)

These must satisfy the following nine arrow laws, where we interpret the meanings
of these equations using the internal simply-typed λ-calculus of C:

arr(id) >>> a= a(1)
a >>> arr(id) = a(2)

(a >>> b) >>> c= a >>> (b >>> c)(3)
arr(f ; g) = arr(f) >>> arr(g)(4)

first(a) >>> arr(π1) = arr(π1) >>> a(5)
first(a) >>> arr(id × f) = arr(id × f) >>> first(a)(6)

first(a) >>> arr(α) = arr(α) >>> first(first(a))(7)
first(arr(f)) = arr(f × id)(8)
first(a >>> b) = first(a) >>> first(b)(9)

We have followed a convention to use f and g for variables of function type in C’s
internal language and a, b, c for variables of arrow type.

We now give four example classes of arrows derived from other structure on C.

• Given a strong monad (T, η, µ, t) on C, we can define its Kleisli Arrow by Ar(x, y) =
[x→ Ty]. The three families of morphisms are defined as follows:

arrxy(f) = f ; ε
a >>>xyz b= a;Tb;µ
firstxyz(a) = a× z;σT (y)z; τ ;Tσzy

where σxy : x × y → y × x is the symmetry operation. This is the traditional
definition for computational effects [9].

• Given a strong comonad (W, ε, δ, t) on C, we can define its CoKleisli Arrow by
Ar(x, y) = [Wx → y]. In this case, the three families of morphisms are defined
as follows:

arrxy(f) = ε; f
a >>>xyz b= δ;Wa; b
firstxyz(a) = 〈Wπ1, ε;π2〉; a× z

The strength is used to define the “internal” action of W : [x → y] → [Wx →
Wy]. Comonads have been used to give semantics to dataflow computations [13].

• Given a strong comonad (W, ε, δ, tW ) and a strong monad (T, η, µ, tT ) that have
a distributive law λ : WT → TW , then we can define their BiKleisli Arrow
Ar(x, y) = [Wx→ Ty]. Uustalu and Vene use this construction to give a seman-
tics to partial dataflow programs [13].

• Given an applicative functor (I, pure,~) [8] its Static Arrow is given by Ar(x, y) =
I([x→ y]). The three families of morphisms are defined as:

arrxy(f) = pure(f)
a >>>xyz b= pure(;′) ~ a~ b

firstxyz(a) = pure(×idz) ~ a

5
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where (;′) is the curried version of the composition operator.

Lemma 2.2 Given an Arrow, we can define another transformation secondxyz :
Ar(x, y)→ Ar(z × x, z × y), that satisfies the following laws:

second(a) = arr(σ) >>> first(a) >>> arr(σ)(10)
second(a) >>> arr(π2) = arr(π2) >>> a(11)

second(a) >>> arr(f × id) = arr(f × id) >>> second(a)(12)
second(second(a)) >>> arr(α) = arr(α) >>> second(a)(13)

second(arr(f)) = arr(id × f)(14)
second(a >>> b) = second(a) >>> second(b)(15)

Proof. Define secondwxyz(a) = arr(σzx) >>> first(a) >>> arr(σyz), where σxy :
x × y → y × x is the symmetry function; this automatically satisfies equation
(10). Equation (11) follows from arrow laws (4) and (5) and the fact that σ;π1 =
π2 and vice versa. Likewise, equations (12), (13), (14) and (15) follow from the
corresponding law for first and the properties of the symmetric monoidal structure
defined in terms of C’s internal language. 2

2.2 Arrows in Categories with Finite Products

We now give an alternative definition of Arrow, but this time only assuming that
the base category C has (chosen) finite products. We will show that, when C is
cartesian closed, this definition is equivalent to the previous one.

In order to state this definition, we make use of the indexed category Ĉ : Cop →
Cat, defined in Section A.3.

Definition 2.3 An Arrow on a category C with finite products is given by a map-
ping of objects Ar : |C| × |C| → |C| and three transformations of homsets, all
natural in w:

arrwxy : Ĉw(x, y)→ C(w,Ar(x, y))
>>>wxyz :C(w,Ar(x, y))× C(w,Ar(y, z))→ C(w,Ar(x, z))

firstwxyz :C(w,Ar(x, y))→ C(w,Ar(x× z, y × z))
These transformations must obey the same laws (1)-(9) as for arrows, where the
equations are interpreted as equalities between C morphisms generated by the above
transformations and the structure of Ĉ. In those equations we use f, g for morphisms
in Ĉw(x, y) and a, b, c for morphisms in C(w,Ar(x, y).

Theorem 2.4 For a cartesian closed category, to give an Arrow as in Definition
2.1 is exactly to give one as in Definition 2.3.

Proof. Taking the three transformations in Definition 2.3 and using the isomor-
phisms of homsets due to the cartesian closure, we see that they are in bijective
correspondence with triples of transformations of the form

arr ′wxy :C(w, [x→ y])→ C(w,Ar(x, y))

>>>′wxyz :C(w,Ar(x, y)×Ar(y, z))→ C(w,Ar(x, z))

first ′wxyz :C(w,Ar(x, y))→ C(w,Ar(x× z, y × z))

6



Atkey

all natural in w. By Yoneda, these are in bijective correspondence with the three
families of arrows required by Definition 2.1. It remains to check that the required
equations hold in both directions. This involves straightforward diagram chasing for
each equation. For example, for the associativity of Arrow composition, equation
(3), the diagram is:

C

v,Ar(w, x)×
Ar(x, y)×
Ar(y, z)

 −;>>>×id //

−;id×>>>

��

Π−1;Π−1×id=Π−1;id×Π−1

$$IIIIIIIII

C

(
v,Ar(w, y)×

Ar(y, z)

)

Π−1

zzuuuuuuuuuuuuu

−;>>>

��

C(v,Ar(w, x))×
C(v,Ar(x, y))×
C(v,Ar(y, z))

id×>>>′

��

>>>′×id //C(v,Ar(w, y))×
C(v,Ar(y, z))

>>>′

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;

C(v,Ar(w, x))×
C(v,Ar(x, z))

>>>′

**UUUUUUUUUUUUUUUUUUUUUUUUU

C

(
v,Ar(x, y)×

Ar(y, z′)

)
−;>>> //

Π−1

88qqqqqqqqqq

C(v,Ar(w, z))

where Π : C(w, x)× C(w, y) ∼= C(w, x× y). The outer diagram is the associativity
law for Definition 2.1 and the inner diagram is associativity for Definition 2.3.
The four diagrams around the edge all commute by the naturality of Π−1 and the
correspondence between >>> and >>>′. Hence the inner diagram commutes if the
outer ones does, and vice versa. 2

The following lemma states that Definition 2.3 can also have an additional second
transformation defined upon it. The proof is straightforward: one can either follow
the proof of the previous theorem and translate the second transformation defined
in the proof of Lemma 2.2, or one can directly follow the proof of Lemma 2.2 and
define second directly from the first .

Lemma 2.5 Given an Arrow, we can define another transformation secondxyz :
C(w,Ar(x, y)) → C(w,Ar(z × x, z × y)), that satisfies the laws (10) to (15) given
above.

3 Arrows and Freyd Categories

In this section we examine the relationship between Arrows and Freyd categories.
We first recall the definition of a (closed) Freyd category and the relationship with
strong monads. We then investigate how the definition of Arrow in a CCC (Defini-
tion 2.1) can be seen to be a Freyd category, where we arrive at a natural definition
of an enriched Freyd category. In the next section we will show that enriched Freyd
categories and Freyd categories are not the same thing.
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3.1 Freyd Categories

We first recall the definition of ordinary Freyd categories, following [11,12].

Definition 3.1 Given a category K, a binoidal structure on K consists of two
families of functors xn− : K → K and −o x : K → K, where x ∈ |K|, such that
xn y = xo y, which we write as x⊗ y.

A morphism f : x→ x′ of a binoidal category K is central if, for all g : y → y′,
f o y;x′ n g = xn g; f o y′ and symmetrically.

Definition 3.2 Given a binoidal category K, symmetric premonoidal structure on
K consists of an object I and four natural transformations α : (x ⊗ y) ⊗ z →
x⊗(y⊗z), λ : x⊗I → x, ρ : I⊗x→ x and σ : x⊗y → y⊗x, whose components are
all central and who satisfy the usual coherence conditions for symmetric monoidal
structure [7].

Note that any category with a choice of finite products and a terminal object
(any indeed any symmetric monoidal category) is symmetric premonoidal.

Definition 3.3 A Freyd category consists of a category C with finite products, a
symmetric premonoidal category K and an identity-on-objects functor that exactly
preserves symmetric premonoidal structure and such that J(f) is always central.

Definition 3.4 A closed Freyd category is a Freyd category with a right adjoint
to J −×y for every y:

Λ : K(x× y, z) ∼= C(x, [y ; z])

We use the notation [x ; y] to distinguish from the cartesian closed internal hom
[x→ y].

The equivalences we consider in the next section will only be up to isomorphism
of Freyd categories, so we must define morphisms of Freyd categories.

Definition 3.5 Given two Freyd categories J1 : C → K1 and J2 : C → K2, a
morphism between them is a functor F : K1 → K2 that strictly preserves symmetric
premonoidal structure and satisfies F (J1(f)) = J2(f). Freyd categories and their
morphisms form a category Freyd(C). Closed Freyd categories form a category
CFreyd(C).

The following proposition [5] establishes a link between closed Freyd categories
and strong monads.

Proposition 3.6 For a cartesian closed category C, the category CFreyd(C) is
equivalent to the category of strong monads and strong monad morphisms.

3.2 Enriched Freyd Categories

We start with a cartesian closed category C with an Arrow (Ar, arr , >>>,first) as
in Definition 2.1, and work towards a suitable definition of Freyd category that
matches. Intuitively, the first transformations, and the derived second transforma-
tions, should correspond to the required symmetric premonoidal structure, but on
what category? And what corresponds to the functor J?

8
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The answer can be seen by looking at the first two parts of Definition 2.1 and
comparing them to the definition of enriched category (see Appendix A.2 or Kelly
[4]). Given a category C with finite products, a C-enriched category D consists of a
collection of objects |D|, a mapping D : |D|×|D| → |C| (the hom-objects) and a pair
of transformations idDx : 1 → D(x, x) and compDxyz : D(x, y) × D(y, z) → D(x, z)
which satisfy the evident equations for identities and associativity. It is standard
that if C is cartesian closed, then by taking the hom-objects to be [x → y] we can
see C as being C-enriched.

Looking at Definition 2.1, there is another obvious choice for hom-objects with
C’s objects: take the hom-objects to be Ar(x, y) and use arr(id) for identities and
>>> for composition. It is easy to see that Arrow laws (1), (2), (3) imply the laws
for a C-enriched category and vice versa. Thus we have two C-categories with the
same objects as C: C, enriched by [x→ y]; and K, enriched by Ar(x, y).

A C-enriched functor is given by a mapping of objects F : |D| → |D′| and a
transformation of hom-objects D(x, y)→ D′(Fx, Fy) that preserves identities and
composition. We can use the transformation arr to define a C-functor from C to K,
which will do for our enriched analogue of J . The Arrow law (4) and our definition
of identities as arr(id) implies the laws for a C-functor and vice versa.

So we now have that the (Ar, arr , >>>) part of the definition of an Arrow on a
category C is equivalent to having a pair of C-categories with the same objects as
C and an identity-on-objects functor between them. It remains to devise a suitable
analogue of symmetric premonoidal structure for C-categories, and to show that it
corresponds exactly to the transformation first .

The definition of binoidal structure carries over directly from the non-enriched
case simply by replacing “functor” by “C-functor” everywhere. Binoidal structure
on C is given directly by C’s finite products, and binoidal structure on K is given
by f o x = first(f) and x n f = second(f). By Arrow laws (8), (9), (14) and (15)
these give C-functors.

A slightly tricky point is the definition of centrality for C-enriched binoidal struc-
ture because we cannot say “for all morphisms...”. We deal with this by requiring
that all arrows produced by arr are central, in the following sense:

[x→ x′]×Ar(y, y′) σ //

arr×id ��

Ar(y, y′)× [x→ x′]
id×arr��

Ar(x, x′)×Ar(y, y′)
(−oy)×(x′n−) ��

Ar(y, y′)×Ar(x, x′)
(xn−)×(−oy′) ��

Ar(x× y, x′ × y)×Ar(x′ × y, x′ × y′)
>>> --[[[[[[[[[[[[[[[[[[ Ar(x× y, x× y′)×Ar(x× y′, x′ × y′)

>>>��
Ar(x× y, x′ × y′)

and symmetrically for the [x→ y] component “on the bottom”.
It is easy to see that by Arrow laws (6), (8), (12) and (14) that Arrows sat-

isfy these diagrams, and conversely. The final parts we need, that the symmetric
monoidal structure isomorphisms are natural is covered by Arrow laws (5), (7) and
(10).

In summary, we have proved:

Theorem 3.7 For a cartesian closed category C, to give an Arrow as in Definition

9
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2.1 is to give a C-enriched Freyd category J : C → K.

An obvious step now would be to go on and define a notion of closure for C-
enriched Freyd categories. We defer this step until Section 5.

4 Indexed Freyd Categories

We now start from an Arrow in a category with finite products (Definition 2.3) and
examine how it can been seen to be analogous to the structure of a Freyd category.
The structure that we finish up with, which we call indexed Freyd categories, will be
more general than that of Arrows. We then investigate the relationship between in-
dexed Freyd categories and Freyd categories and give an extra condition on indexed
Freyd categories that makes them isomorphic to Freyd categories.

4.1 Indexed Freyd Categories

As in the previous section we seek a category on which we can find a premonoidal
structure to use as our analogue of the codomain category of a Freyd category. The
crucial step is to take the natural transformation arr : Ĉw(x, y) → C(w,Ar(x, y))
from Definition 2.3 and see it as a functor between C-indexed categories Ĉ and H,
where |Hw| = |C| and Hw(x, y) = C(w,Ar(x, y)). H is a C indexed category with
identities in the fibres given by arr(id) and composition by >>>. By the Arrow laws
(1), (2) and (3) the fibres are well-defined categories. Re-indexing is accomplished by
precomposition in C. The mapping arr : Ĉw(x, y) → Hw(x, y) defines an identity-
on-objects indexed functor J : Ĉ → H by the naturality of arr and Arrow law
(4).

Each of the fibres Hw can be given premonoidal structure: we define a o x =
first(a) and x n a = second(a); by arrow laws (8), (9), (14) and (15), these are
well-defined functors. By laws (8), (6), (14) and (12), every morphism of the form
arr(f) is central; hence, we can define the premonoidal structure transformations
via arr by those in Ĉw. Laws (5), (7), (10), (11) and (13) ensure that these are
natural. By the naturality of first and second , the re-indexing functors Hf preserve
the premonoidal structure.

Each fibre of Ĉ automatically has premonoidal structure derived from the chosen
finite products and the indexed functor J defined above preserves the premonoidal
structure by laws (8) and (14) and the sufficient condition for centrality in the fibres
Hw given above.

We consolidate the structure we have induced into a definition:

Definition 4.1 Given a category C with finite products, an indexed Freyd category
consists of an indexed category H : Cop → Cat and an identity-on-objects indexed
functor J : Ĉ → H, such that:

(i) Each Hw has symmetric premonoidal structure;

(ii) All re-indexing functors Hf : Hw′ → Hw are identity-on-objects and strict
symmetric premonoidal;

(iii) The functors Jw : Ĉw → Hw are strict symmetric premonoidal and every Jw(f)
is central.

10
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We have shown that it is possible to go from an Arrow on a category with finite
products to an indexed Freyd category, but it is not yet possible to go back the
other way: there is no way to obtain an object of C that represents the arrow! We
fix this by providing a further definition:

Definition 4.2 A closed indexed Freyd category is an indexed Freyd category J :
Ĉ → H equipped with, for every pair of objects x and y, an object [x ; y] and an
isomorphism

Λwxy : Hw(x, y) ∼= C(w, [x ; y])

natural in w.

An example of a non-closed indexed Freyd category is given by a category C with
finite products and a functor F : C → C with natural transformation αx : Fx→ x

and a strong comonad (W, ε, δ, t). Define Hw(x, y) = C(Fw ×Wx, y). It is easy to
see that this gives an indexed Freyd category that is not, in general, closed.

Proposition 4.3 Given a category C with finite products, every Arrow gives rise
to a closed indexed Freyd category and vice versa.

Proof. In the forward direction it remains to show that indexed Freyd categories
arising from Arrows are closed: define the objects [x ; y] = Ar(x, y); the isomor-
phism is trivial since Hw(x, y) = C(w,Ar(x, y)).

Conversely, we can take any indexed Freyd category and obtain an arrow on the
base category C. Define Ar(x, y) = [x ; y] and:

arr(f) = Λ(J(f))
a >>> b= Λ(Λ−1(a); Λ−1(b))
first(a) = Λ(Λ−1(a) o x)

The laws are now easy to check. 2

The previous proposition states that we have two well-defined translations: one
from Arrows to closed indexed Freyd categories, and one in the opposite direction.
We now show that these two translations are mutually inverse, up to isomorphism.
To state exactly what we mean by isomorphisms here, we define morphisms between
Arrows on a base category and morphisms between indexed Freyd categories on a
base category.

Definition 4.4 Let (Ar1, arr1, >>>1,first1) and (Ar2, arr2, >>>2,first2) be two Ar-
rows on C in the sense of Definition 2.3. A morphism between them consists of a
family of morphisms Fxy : Ar1(x, y)→ Ar2(x, y) such that:

arr1(f);F = arr2(f)
(a >>>1 b);F = (a;F ) >>>2 (b;F )

first1(a);F = first2(a;F )

Arrows and Arrow morphisms form a category Arrows(C).

Definition 4.5 Let J1 : Ĉ → H1 and J2 : Ĉ → H2 be two indexed Freyd cate-
gories. A morphism between them is an indexed functor F : H1 → H2 that strictly
preserves symmetric premonoidal structure and satisfies Fw(J1

w(f)) = J2
w(f).

11
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Indexed Freyd categories and morphisms form a category IdxFreyd(C). Closed
indexed Freyd categories and morphisms form a category CIdxFreyd(C).

Theorem 4.6 The categories Arrow(C) and CIdxFreyd(C) are equivalent.

Proof. We must first check that the two translations defined above can be extended
to be functors. Given an Arrow morphism F : Ar1(x, y) → Ar2(x, y) we need an
indexed Freyd category morphism that will map C(w,Ar1(x, y)) to C(w,Ar2(x, y)),
which is easily given by composition. In the opposite direction, given an closed
indexed Freyd category morphism F : H1 → H2, define an Arrow morphism via
Yoneda on the composite:

C(w, [x ;1 y]) ∼= H1
w(x, y) Fw−→ H2

w(x, y) ∼= C(w, [x ;2 y]).

We now check that this is an equivalence. Starting from an Arrow, translating
to an indexed Freyd category and then back again, it is easy to check that we end
up exactly where we started. Starting from a closed indexed Freyd category (J,H)
translating to an Arrow and back again we get a closed indexed Freyd category
where H ′w(x, y) = C(w,Ar(x, y)) and J ′(f) = Λ(Jf). This is isomorphic to (J,H)
by Λ. 2

4.2 Indexed Freyd Categories and Freyd Categories

We now examine the relationship between indexed Freyd categories and Freyd cat-
egories. It turns out that Freyd categories are embedded co-reflectively in indexed
Freyd categories. First, we set up the two translations.

Lemma 4.7 There is a functor M : IdxFreyd(C)→ Freyd(C).

Proof. Given an indexed Freyd category J : Ĉ → H we obtain an ordinary Freyd
category JK : C → K by setting K(x, y) = H1(x, y) and taking JK to be the com-
posite of the isomorphism between C and Ĉ1 and the functor J1. This definition
makes K symmetric premonoidal because H1 is, and JK preserves symmetric pre-
monoidal structure because the two components it is built from do. Indexed Freyd
category morphisms F : H1 → H2 give Freyd category morphisms by restriction to
F1 : K1 = H1

1 → H2
1 = K2. 2

Lemma 4.8 There is a functor N : Freyd(C)→ IdxFreyd(C).

Proof. Assume a Freyd category J : C → K. Following the construction of Ĉ
from C given in Section A.3, we construct K̂ from K by considering the comonads
Ww = w n − induced by objects w. The counit and comultiplication are given by
J(π2) : Wwx → x and J(〈π1, id) : Wwx → WwWwx respectively; these are exactly
the counit and comultiplication of the comonad we defined in C, via J . Again,
every morphism f : w → w′ in C gives a comonad morphism Wf : Ww → Ww′ .
We use these to construct a C-indexed category K̂ where each fibre K̂w has the
same objects as C and homsets K̂w(x, y) = K(Wwx, y) = K(w × x, y). Similar to
the definition of a choice of finite product structure on the fibres of Ĉ, symmetric
premonoidal structure is definable on each of the fibres of K̂: given f ∈ K̂w(x, y)
define f ô z = α−1; f o z. The functor J : C → K straightforwardly induces an
indexed functor Ĵ : Ĉ → K̂ which is easily checked to preserve the premonoidal
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structure. Given a Freyd category morphism F : K1 → K2 we get an indexed
Freyd category morphism defined by H1

w(x, y) = K1(w × x, y) F−→ K2(w × x, y) =
H2
w(x, y). 2

Lemma 4.9 The functor N is an embedding.

Proof. We must check that N is injective on objects and is faithful. Injectivity on
objects is obvious: if K̂1 = K̂2, then K1 = K2. Faithfulness also follows. 2

One can immediately see that there is not much hope of getting an equivalence
here: the translation from indexed Freyd category to Freyd category only makes use
of the fibre H1, not any of the others. Nevertheless, we play through what happens
by looking at the back and forth translations.

Starting from a Freyd category, applying N and then M to get back to a Freyd
category we end up the following definitions: K ′(x, y) = K(1 × x, y) and J ′(f) =
J(π2; f). It is clear that there are Freyd category morphisms making this isomorphic
to the original Freyd category.

If we start from an indexed Freyd category, things are different. Given an
indexed Freyd category J : Ĉ → H, going via Freyd categories gives us H ′w(x, y) =
H1(w×x, y) and Jw(f) = J1(π2; f). It is not the case in general thatH ′ is going to be
isomorphic to H: consider the indexed Freyd category constructed from a comonad
(W, ε, δ) which has Hw(x, y) = C(w×Wx, y). Then H ′w(x, y) = C(1×W (w×x), y).
These are clearly not isomorphic.

However, it is the case that there is a morphism from H ′ → H given by mapping
a ∈ H1(w × x, y) to the following arrow in Hw:

x
J( bid)−→ w × x H!(a)−→ y

where ! : w → 1 is the unique morphism. Some straightforward checking ensures
that this is a natural transformation ε : NM → Id in IdxFreyd(C).

Theorem 4.10 The category Freyd(C) co-reflectively embeds into IdxFreyd(C).

Proof. It remains to show that M is right adjoint to N . The unit η of the ad-
junction is the isomorphism between MN and Id given above and the counit is
the natural transformation ε : NM → Id given above. Some lengthy but tedious
checking ensures that these obey the triangular identities for adjunctions. 2

Given the above counterexample to the counit of the adjunction being an iso-
morphism, we can see the essential difference between Freyd categories and indexed
Freyd categories. In a Freyd category, computations, represented by members of
K(x, y) have one input, which may or may not be structured: in the case of a
Freyd category built from a comonad (K(x, y) = C(Wx, y)), it is structured; in the
case of a Freyd category built from a monad (K(x, y) = C(x, Ty)) it is unstruc-
tured. Indexed Freyd categories on the other hand have two inputs: computations
in Hw(x, y) have access to an input of type w and an input of type x, either of which
may be structured. In the case of closed indexed Freyd categories, the w input must
be unstructured.

In the case when the indexed Freyd category is built from a monad, so that
Hw(x, y) = C(w × x, Ty), there is no distinction between the two kinds of input.

13
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We then have an inverse to the counit ε, giving an isomorphism:

ε : H1(w × x, y) ∼= Hw(x, y)

An equivalent, and nicer, formulation is to state this with an object in place of 1:

Hw(x× y, z) ∼= Hw×x(y, z)(16)

where the Hw(x × y, z) → Hw×z(y, z) direction is given by a 7→ J(π̂2 × y);Hπ1(a).
We will show in the next section that closed indexed Freyd categories that satisfy
this isomorphism are equivalent to strong monads.

Theorem 4.11 The subcategory of IdxFreyd(C) whose objects satisfy (16) is equiv-
alent to Freyd(C).

Proof. We have exactly demanded the additional property required for the functors
M and N to be an equivalence. 2

We can extend this to an equivalence between closed indexed Freyd categories
that satisfy (16) and closed Freyd categories:

Theorem 4.12 The subcategory of CIdxFreyd(C) whose objects satisfy (16) is
equivalent to CFreyd(C).

Note that the translation M : IdxFreyd(C) → Freyd(C) does not extend to
the categories with closure. For example, if we start from a closed indexed Freyd
category derived from a CoKleisli arrow, then Hw(x, y) = C(w, [Wx → y]) and
the derived Freyd category via M has K(x, y) = H1(x, y) = C(1, [Wx → y]) ∼=
C(Wx, y). It is clear that this Freyd category is not in general closed. A higher-
level view of this failure is that the required isomorphism for closed Freyd categories:

K(x× y, z) ∼= C(x, [y ; z])

splits the input of the computation in an arbitrary place, meaning that any structure
the input has must be very weak.

5 Arrows and Freyd Categories, Revisited

We know from Proposition 3.6 that there is an equivalence between closed Freyd
categories and strong monads. Given the equivalence between closed Freyd cate-
gories and closed indexed Freyd categories satisfying isomorphism (16), it is natural
to ask what this means in terms of arrows.

Given an Arrow on a cartesian closed category C, such that the indexed Freyd
category derived from it satisfies isomorphism (16), we can derive the following
isomorphism:

C(w,Ar(x× y, z))∼=Hw(x× y, z)
∼=Hw×x(y, z)
∼=C(w × x,Ar(y, z))
∼=C(w, [x→ Ar(y, z)])

natural in w. Thus, via Yoneda, we have an isomorphism

Ar(x× y, z) ∼= [x→ Ar(y, z)](17)

14
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where the Ar(x× y, z)→ [x→ Ar(y, z)] direction is a 7→ λx.arr(λy.(x, y)) >>> a in
C’s internal language.

Theorem 5.1 The subcategory of Arrow(C) given by Arrows that support isomor-
phism (17) is equivalent to CFreyd(C).

Proof. Observe that Arrows that support isomorphism (17) are equivalent to closed
indexed Freyd categories that support isomorphism (16) by a restriction of Theorem
4.6. Hence by Theorem 4.12 the theorem follows. 2

Corollary 5.2 The subcategory of Arrow(C) given by Arrows that support isomor-
phism (17) is equivalent to the category of strong monads on C and strong monad
morphisms.

We can now define closed C-enriched Freyd categories as those that support
isomorphism (17).

Corollary 5.3 Closed C-enriched Freyd categories are equivalent to strong monads.

We can recover the monad associated with an Arrow that supports isomorphism
(17) by setting Tx = Ar(1, x). The isomorphism is essential in defining the mul-
tiplication of the monad. Arrows that are really monads have been identified in
Haskell [2] as those that are members of the ArrowApply class:

class Arrow a => ArrowApply a where
app :: a (a b c, b) c

That is, there is an Arrow Ar(Ar(x, y) × x, y), performing internal evaluation of
Arrows. This is derivable from isomorphism (17) by taking the identity [Ar(y, z)→
Ar(y, z)] backwards across the isomorphism (this is the direction that is not always
definable).

6 Conclusions

We have shown that there is more to the connection between Freyd categories and
Arrows than initially meets the eye. The crucial observation is that Arrows are
defined completely within a base category, and so have more flexibility than Freyd
categories. Investigating the connection between Freyd categories and Arrows has
led to the interesting definition of indexed Freyd category, and the notion of “first-
order” arrows—indexed Freyd categories that are not closed.

In future work we wish to establish the connection between Arrows/indexed
Freyd categories and other notions of computation such as comonads and applicative
functors in the same way as we have for strong monads in this work. We also want
to investigate additional structure on Arrows such as recursion (the ArrowLoop type
class) and coproducts (the ArrowChoice type class) and see what happens to the
related indexed Freyd categories. Also, it would be interesting to consider freely
adding closure to indexed Freyd categories, following Power’s free addition of closure
to Freyd categories [10]. The additional theory developed by Jacobs and Hasuo in
[3], which relates the definition of Arrows as monoids in categories of bifunctors to
Eilenberg-Moore and Kleisli constructions also suggests further work.

15



Atkey

Acknowledgements
I wish to thank Sam Lindley, Philip Wadler and Jeremy Yallop for useful dis-

cussions and insights into Arrows and related notions. This work was funded by
the ReQueST grant (EP/C537068) from the Engineering and Physical Sciences Re-
search Council.

References

[1] Heunen, C. and B. Jacobs, Arrows, like Monads, are Monoids, Electr. Notes Theor. Comput. Sci. 158
(2006), pp. 219–236.

[2] Hughes, J., Generalising monads to arrows, Science of Computer Programming 37 (2000), pp. 67–111.
URL http://www.cs.chalmers.se/~rjmh/Papers/arrows.ps

[3] Jacobs, B. and I. Hasuo, Freyd is Kleisli, for Arrows, in: C. McBride and T. Uustalu, editors, Proceedings
of Workshop on Mathematically Structured Functional Programming, BCS eWiC, 2006.

[4] Kelly, G. M., “Basic Concepts of Enriched Category Theory,” Number 64 in London Mathematical
Society Lecture Notes, Cambridge University Press, 1982, available as Reprints in Theory and
Applications of Categories, No. 10, 2005.

[5] Levy, P. B., J. Power and H. Thielecke, Modelling environments in call-by-value programming languages,
Information and Computation 185 (2003), pp. 182–210.

[6] Lindley, S., P. Wadler and J. Yallop, The Arrow Calculus, Technical Report EDI-INF-RR-1258,
University of Edinburgh (2008).

[7] Mac Lane, S., “Categories for the Working Mathematician,” Number 5 in Graduate Texts in
Mathematics, Springer-Verlag, 1998, 2nd edition.

[8] McBride, C. and R. Paterson, Applicative Programming with Effects, Journal of Functional
Programming 18 (2008), pp. 1–13.

[9] Moggi, E., Notions of computation and monads, Information and Computation 93 (1991), pp. 55–92.

[10] Power, J., Generic models for computational effects, Theor. Comput. Sci. 364 (2006), pp. 254–269.

[11] Power, J. and E. Robinson, Premonoidal categories and notions of computation, Mathematical
Structures in Computer Science 7 (1997), pp. 453–468.
URL ftp://ftp.dcs.qmw.ac.uk/pub/lfp/edmundr/premoncat.dvi.gz

[12] Power, J. and H. Thielecke, Closed Freyd- and kappa-categories, in: ICALP, LNCS 1644 (1999).
URL http://www.cs.bham.ac.uk/~hxt/research/freydkappa.ps

[13] Uustalu, T. and V. Vene, Signals and Comonads, J. UCS 11 (2005), pp. 1310–1326.

A Auxiliary Definitions and Notation

This appendix recalls several standard definitions and defines the notation we use.

A.1 Cartesian Closed Categories

The constructions of this paper are carried out over a base category C which we
assume to have finite products, and sometimes assume to be cartesian closed. We
work with a choice of finite product structure, and we use x× y to denote its action
on objects and 1 for the terminal object or empty product. We use 〈f, g〉 to denote
pairing, πi for projections and f × g to denote the induced functor action. For
cartesian closed structure we use [x→ y] to denote the internal hom.

We also make use of several defined constants in categories with finite products,
which have the types:
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id : x→ x

α : (x× y)× z → x× (y × z)
σ : x× y → y × x

−;− : [x→ y]× [y → z]→ [x→ z]

We also use the same notation for the “internal” versions of these constants, which
have type 1→ −.

A.2 Enriched Categories

Enriched categories generalise ordinary categories by instead of assuming a set of
morphisms between objects, we require a hom-object of some base category C. The
canonical reference for enriched categories is Kelly [4]. Formally, given a cartesian
closed category C, a C-enriched category D consists of a collection of objects |D|
and for every pair x, y ∈ |D| a C object D(x, y)—the hom-objects of D—and two
families of C-morphisms idx : 1→ D(x, x) and >>>xyz : D(x, y)×D(y, z)→ D(x, z),
satisfying the diagrams:

D(x, y)× 1

id×id

��

D(x, y)
∼= //∼=oo 1×D(x, y)

id×id

��
D(x, y)×D(y, y)

comp

66mmmmmmmmmmmm
D(x, x)×D(x, y)

comp

hhQQQQQQQQQQQQ

D(w, x)×D(x, y)×D(y, z)

id×comp

��

comp×id//D(w, y)×D(y, z)

comp

��
D(w, x)×D(x, z)

comp //D(w, z)

Given two C-categories D and D′, a C-functor F : D → D′ is given by a mapping
of D objects to D′ objects and a family of C-morphisms Fxy : D(x, y)→ D(Fx, Fy),
satisfying the diagrams:

1

idD

��
idD′

''OOOOOOOOOOOO

D(x, y) F //D′(Fx, Fy)

D(x, y)×D(y, z)
compD

//

F×F
��

D(x, z)

F
��

D′(Fx, Fy)×D′(Fy, Fz)
compD′

//D′(Fx, Fz)

Given two C-functors F and G from D to D′, a C-natural transformation be-
tween them is a family of C-morphisms ζx : 1→ D′(Fx,Gx) satisfying the diagram:

D(x, y)× 1
F×ζy //D′(Fx, Fy)×D′(Fy,Gy)

comp

**TTTTTTTTTTTTTTTT

D(x, y)

∼=

OO

∼=
��

D′(Fx,Gy)

1×D(x, y) ζx×F //D′(Fx,Gx)×D′(Gx,Gy)

comp

44jjjjjjjjjjjjjjjj

17



Atkey

A.3 Indexed Categories

Given a category C, a C-indexed category is a functor H from Cop → Cat, where
Cat is the category of all categories and functors between them. For an object w of
C we use Hw to denote the category that H gives us. The contravariant action of H
turns every morphism f : w → w′ in C into a re-indexing functor Hf : Hw′ → Hw.
Given two C-indexed categories H and H ′, an identity-on-objects C-indexed functor
F between them is a family of functors Fw : Hw → H ′w such that for all f : w → w′

in C, Hf (Fw′x) = Fw(Hfx) on objects and Hf (Fw′g) = Fw(Hfg) on morphisms.
Assuming C has finite products, we can construct an indexed category Ĉ using

C’s finite products. Every object w of C gives a comonad by Wwy = w × x, with
counit ε = π2 : Wwx → x and comultiplication δ = 〈π1, id〉 : Wwx → WwWwx.
Given a morphism f : w → w′ there is a morphism of comonads Wf : Ww → Ww′

given by f×−. Each comonad has an associated co-Kleisli category, which we write
as Ĉw which has Ĉw(x, y) = C(Wwx, y) = C(w × x, y). Morphisms f : w → w′

induce functors Ĉf : Ĉw′ → Ĉw via precomposition with the induced comonad
morphisms. Hence we have an C-indexed category Ĉ, where every fibre has exactly
the same objects as C. Moreover, each fibre Ĉw of this indexed category has finite
products, a choice of which can be defined in terms of our chosen finite products on
C. It is also easy to see that C ∼= Ĉ1.
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