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ON THE RATCHET ANALYSIS OF A CRACKED WELDED PIPE  

 

Tianbai Li, Haofeng Chen*, Weihang Chen, James Ure 

Department of Mechanical Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK 

 

Abstract: This paper presents the ratchet limit analysis of a pipe with a symmetric crack in a 

mismatched weld by using the extended Linear Matching Method (LMM). Two loading conditions 

are considered: i) a cyclic temperature load and a constant internal pressure; and ii) a cyclic 

temperature load and a constant axial tension. Individual effects of i) the geometry of  the Weld 

Metal (WM), ii) the size of the crack, iii) the location of the crack and iv) the yield stress of WM on 

the ratchet limits, maximum temperature ranges to avoid ratchetting and limit loads are 

investigated. Influence functions of  the yield stress of WM on the maximum temperature ranges 

and limit loads are generated. The results confirm the applicability of the extended LMM to the 

cracked welded pipe. 

Keywords: shakedown, ratchet limit, limit load, crack, welded pipe  

 

1 Introduction 

The circumferential butt welded pipes are widely used in nuclear power plants and usually 

subjected to complex varying thermal and mechanical loads [1-2]. Under such loads, the pipes may 

fail either from the accumulated plastic deformations during the increasing load cycles or from the 

reverse plastic deformations. The former is known as ratchetting, which leads structures to 

incremental collapse; the latter is named plastic shakedown, which gives rise to local low cycle 

fatigue. For a pipe with a crack in the weld, the elastic stress singularity at the crack tip violates the 

elastic shakedown condition, hence the non-existence of a finite shakedown limit. Therefore the 

ability to calculate the ratchet limit of the cracked pipe is particularly desirable. The obtained 

ratchet limit may then be used to calculate the ratchetting reference stress to predict material 

deformation and rupture [3]. 

Ratchetting analysis of loaded structures has been investigated by many researchers in past 

decades [2-20].  The complexity of ratchetting means that analytical solutions are rare, and thus 
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incremental Finite Element Analysis (FEA) is widely used. Incremental FEA can only show if 

ratchetting occurs, and therefore many calculations are required to generate the Bree-like diagram 

[4]. 

In order to overcome the difficulties of the step-by-step elasto-plastic FEA, a number of direct 

methods based upon the Koiter's [5] kinematic and/or the Melan's [6] static theorems have been 

developed including: i) the nonlinear superposition method [7]; ii) mathematical programming 

methods [8-10]; iii) the Generalized Local Stress Strain (GLOSS) r-node method [11]; iv) the 

Elastic Compensation Method (ECM) [12]; and v) the Linear Matching Method (LMM) [13-20]. 

The LMM is distinguished from other simplified methods by ensuring that equilibrium and 

compatibility are satisfied at each stage. The LMM has been shown to give accurate shakedown 

analysis to complex geometries and load histories [13, 14]. The LMM has also been extended to 

evaluate ratchet limits [15-18] for defect-free components subjected to cyclic load conditions from 

two-load extremes [15-17] to multi-load extremes [18]. However, the application of the latest LMM 

ratchet limit method [18] to structures with a discontinuity in the geometry and material has not yet 

been undertaken. 

In this paper, the method is used to address ratchet limits of a circumferentially welded pipe with 

a circumferential crack in the weld subjected to a varying temperature load and a constant i) internal 

pressure or ii) axial tension. The remainder of this paper comprises five parts. In section 2, the 

LMM ratchet limit method is briefly described. Section 3 presents the pipe geometry and material 

properties. This is followed by the FE model of the pipe. The ratchet limit analysis is presented in 

Section 5. In this section, the effects of strength of the WM,  location and size of the crack, width of 

the WM, and finally the coefficient of thermal expansion of the WM on the ratchet limit are 

discussed.  

 

2     Linear Matching Method 

Consider a body of volume, V, with a surface area S . The body is subjected to varying 

mechanical loads, ),( txP i
V , over a fraction of the surface area, pS , and varying thermal loads 

),( txi
Vθ . A zero displacement rate condition is applied over the remainder of the surface area, uS  

such that 0=iu& . Over a time cycle tt Δ≤≤0 , these loads are decomposed into constant and cyclic 

components such that 

),()(),( txPxPtxP iii
v += λ ,    ),()(),( txxtx iii

v θθλθ +=                                              (1) 
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where λ  is a load multiplier. P and θ are the constant mechanical and thermal load distribution 

respectively. P and θ  are the cyclic mechanical and thermal load respectively. The corresponding 

linear elastic stress history ijσ̂ is then given as 

),(ˆ),(ˆ)(),(ˆ txtxxtx kijk
P
ijkijkij

θσσσλσ ++=                                                     (2)  
 
where )( kij xσ is the elastic stress due to P and θ . ),(ˆ txk

P
ijσ  and ),(ˆ txkij

θσ  are the elastic stress 
histories corresponding to ),( txP k and ),( txkθ , respectively. The cyclic stress history ),( txkijσ  over 
the time cycle is given by 

     ),()(),(ˆ),( txxtxtx k
r
ijkijkijkij ρρσσ ++=                                                   (3) 

where )( kij xρ  is a constant residual stress and corresponds to )( kij xσλ . ),( txk
r
ijρ  is a changing 

residual stress corresponding to P
ijσ̂

 and θσ ijˆ
 during a cycle and satisfies: 

)(),()0,( 0
kijk

r
ijk

r
ij xtxx ρρρ =Δ=                                                              (4) 

where )(0
kij xρ is the constant element of r

ijρ  

      Consider an energy function 

dtdVI c
ij

V

t

ij
c
ij

c
ij εσσλε && ∫ ∫ −=

Δ

0
)(),(                                                              (5) 

where c
ijε&  is a kinematically admissible strain rate. c

ijσ  represents a stress at yield corresponding to 

c
ijε& . 

The determination of the ratchet limit is implemented by a two-stage nonlinear minimisation 

procedure: i) a changing residual stress r
ijρ  is computed by an incremental minimisation of the 

energy function I and satisfies Eq. (4), with the application of the cyclic load; and ii) a global  

minimisation of the upper bound shakedown theorem is performed to evaluate the additional 

constant load, which leads the load state to the ratchet limit. 

Consider a body subjected to a cyclic load involving multi-load extremes. It is assumed that 

plastic strains only occur at the extremes corresponding to the time instants kt ( Kk ,...,1= ). The 

instants kt  represents a sequence of time points in the cyclic load history such that 

∑Δ=Δ
=

K

k
k

p
ij

c
ij t

1
)(εε , where )( k

p

ij
tεΔ  is the plastic strain increment at kt . Hence we have the function 

dVttII k
ijk

r
ijkij

V

K

k

k
ij

K

k
k

c
ij ερσσλε Δ−−∫ ∑∑ ==

==
))()(ˆ(),(

11
&                                                        (6) 

where 
                  ∑Δ+=

=

k

m
mijijk

r
ij tt

1

0 )()( ρρρ                                                                        (7) 

             )()()()( k
p

ijkmnkijmnk
T
ij ttCt ερμε Δ+Δ=Δ                                                              (8) 
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 )2/())()(ˆ)(ˆ()( kk
r
ijkijk

P

ijk
p

ij tttt μρσσε θ ′++=Δ                                                          (9) 

where T
ijεΔ is compatible and ijρΔ satisfies equilibrium. An upper 'dash' refers to deviatoric 

components. kμ  is an iterative shear modulus and determined by the linear matching condition 
[15,16] 

                       ))((3
2

k
p

ij

y
k tεε

σ
μ

Δ
=                                                                    (10) 

where yσ  is the yield stress and ))(( k
p

ij
tεε Δ  is the effective plastic strain increment. 

The changing residual stress is computed by the minimisation of the I  via the iterations among 

Eqs. (7-10). We denote )( k
n
ij tρΔ  as an evaluated changing residual stress at thk  load instance after 

thn  iteration, where Kk ,...,1= and Nn ,...,1= . At thn iteration, )( k
n
ij tρΔ is computed for all K load 

instances. The converged solution occurs if the summation of all changing residual stresses at 

thN iteration vanishes, i.e. 0)(
1

=∑Δ
=

k

K

k

N
ij tρ . Hence the constant residual stress 0

ijρ  can also be 

determined by 

∑ ∑Δ=
= =

K

k

N

n
k

n
ijij t

1 1

0 )(ρρ                                                                     (11) 

The ratchet limit can be determined by the minimisation of the upper bound shakedown theorem 

[15], with the elastic solution augmented by the changing residual stress )( k
r
ij tρ . The theorem gives 

dVttdVtt kijk
v

K

k

c
ijkij

V

K

k
kij )()()()(

11
εσεσ Δ∫∑=Δ∫∑

==
                                                (12) 

Where ijσ is given in Eq. (3). For the application of the von Mises yield criterion, we have  

                  dVtdVtt kij
v

K

k
ykijk

v

K

k

c
ij ))(()()(

11
εεσεσ Δ∫∑=Δ∫∑

==
                                            (13) 

Thus, an upper bound ratchet limit multiplier is given by solving Eq. (12) with consideration of Eqs. 
(2), (3) and (13).  

∫∑ Δ

Δ+∫ +∑ ∫∑−Δ
=

=

= =

V

K

k
kijij

kijk
r
ijk

V
ijk

K

k V

K

k

P
ijkijy

dVt

dVttttdVt

1

1 1

)(

)())()()(())((

εσ

ερσσεεσ
λ

θ

                              (14) 

where ijijkij t εεεε ΔΔ=Δ 3
2))((  is the effective plastic strain increment at kt . This multiplier λ  

gives the capacity of the body subjected to cyclic loads P and θ  to withstand constant loads P and 

θ  before ratchetting occurs. On the basis of this formulation, the LMM produces a sequence of 

monotonically reducing upper bounds, which converges to the least upper bound ratchet limit for 

the chosen class of displacement fields. In the following sections, a symmetric cracked welded pipe 

is analysed in detail using the proposed method. 
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3     Pipe Geometry and Material Properties 

Consider a circumferentially welded pipe, with a circumferential symmetric inner/central/outer 

surface crack in the weld (Fig. 1). The inhomogeneous pipe includes two different material domains 

- Parent Material (PM) and Weld Metal (WM). Each material is isotropic, elastic perfectly plastic 

and satisfies the von Mises yield criterion. The length L , inner radius iR , wall thickness w , crack 

length a  and weld width H are shown in Fig. 1 and Table 1. The material properties including the 

yield stress yσ , Young’s modulus E , Poisson’s ratio ν , conductivity k  and coefficient of thermal 

expansion α adopted in this paper for the baseline calculation are given in Table 2, where WM and 

PM have same values of  E , k  and ν . 

 

4     Loading  Conditions  and  Finite Element Modelling  

In this analysis, the pipe is subjected to two loading conditions: i) p+Δθ , a cyclic temperature 

θΔ  and a constant internal pressure p  (with closed end conditions) (Fig. 2a) or (ii) T+Δθ , a 

cyclic temperature θΔ  and a constant axial tension T (Fig. 2b). 

Fig. 2 shows the two-dimensional axisymmetric model, with a symmetry condition applied in the 

axial direction. The end of the pipe is constrained to remain in-plane, simulating the expansion of a 

long pipe. The closed end condition of the pipe is simulated by applying an equivalent axial tension 

)2/( 22 wwRpRq ii += . 

It is assumed that the ambient air temperature outside of the pipe is 0θ , and the operating 

temperature of the fluid contained within the pipe fluctuates between ambient and a higher value, 

θθ Δ+0  (Fig. 3). Due to the dissimilar material in the pipe, the applied cyclic thermal loading may 

be constructed by three thermal stress extremes: i) a thermal stress field produced by a linear 

temperature gradient through the wall thickness; ii) a thermal stress field due to the different 

thermal expansion coefficients between the PM and WM occurring at the highest uniform 

temperature; and iii) a zero thermal stress field simulating a uniform ambient temperature. If 0θ  is 

zero, the maximum effective elastic thermal stresses for these three extremes can be determined by 

the maximum temperature difference θΔ . Hence the thermal load history can be characterised by 

θΔ . 

In this paper, the Abaqus type CAX8R 8-node biquadratic axisymmetric quadrilateral elements 

with reduced integration are used for structural analysis and DCAX8 8-node quadratic 
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axisymmetric heat transfer quadrilateral elements with reduced integration scheme are used for the 

heat transfer analysis (Fig. 4). 

 

5     Results and Discussions 

 In this paper, a mismatch rate r  in the yield stress between the WM and the PM is introduced  

PM
y

WM
yr σσ /=                                                                      (15)  

 

5.1   Effect of Crack Location and Yield Stress of Weld Metal WM
yσ  on the Ratchet Limits  

In this subsection, pipes with inner/central/outer surface cracks in the weld are considered. The 

values of yield stress of the WM WM
yσ  used are 115, 230 and 460MPa, respectively, and PM

yσ is 

held constant at 230MPa (i.e. 5.0=r , 1 and 2). 

Fig. 5 show the converged ratchet limit interaction curves of cracked welded pipes with 5.0=r , 

1, 2 and a pure PM pipe ( 1=r ) without a crack, subjected to p+Δθ (Fig. 5a) or T+Δθ  (Fig. 5b). 

In this diagram, a normalised internal pressure PMpp / (or axial tension PMTT / ) and a temperature 

range θΔ  are chosen as an abscissa and an ordinate respectively. PMp  and PMT  are the limit internal 

pressure and limit axial tension of the pure PM pipe without a crack, respectively. 

In the Fig. 5, it can be seen that only the ratchet limit boundaries of the pure PM pipe without a 

crack and the welded pipe ( 2=r ) with an inner/central/outer crack (excluding an inner crack in 

Fig. 5b) exhibit typical Bree-like diagrams. The ratchet limit boundaries in other cases interacts the 

y-axis. For example, the point A in Fig. 5b represents a maximum temperature range to avoid 

ratchetting for an applied cyclic thermal load and a particular form of a potential mechanical load. 

The point B denotes the limit load for the applied mechanical load. 

Fig. 5 shows that for all r , the three different locations of the symmetric crack have little effect 

on the ratchet limit boundaries, except for the case of 2=r  and Co400≥Δθ  in Fig. 5b, where the 

inner surface crack produces much lower ratchet limits than the central crack and outer surface 

crack. 

It can be observed that the ratchet limit boundaries including the limit internal pressure / axial 

tension and the maximum temperature range to avoid ratchetting reduce with the decreasing r . It is 

also noted that for the case of p+Δθ , when 1≥r  and Co100<Δθ  ( Fig. 5a), the change in r  has 

little effect on the ratchet limit boundary due to the plastic collapse occurring  in the PM. 
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Three typical failure modes are given in Fig. 6 which shows the non-ratchetting/ratchetting 

mechanisms for the inner cracked welded pipe (Fig. 5a), subjected to a cyclic temperature range 

θΔ  and a constant internal pressure ( 15.0/ =PMpp ). When 2=r  and Co500=Δθ (Fig. 6a), no 

ratchetting mechanism occurs and the pipe still has a capacity to resist an additional internal 

pressure. When 1=r , Co88=Δθ  (Fig. 6b) or 5.0=r , Co185=Δθ (Fig. 6c), a ratchetting 

mechanism occurs at the weld material, and the pipe will experience incremental plastic collapse 

after a limited number of cycles. 

It is particularly interesting that for the case of 2=r , after the pipe is subjected to the cyclic 

temperature range Co470≥Δθ , the pipe with an inner surface crack can withstand an internal 

pressure but cannot withstand an axial tension. This is because the thermal stress in the plastic zone 

could be reduced by the superposition of the mechanical stress caused by an internal pressure, but 

not by an axial tension. 

Consider two load cases C and D (Fig. 5b), which are just outside and inside the predicted 

ratchet limit domain at temperature range Co200=Δθ . The plastic strain histories (Fig. 7) 

calculated by the ABAQUS step-by-step analysis verified the accuracy of LMM ratchet limit 

boundary by showing that  i) under the load case C, the maximum equivalent plastic strain increases 

with load cycles to give a strong ratchetting mechanism; and ii) under the load case D, the 

maximum equivalent plastic strain ceases to increase after 20 load cycles, giving a non-ratchetting 

mechanism. 

 

5.2   Effect of Crack Size  

Three symmetric crack lengths are considered: wa 25.0= , w5.0  and w75.0 . For each crack 

length, three yield stresses are considered as per the previous sections, 5.0=r , 1 and 2. 

Fig. 8 gives ratchet limit interaction curves of the pipe subjected to p+Δθ (Fig. 8a) or 

T+Δθ (Fig. 8b).  It shows that i) when 1≤r  (excluding the case of 1=r  and wa 5.0≤  in Fig. 8a), 

the ratchet limit boundaries including the limit internal pressure / axial tension and the maximum 

temperature range to avoid ratchetting reduces with the increasing a ; ii) when 2=r  and 

Co300<Δθ  (except for the case of wa 75.0=  in Fig. 8b), the change in a  has little effect on the 

ratchet limit diagrams. The reason of the reduction in the limit load with the increasing a  is due to 

the plastic collapse occurring in the WM. A larger crack length in the WM causes a smaller 

effective load carrying area, which leads to a lower limit internal pressure / axial tension. 
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5.3   Effect of Weld Width 

In order to study the effect of weld width, values of wH 25.0= , w5.0  and w  were chosen. 

Similarly, all limits for three different width are computed based on three different yield stresses of 

WM: 5.0=r , 1 and 2. 

Fig. 9 gives ratchet limit interaction curves of the pipe subjected to p+Δθ (Fig. 9a) or 

T+Δθ (Fig. 9b). It shows that for all r (excluding the cases of 2=r  and wH 25.0= ), the change 

in H  has little effect on the ratchet limit diagrams. 

Fig. 9b shows that when 2=r , the width wH 25.0=  gives a smaller limit tension than that of 

wH 5.0=  and w . This is because the pipe failure zone is a 45 degree inclined strip which is from 

the crack tip to the side boundary. Hence, the smaller width H  of WM means that this 45 degree 

slip line must travel further through weaker parent material, which causes the lower limit tension of 

the pipe. The width wH 25.0=  also gives a smaller maximum temperature range to avoid 

ratchetting than that of wH 5.0=  and w  due to the aforementioned reason. 

 

5.4   Effect of Coefficient of Thermal Expansion of Weld Metal WMα  

Three values of 5.0=PMWM αα , 0.95 and 2  were chosen. The thermal expansion of the PM 

material was given a fixed value of 8.1=PMα 1510 −−× Co . All limits for the three different WMα  are 

computed based on three different yield stresses of WM: 5.0=r , 1 and 2. 

Fig. 10 gives ratchet limit interaction curves of the pipe subjected to p+Δθ (Fig. 10a) or 

T+Δθ (Fig. 10b). It shows that for all r , i) the change in WMα  has no effect on the limit internal 

pressure (or limit axial tension) due to the purely mechanical nature of the load; and ii) 

2/ =PMWM αα  gives a smaller maximum temperature range to avoid ratchetting in comparison with 

the cases of 5.0/ =PMWM αα  and 0.95. This is because a larger difference in thermal expansion 

coefficients between the PM and the WM leads to a larger field of high thermal stress around the 

interface between two materials, which may interact with the another high stress field either around 

the crack tip or in the parent material, thus causing failure at smaller temperature range. 

 

5.5   Discussions  

In the previous subsections, the results show that five parameters -- the yield stress of WM WM
yσ , 

the location (inner/central/outer) and length a  of the crack, the width w and the thermal expansion 
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coefficient WMα of WM have the different effects on the ratchet limits, maximum temperature 

ranges to avoid ratchetting, and limit loads. Among these parameters, WM
yσ  is the most sensitive 

parameter to the ratchet limit boundary, and the crack location is the least sensitive one. A further 

investigation of the effect of these parameters is given in the Fig. 11 and Tables 3-6. 

Fig. 11 shows how the yield stress of WM affects the ratchet limit of the pipe with an inner 

surface crack. It suggests that the higher WM yield strength leads to a larger limit load and a larger 

maximum temperature range to avoid ratchetting for both loading cases. It is noted that for the case 

of p+Δθ , there is a rapid increase in limit load up to 75.0=r , with the increases being small in 

comparison when 75.0>r  (shown in Fig. 11a). When 5.1>r , the maximum temperature range to 

avoid ratchetting steeply rises with the increasing r , shown in Fig. 11b.  All trend lines are fit to 

the data to give the functions, shown in Eqs. (16-19). 

For the pipe subjected to p+Δθ , we have  

⎩
⎨
⎧

≤<+
≤≤−

=
        2 0.8          0.89 0.079

0.80.5          0.018 21.1
rr
rr

p
p

PM

                                                   (16)

    

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤<>
≤<+
≤<−
≤≤++

=Δ

        2  1.55                                 500
  1.55  1.54                    1.78 0.71-

1.541.5                      1190 1000
1.5  0.5       52 14.33 42.91 2

r
rr
rr
rrr

pθ

                                  

(17) 

For the pipe subjected to T+Δθ  

2 0.5     098.0 86.0 16.0 2 ≤≤−+−= rrr
T
T

PM
                                                  (18) 

2 0.5       60 33.23 52.89 2 ≤≤−+=Δ rrrTθ                                             (19) 

where PMp  and PMT are the limit internal pressure and limit axial tension of the pure PM pipes 

without a crack, respectively. pθΔ  or TθΔ  represents the maximum temperature range to avoid 

ratchetting for the pipe subjected to an applied cyclic thermal load θΔ  and a potential internal 

pressure p  or axial tension T , respectively. 

The obtained results are further summarised in Tables 3-6 which show the effects of the crack 

location, crack length, weld width and weld thermal expansion coefficient on the limit load and 

maximum temperature range to avoid ratchetting, respectively. The conclusion is given in next 

section. 
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6     Conclusion 

The extended Linear Matching Method (LMM) is successfully applied in this study for the 

ratchet limit analysis of circumferentially welded pipes containing a circumferential crack subjected 

to a cyclic temperature θΔ  and a constant i) internal pressure p  or ii) axial tension T . Based on 

the results obtained in this study, the following conclusions are given: i) When compared with a 

pure Parent Material (PM) pipe without a crack, the discontinuity in material (due to the Weld 

Metal  (WM)) and in geometry (due to a crack) may lead to a significant change in the ratchet limit 

boundary including the maximum temperature range to avoid ratchetting and limit load; ii) Among 

five parameters, variation of the yield stress WM
yσ of the WM has the largest impact on the ratchet 

limits. The limit load and the maximum temperature range to avoid ratchetting rise with the 

increasing WM
yσ . The relationship between them has been formulated; iii) An increase in the 

symmetric crack length a decreases the maximum temperature range to avoid ratchetting and limit 

load, but the crack location has the least effect on the ratchet limit out of the parameters considered 

in this work; iv) The weld width H has little effect on the limits for all r , except for the case of 

2=r  and wH 25.0=  when the pipe is under axial tension, where the ratchet limit boundary is 

significantly reduced in comparison with cases of 2=r  and wH 5.0≥ ; v) The large difference in 

the coefficient of thermal expansion between the WM and the PM significantly decreases the 

maximum temperature ranges to avoid ratchetting, but the limit load is unaffected by any changes 

in PMWM αα / .  
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Table Captions 

Table 1 Shape parameters of a welded pipe with a symmetric crack  

Table 2 Material properties of a welded pipe 

Table 3 Limit load and maximum temperature range of the pipe with the different crack locations 

and the different r , where 5.0/ =wa , 5.0/ =wH and 95.0/ =PMWM αα . The pipe is 

subjected to (a) Δθ+p or (b) Δθ+T 

Table 4 Limit load and maximum temperature range of the inner cracked pipe with the different 

crack length a  and the different r , where 5.0/ =wH  and 95.0/ =PMWM αα .  The pipe is 

subjected to (a) Δθ+p or (b) Δθ+T 

Table 5 Limit load and maximum temperature range of the inner cracked pipe with the different 

thickness of the WM H and the different r , where 5.0/ =wa  and 95.0/ =PMWM αα .  

The pipe is subjected to (a) Δθ+p or (b) Δθ+T 

Table 6 Limit load and maximum temperature range of the inner cracked pipe with the different 
WMα and the different r , where 9.1=PMα ( 1510 −−× Co ), 5.0/ =wa  and 5.0/ =wH .  The 

pipe is subjected to (a) Δθ+p or (b) Δθ+T 
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Table 1 Shape parameters of a welded pipe with a symmetric crack  
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Table 2 Material properties of a welded pipe  
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yσ   
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E  
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Table 3 Limit load and maximum temperature range of the pipe with the different crack locations 

and the different r , where 5.0/ =wa , 5.0/ =wH and 95.0/ =PMWM αα . The pipe is subjected to 

(a) Δθ+p or (b) Δθ+T 

 
Normalised limit load 

PMpp /  ( PMTT / ) 
Maximum temperature 
range pθΔ or TθΔ ( Co ) 

 Loading 
condition 

 crack  
location 

5.0=r  1=r  2=r  5.0=r  1=r  2=r  

inner 0.59 0.98 1.05 90 180 - 
outer 0.50 0.93 1.08 84 167 - 

 

p+Δθ  

central 0.54 0.99 1.08 95 190 - 
inner 0.30 0.60 0.99 90 180 470 
outer 0.29 0.58 0.95 84 167 - 

 

T+Δθ  

central 0.29 0.59 1.03 95 190 - 

 

 

 

 

Table 4 Limit load and maximum temperature range of the inner cracked pipe with the different 

crack length a  and the different r , where 5.0/ =wH  and 95.0/ =PMWM αα .  The pipe is 

subjected to (a) Δθ+p or (b) Δθ+T 

 
Normalised limit load 

PMpp /  ( PMTT / ) 
Maximum temperature 
range pθΔ or TθΔ ( Co ) 

Loading 
condition 

crack 
size  

wa /  5.0=r  1=r  2=r  5.0=r  1=r  2=r  

0.25 0.93 1.00 1.08 110 320 - 
0.50 0.59 0.98 1.05 90 180 - 

 

p+Δθ  

0.75 0.30 0.60 0.94 60 130 270 
0.25 0.48 0.89 1.03 110 360 - 
0.50 0.30 0.60 0.99 90 180 470 

 

T+Δθ  

0.75 0.15 0.31 0.61 60 120 270 
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Table 5 Limit load and maximum temperature range of the inner cracked pipe with the different 

thickness of the WM H and the different r , where 5.0/ =wa and 95.0/ =PMWM αα .  The pipe is 

subjected to (a) Δθ+p or (b) Δθ+T 

 
Normalised limit load 

PMpp /  ( PMTT / ) 
Maximum temperature 
range pθΔ or TθΔ ( Co ) 

    
Loading 
condition 

WM 
width  

wH /  5.0=r  1=r 2=r  5.0=r  1=r  2=r  
0.25 0.72 0.98 1.02 90 180 420 

0.5 0.59 0.98 1.05 90 180 - 

 
p+Δθ  

1 0.59 0.98 1.09 80 160 - 

0.25 0.37 0.60 0.84 90 180 300 

0.5 0.30 0.60 0.99 90 180 470 

 
T+Δθ  

1 0.30 0.60 1.05 80 160 - 
 
 
 
 

Table 6 Limit load and maximum temperature range of the inner cracked pipe with the different 
WMα  and the different r , where 9.1=PMα ( 1510 −−× Co ), 5.0/ =wa  and 5.0/ =wH .  The pipe is 

subjected to (a) Δθ+p or (b) Δθ+T 

 
Normalised limit load 

PMpp / ( PMTT / ) 
Maximum temperature 
range pθΔ or TθΔ ( Co ) 

   Loading 
condition 

 
PMWM αα /

 5.0=r  1=r  2=r 5.0=r  1=r  2=r
0.5 0.59 0.98 1.05 100 200 470 

0.95 0.59 0.98 1.05 90 180 - 

 
p+Δθ  

2 0.59 0.98 1.05 52 110 220 

0.5 0.30 0.60 0.99 100 200 410 

0.95 0.30 0.60 0.99 90 180 470 

 
T+Δθ  

2 0.30 0.60 0.99 52 110 210 
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Figure Captions 

Fig.1 Welded pipe configurations with (a) an inner surface crack, (b) a central crack and (c) an 

outer surface crack 

Fig. 2 Thermal and mechanical loads and boundary conditions of the cracked welded pipe: (a) Δθ+p 

or (b) Δθ+T 

Fig. 3 The operating temperature history of the fluid contained within the welded pipe  

Fig. 4 Finite element mesh of the welded pipe with an inner crack wa 5.0=  

Fig. 5 Ratchet limit interaction curves of the welded pipe with the different r  and the different 

crack locations. The pipe is subjected to (a) Δθ+p or (b) Δθ+T.  

Fig. 6 The non-ratchetting/ratchetting mechanisms for the inner cracked welded pipe (Fig. 5a) 

subjected to a cyclic temperature range θΔ  and a constant internal pressure ( 15.0/ =PMpp ), 

when (a) 2=r , Co500=Δθ  (no ratchetting mechanism), (b) 1=r , Co185=Δθ  (ratchetting 

mechanism in WM) and (c) 5.0=r , Co88=Δθ  (ratchetting mechanism in WM) 

Fig. 7 Abaqus verification of the ratchet limit for the cyclic temperature of Co200=Δθ  using 

detailed step by step analysis 

Fig. 8 Ratchet limit interaction curves of the welded pipe with the different crack sizes a  and the 

different r . The pipe is subjected to (a) Δθ+p or (b) Δθ+T 

Fig. 9 Ratchet limit interaction curves of the pipe with the different thickness H  of the WM and the 

different r . The pipe is subjected to (a) Δθ+p or (b) Δθ+T 

Fig. 10 Ratchet limit interaction curves of the pipe with the different thermal expansion coefficients 

of the WM WMα and the different r , where 9.1=PMα ( 1510 −−× Co ). The pipe is subjected to 

(a) Δθ+p or (b) Δθ+T 

Fig. 11 The effect of the yield stress of WM WM
yσ on (a) the limit loads and (b) the maximum 

temperature ranges of the pipe under i) Δθ+p or ii) Δθ+T 
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Fig.1 Welded pipe configurations with (a) an inner surface crack, (b) a central crack and (c) an 

outer surface crack 

 
 
 
 

                     

Fig. 2 Thermal and mechanical loads and boundary conditions of the cracked welded pipe: (a) Δθ+p 

or (b) Δθ+T 
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Fig. 3 The operating temperature history of the fluid contained within the welded pipe  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Finite element mesh of the welded pipe with an inner crack wa 5.0=  

 

 

 

 

)(tθ

θθ Δ+0

0θ

t2t1t



 20

 

 

 

 

 

 

 

 

 

 

Fig. 5 Ratchet limit interaction curves of the welded pipe with the different r  and the different 

crack locations. The pipe is subjected to (a) Δθ+p or (b) Δθ+T.  
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Fig. 6 The non-ratchetting/ratchetting mechanisms for the inner cracked welded pipe (Fig. 5a) 

subjected to a cyclic temperature range θΔ  and a constant internal pressure ( 15.0/ =PMpp ), when 

(a) 2=r , Co500=Δθ  (no ratchetting mechanism), (b) 1=r , Co185=Δθ  (ratchetting 

mechanism in WM) and (c) 5.0=r , Co88=Δθ  (ratchetting mechanism in WM) 

 

 

 

 

 

Fig. 7 Abaqus verification of the ratchet limit for the cyclic temperature of Co200=Δθ  using 

detailed step by step analysis 

 

0 

5 

10 

15 

20 

25 

0 2 4 6 8 10 12 14 16 18 20 22 24 

cyclic load case C 
cyclic load case D 

Number of cycles 

Eq
ui
va
le
nt
 p
la
st
ic
 s
tr
ai
n 

crack

)(a )(b )(c

 Failure pattern  No failure  

PM PM PM

WM WM WM



 22

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Ratchet limit interaction curves of the welded pipe with the different crack sizes a  and the 

different r . The pipe is subjected to (a) Δθ+p or (b) Δθ+T 
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Fig. 9 Ratchet limit interaction curves of the pipe with the different thickness H  of the WM and the 

different r . The pipe is subjected to (a) Δθ+p or (b) Δθ+T 
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Fig. 10 Ratchet limit interaction curves of the pipe with the different thermal expansion coefficients 

of the WM WMα and the different r , where 9.1=PMα ( 1510 −−× Co ). The pipe is subjected to (a) 

Δθ+p or (b) Δθ+T 
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Fig. 11 The effect of the yield stress of WM WM
yσ on (a) the limit loads and (b) the maximum 

temperature ranges of the pipe under i) Δθ+p or ii) Δθ+T 
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