
Strathprints Institutional Repository

Russello, Giovanni and Dong, Changyu and Dulay, Naranker (2008) A Workflow-based Access
Control Framework for Healthcare Applications. In: The Fourth International Symposium on
Frontiers in Networking with Applications, 2008-03-25.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9034591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

A Workflow-based Access Control Framework for e-Health

Applications

Giovanni Russello, Changyu Dong, Naranker Dulay
Imperial College London

{g.russello, changyu.dong, n.dulay}@imperial.ac.uk

Abstract

In this paper, we present a framework where access
rights are provided to entities on the basis of the actual
task that the entities must fulfill as part of their duties.
For capturing the requirements of entities’ duties we
use the notion of workflow. Our main aim is to pro-
vide an access control mechanism that is able to balance
the competing goals of flexibility and security. As the
main beneficiary of our approach we consider e-Health
Applications, where flexibility and security are major
requirements. We also provide an implementation of a
medical case study to illustrate the framework.

1 Introduction

In the last decade, the integration of software sys-
tems in healthcare environments has increased, lead-
ing to so called e-Health Applications. Building and
deploying such applications in real-world medical envi-
ronments has identified several research issues. One
of the important issues is that of security. Health-
care systems can be thought of as collaborative systems
where access to sensitive medical resources should only
be provided to authorised entities.

Classical access control mechanisms are too rigid for
capturing the dynamic behaviour typical of healthcare
applications. As discussed in [32], such mechanisms
fail in providing the appropriate flexibility that is nec-
essary when dealing with unexpected situations that
are typical of healthcare applications. A typical case
is that of a patient admitted into an Emergency De-
partment (ED) before the system administrators have
provided to carers the necessary access privileges. As a
result, carers cannot check the patient’s medical history
since they do not have the appropriate access rights
for the patient’s medical record stored in the hospital
database. Another common scenario is that of a doctor
that asks for the second opinion of another doctor in

charge in another ward. Because the doctor is assigned
to a different ward he may not be permitted to access
the patient in order to provide an opinion.

The main drawback of current access control mech-
anisms is that the granting of access rights requires
statically binding a subject (i.e., a doctor) to a tar-
get (i.e., a patient’s medical record), where the subject
and the target must be known in advance. A reason-
able solution would be to define access rights in more
general terms. For instance, we could provide access
rights to all doctors working in the ED to the medi-
cal records of the patients admitted in the same de-
partment. However, there is still the problem of let-
ting an entity from another ward access the resource.
This type of situation can be dealt with by allowing
accesses to resources to unauthorised entities as excep-
tional conditions. When an exceptional access is made,
such an event must be logged for future analysis. Log
analysis can be used for identifying whether the excep-
tional mechanism is misused. However, as pointed out
in the study conducted by Røstad and Edsberg in[24],
in most cases the information provided in logs is not
sufficient for correctly identifying situations where the
mechanism was misused.

The problem that we are facing is that of balancing
the tradeoff between the restrictions that regulate the
use of information and resources in medical environ-
ments and the usability of a system in such dynamic
applications. If the access control mechanism is too
restrictive then it could become a burden for medical
staff that have to use it; whereas, if access control is
too loose then protection of information and resources
cannot be guaranteed. A precise access control mech-
anism is required that is able to deal with the level
of unpredictability typical of healthcare applications.
On the one hand, access rights must be granted only
to entities that require access to a given resource and
just for the amount of time that such access is neces-
sary. On the other hand, entities and resources must
be dynamically identified as the needs for accessing a

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.131

111

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.131

111

resource arise.
What is required is an access control mechanism

that is able to manage access rights on the basis of
the actual situation in which entities are acting. In a
medical environment, carers have to perform tasks as
part of their duties. If accessing a patient’s record is
the task that a doctor has to perform to fulfill his duty,
then the access control mechanism should grant the ap-
propriate access right to the specific patient’s record to
that doctor.

In this paper, we introduce a framework to realise
Workflow-based Access Control (WBAC), where the
notion of workflow is used to capture the tasks that
entities have to perform as part of their duties [16].
Workflow system are well established within medical
environments since they have been used for diagno-
sis [3], therapy/treatment [12, 23], and hospital admin-
istration [11, 21].

The major contributions of this paper can be sum-
marised as follows. First of all, our approach provides
a fine-grained control on the granting of access rights.
An entity will be granted access only to the specific
resource instance that is bound to the execution of
the workflow task. Secondly, the WBAC mechanism
automatically adapts the access rights of workflow en-
tities to the requirements of their duties expressed by
means of a workflow. This approach corresponds to the
principle of least privilege, where an entity is granted
the minimal access rights for carrying out their du-
ties. Thirdly, our WBAC mechanism ensures that ac-
cess rights are dynamically adapted to the actual needs
of entities. An entity can access the resources associ-
ated with a workflow task but only while the workflow
task is active. Once the task is completed the access
rights is invalidated. Finally, we propose an architec-
ture for a concrete realisation of a WBAC mechanism
and describe its details in this paper.

This paper is organised as follows. We start with
Section 2 where the background of our research is given
in more details together with a comparison with related
work. In Section 3 we introduce the components that
realise our framework. Section 4 focuses on the details
of the actual implementation of our framework. For
evaluating the feasibility of our approach in Section 5
we discuss the implementation of a case study based
on a real medical scenario. Conclusion and future di-
rections are provided in Section 6.

2 Background

To better illustrate the problem that we are tack-
ling we will use the following scenario. A patient with
acute abdominal pain is admitted into the Emergency

Department (ED) of a hospital. The patient is assigned
to a doctor that will perform the Acute Abdominal
Pain Diagnosis (AAPD) procedure. The diagnosis pro-
cedure requires the doctor to access the patient history,
then to carry out a physical exam, and finally to ask for
some lab and imaging exams. Optionally, the doctor
can ask the opinion of one or more colleagues, depend-
ing on the nature of the patient’s symptoms.

The basic assumption is that patients’ medical
records are stored in a database and accessible from any
computer in the hospital. However, since the records
contain sensitive information, the medical staff of the
hospital should have specific restrictions on accessing
the records. For instance, a doctor can only access
records of patients assigned to his ward. Such a restric-
tion requires that a patient is admitted to the ward,
possibly requiring that the patient is physically present
in the ward and that access can only be made from ter-
minals in the ward. However, when a doctor from an-
other ward needs to access a patient record the above
mechanism will not allow the access unless authorisa-
tion is provided, for example, by the first doctor for a
limited time.

As shown by the study conducted by Røstad and
Edsberg [24] the situation described above is typical
when an access control mechanism is used to protect
the privacy of patients’ records. In their case, the ac-
cess control mechanism is based on the Role-Based Ac-
cess Control (RBAC) model and deployed in Norwe-
gian hospitals1. RBAC [15, 26] is motivated by the
observation that in the real-world most access control
decisions are based on the subject’s job functions. It is
natural to use roles to reflect the various responsibili-
ties in organisations. Users that perform the same job
function are assigned into the same role. Permissions
are assigned to roles, not directly to the users. The au-
thorisation decisions are based on the role membership
of the users. Roles can be organized hierarchically for
representing an organization’s lines of authority and
responsibility. RBAC has attracted a lot of attention
from e-healthcare application developers [8, 14, 6] and
standards are being developed in the United States by
the Healthcare RBAC Task Force [17].

Although RBAC is considered as a state-of-the-art
of access control mechanism, it is not flexible enough
for coping with the above situation. To circumvent
such a limitation, a mechanism was designed to allow
accesses to specified entities as exceptional situations.
This requires some extra logging to provide trials that
can be used for identifying misuses [13]. This idea
comes from the notion of optimistic security introduced

1The system studied was DocuLive, a product of Siemens
Medical Solution

112112

in [22]. The basic assumption of the optimistic security
model is that in the case of misuse the system has a fall-
back mechanism that can revert the system to the state
before the misuse was made. Such a property does
not always hold. In certain situations, once the mis-
use is done it is not possible to recover. For instance,
if the confidentiality of a patient’s record is compro-
mised such a loss is not always recoverable. Moreover,
Røstad and Edsberg found that the generated logs are
not so informative. Therefore, identifying misuses can
be harder than expected. Another interesting finding
of their study is that such exceptional accesses are not
a rarity but the norm in situations similar to the one
presented in our scenario. This confirms that there is a
real need for a more flexible access control mechanism.

As discussed in [32], similar conclusions can be
drawn for most of current access control mechanisms.
The starting point of our approach is the observation
that classical access control mechanisms fail in captur-
ing the responsibilities of the entities acting in the sys-
tem. This gap can be filled if an access control model
is augmented with the notions of tasks and workflows.
Workflows can capture the responsibilities of entities
and the execution flow, that is the sequence in which
the entity must execute the workflow’s tasks. When an
action on a resource is specified as a task in a workflow,
the entity executing the workflow must have the ap-
propriate access rights for fulfilling its responsibilities.
For example, if a task in the workflow specifies that
“a doctor must read the patient’s medical record”, then
the access right for reading the record must be granted
to the doctor. The justification for such access control
to exist is that the entity requires it for performing
its duty. Workflow management systems are particular
relevant in medical situations where failure in perform-
ing an action could lead to serious consequences. In
recent years, workflow management systems have been
applied to medical environments. Several experimen-
tal workflow systems have been proposed for helping
in carrying out diagnosis, treatment/therapy and for
management in hospital administration.

Simplifying, a Workflow-based Access Control
(WBAC) mechanism should consist in deriving access
rights from tasks specified in workflows. There is a
correspondence between tasks and access rights. A
task can be thought of as a (subject, target, action)-
tuple, where the subject is the entity that must exe-
cute the task, the target is the resource required by
the entity and the action is the activity that the entity
needs to perform on the resource. Similarly, an ac-
cess right can also be specified in terms of a (subject,
target, action)-tuple (as pointed out in [29]). How-
ever, if this mapping is statically realised during the

specification phase then the flexibility of the mecha-
nism is going to be compromised. The Task-based ac-
cess control (TBAC) proposed in [30, 31] suffers ex-
actly from this issue. TBAC extends the traditional
subject-target models using task-based contextual in-
formation. This model is therefore more active which
allows activating and deactivating permissions in accor-
dance with emerging context associated with progress-
ing tasks. Unfortunately, in TBAC, the permissions
needs to be statically bound to target instances. This
means that the specific instance of a target must be
known in advance to be specified. Therefore, contrary
to our approach, the handling of access control for un-
specified target instances is not supported. Moreover,
to the best of our knowledge, such an approach has
never been implemented yet.

To circumvent this issue, several approaches have
been proposed [7, 10, 19, 33] where the notion of class
of data are used for grouping targets. In the following,
we review the work done by Wu et al. in [33] based on
the METEOR WMS [27]. The same conclusions can
be drawn for the other approaches. Wu et al. propose
an access control mechanism where privileges p for ac-
cessing an object o are assigned to a role r when r is
executing a task t. However, the object o represents
not a single instance of a target but a more generic
group of data that in METEOR are called datagroups.
During execution, the specific instances of targets pop-
ulate the different datagroups. The main shortcoming
of this approach is the granularity for identifying tar-
gets since a role obtains privileges for a set of similar
targets. For our scenario, this means that a doctor
would be allowed to access any patient’s records con-
tained into the datagroup.

As for workflow security, most of the previous re-
search has been focused on designing methods for task
assignment constraints, inter-workflow security, and
multilevel secure workflow systems, as surveyed in [5].
To the best of our knowledge, only two research efforts
discuss some ideas similar to ours. The first to con-
ceive an authorisation mechanism based on workflow
were Atluri and Huang in [4] where they introduced the
Workflow Authorisation Model (WAM). In WAM, au-
thorisation constraints for data and resources are syn-
chronised with the execution of workflows. Basically,
the interval in which an authorisation for a given task
is valid is changed according to the actual execution
of such a task. Although in the paper a model of an
implementation using Petri nets is given, no concrete
implementation of such model has ever been presented.
The main reason behind this is that a concrete reali-
sation of this model is impractical due to the temporal
synchronisation that the model requires.

113113

Figure 1. A conceptual overview of our ap-
proach.

Knorr describes in [18] an approach where access
control matrices are used for regulating access control
of data used in the execution of a task. The access
rights of subjects specified in the access matrix change
according to the execution of the workflow. The main
disadvantage of this approach is that the whole set of
subjects and data targets must be known in advance
to be specified in the matrix.

In light of this, we propose a framework that ad-
dresses the issues left open in previous approaches.
In particular, we are interested in providing a flexible
access control mechanism without compromising the
granularity of access rights. A conceptual overview of
our framework is shown in Figure 1. During the execu-
tion of a workflow, the (subject, target, action)-tuples
of each task are mapped to specific instances of subjects
and targets. These instances will be used for generating
access rights that are subsequently loaded into the ac-
cess control mechanism. Dynamically generating and
loading access rights makes sure that our framework
provides enough flexibility for entities to complete their
tasks. On the other hand, in our framework, each tar-
get represents a specific instance of a resource. There-
fore, entities are granted access to exactly the target
resource that is needed.

In the rest of this paper we provide more details on
how our framework can be realised. Moreover, to illus-
trate the feasibility of our approach, we will return to
the scenario presented at the beginning of this section,
providing an implementation based on our framework.

3 Framework Components

To realise our framework two main components are
required: a Workflow Management System (WMS) and
an Access Control Module (ACM). Our framework is
independent of the WMS used for defining and exe-
cuting workflows. As for the ACM, we use a policy-
based access control mechanism. The use of policies
for specifying access rigths proved to be more flexible
than other access control mechanism and best-fits in
our framework. In the following, we provide details on
each of the two components and how such components
are integrated in the framework.

3.1 Workflow Management System

The WMS that we use in our framework is based
on the YAWL environment [1, 2]. The YAWL envi-
ronment provides a very powerful workflow language
together with a workflow execution engine, and an ed-
itor for workflow specifications.

The YAWL environment can be customised to ex-
port to external components certain events that occur
in the life-cycle of workflow instances. On receiving a
task-enabled event, a component may decide to ‘check-
out’ the task from the engine. On doing so, the engine
marks the task as executing and effectively passes op-
erational control for the task to the component. When
the component has finished executing the task, it will
check it back in to the engine, at which point the en-
gine will mark the task as completed, and proceed with
the workflow execution.

It should be realised that our framework is indepen-
dent of the specific workflow language/engine used as
long as the workflow environment provides means for
interacting with our framework.

3.2 Policy-based Access Control

The other component in our framework is the policy-
based access control module based on the Ponder2 pol-
icy language and interpreter developed at Imperial Col-
lege London [20]. The language supports the specifica-
tion of policies. Policies are rules governing the choices
in the behaviour of a system [28]. Ponder supports
the specification of authorisation policies and obliga-
tion policies (event-condition-actions). The policy in-
terpreter organises the entities and resources on which
policies operate in hierarchical domains of managed ob-
jects. A managed object has a management interface
that the object has to implement in order to be man-
aged by the interpreter. Domains allow the classifi-
cation and grouping of managed objects in a hierar-

114114

chy. Furthermore, domain paths can be used to address
managed objects in policy specifications. Domains can
be used to represent resources (e.g., data repositories,
printers, X-ray machines, etc.), devices (e.g., sensors),
and people (i.e., nurses, doctors, GPs, etc).

Authorisation policies are used for controlling the
rights that entities have on the resources managed in
a domain structure. In the case of a medical scenario
these resources could be represented by the patient’s
medical data, the medical sensors that the patient
wears, and any other application/devices that could
be used to assist the patient. Authorisation policies
are defined on (subject,target,action)-triples, where the
subject is the entity that wants to execute the action on
the target. The language also supports negative autho-
risation policies, that when applied negate the execu-
tion of the defined action. Moreover, the authorisation
model supports the specification of authorisation poli-
cies for independently controlling the subject and the
target of an action [25]. In case of authorisation con-
flicts, that could happen when authorisation policies of
different signs apply to the same triple, the interpreter
is also able to autonomously resolve those conflicts.

Ponder2 obligation policies are used to capture
event-condition-action rules. Such policies are used to
dynamically adapt the system to changes of either con-
text or behaviour of applications. Events are trigged by
such changes and are propagated using an event bus.
Obligation polices capture events and execute actions
for adapting the system. For example, obligation poli-
cies can change the domain structure adding/removing
domains and managed objects, can invoke action on
managed objects, can enable/disable other policies and
can trigger other obligation policies by sending more
events.

The policy access control model allows the insertion
and activation of new authorisation policies at run-
time. This feature allows us to dynamically adapt the
authorisation rights of an entity to the actual needs
expressed in the task that is executing. However, it is
still necessary to capture which are the access rights
required by such an entity and convert them in an au-
thorisation policy. In the following section, we describe
how such conversion is performed and provide more de-
tails on how the interaction between the WMS and the
policy enforcement mechanism is realised.

4 Architecture

In this section, we present the architecture for real-
ising our framework. The architecture consists in inte-
grating the two components presented in the previous
section. The integration of the WMS and the policy ac-

Figure 2. Workflow and policies interactions
in our framework.

cess control module of the policy interpreter is shown
in Figure 2.

The workflows executed in the WMS are used for de-
riving authorisation policies. For each task in a work-
flow, an authorisation policy is defined in order to pro-
vide access rights during the workflow execution. The
workflow is enacted by the workflow engine and the
authorisation policies are enforced by the policy inter-
preter.

Although authorisation policies for a given workflow
are specified, we want to enable a specific policy only
when the corresponding task is executed. This requires
the WMS to communicate to the policy interpreter
which is the next task to be executed in order to have
the appropriate authorisation policy enabled. On the
other hand, after the task execution is completed, the
authorisation policy must be disabled. Moreover, the
WMS needs to be informed that the actual execution
of the task is completed to move on with the workflow
execution. In order to achieve this, we implemented
a feedback loop between the WFM and policy inter-
preter. The feedback loop is realised using obligation
policies. Obligation policies are used for enabling the
relevant authorisation policy for a task, intercepting
when an task is concluded, and disabling the authori-
sation policies after task completion.

There are however the following points to address
before realising a complete integration:

• convert the notions of entity and resource specified
in workflows into managed objects allocated in the
domain structure.

115115

• the generation of authorisation policies from the
information contained in the workflow specifica-
tion.

• interfacing the WFS with the policy interpreter for
the interaction via the feedback loop.

Each of these points will be discussed in the follow-
ing.

Entities and Resources An entity executing a
workflow is represented in the framework by an Entity
managed object. We refer to such an entity as the
subject of the workflow. An Entity object is associ-
ated with a type, that is the role that such an entity
has in the domain structure, i.e. nurse, doctor, in-
tern, etc. To associate an Entity with the workflows
that it has to execute, we define the EntityDefinition
managed object. For a given type of entity, the cor-
responding EntityDefinition contains the workflows
that the Entity will execute as part of the entity’s re-
sponsibilities. In addition to the workflow association,
the EntityDefinition includes other specific informa-
tion associated with the type of an entity. First of all,
the EntityDefinition contains the set of credentials
that must be presented in order to instantiate and acti-
vate an Entity object. An EntityDefinition object
can be thought of as a passive structure that holds the
specification of an entity type, while the Entity object
is an active instance of such an entity type.

Resources are represented as standard managed ob-
jects. We refer to resources in a workflow as targets.
Several targets can be associated with the specification
of a workflow. When the workflow execution is started
each of its targets must be associated with the corre-
sponding managed object in the domain structure.

Authorisation Policy Generation Generating au-
thorisation policies is a two-step process. The first
step is executed at specification time, when a work-
flow specification is bound into a EntityDefinition.
For each of the tasks in the workflow, an authorisa-
tion policy template (APT) is created and stored in the
EntityDefinition. Although the APT captures the ac-
cess rights of a method it is not a concrete authorisation
policy. This is because the subject and the target are
not instantiated managed objects, hence the references
to such objects cannot be specified.

The second step is executed when the Entity object
starts the execution of the workflow. At this stage,
the subject and the targets are allocated in the do-
main structure, therefore references can be provided.
The APT objects stored in the EntityDefinition are

used to generate the corresponding authorisation poli-
cies that will be loaded in the policy interpreter. Al-
though the authorisation policies are allocated in the
domain structure, they are disabled. Each authorisa-
tion policy is activated only when the corresponding
task is to be executed (more details on this in Section
5).

The use of APT objects might seem redundant, since
the authorisation policies could be derived directly by
analysing the workflow specification at instantiation
time. However, this can be inefficient since it requires
the analysis to be performed each time an Entity in-
stance is created. For large workflows, such an analysis
can be a lengthly process to perform at each instanti-
ation.

Feedback Loop The feedback loop between the
WMS and the policy interpreter can only be realised if
the WMS can send events to the event bus and receive
notifications from obligation policies. This is imple-
mented using a WMS managed object (WMSMO). The
WMSMO is a managed object that exposes the WMS in-
terface to managed objects and obligation policies in
the domain structure. Obligation policies can be used
to notify the WMS when events are propagated in the
event bus. On the other hand, the WMS can also
send events via the WMSMO. Such events capture situ-
ations related to the workflow execution. For instance,
when a given task need to be executed then the corre-
sponding authorisation policy must be activated. An-
other type of event that can be sent could capture the
case of a task timeout. In this way, obligation poli-
cies can invoke appropriate actions for notifying enti-
ties. Moreover, the WMSMO provides methods for load-
ing, starting, and aborting workflows that can be used
by EntityDefinition and Entity objects.

5 Case Study: Acute Abdominal Pain
Diagnosis

In this section, we provide a detailed description of
how the Acute Abdominal Pain Diagnosis (AAPD) [9]
workflow is specified and executed in our framework.

In the workflow, a patient with abdominal pain is
admitted to the Emergency Department (ED) of the
hospital. The patient provides to the receptionist his
health insurance number (HIN) or other data that will
be used to identify the patient. The receptionist will
then assign the patient to an intern on duty at the ED.
We assume that the hospital is using our framework
for executing workflows and enforcing access control to
protect the patients’ assets.

116116

Figure 3. AADP workflow specification.

Once the patient is assigned to the intern, the in-
tern starts the execution of the AAPD workflow. The
specification for the AADP workflow is presented in
Figure 3. An intern first needs to access the patient
record to check the patient’s medical history. Then a
physical exam should be performed. During this task,
the intern can write some preliminary notes on the pa-
tient’s medical record. Afterwards, the intern may ask
for some lab tests or he may ask for second opinion
from another doctor. The workflow concludes with the
intern writing a diagnosis on the patient’s record. The
targets required for the execution of the tasks in this
workflow are specified as workflow’s parameters. In
particular, the targets of the AADP workflow are the
patient’s record pr, the service ls for requiring tests
from the laboratory, and the service rds for acquiring
the opinion of another doctor. In this last case, the rds
will start the execution of another workflow that is ex-
ecuted by the Entity object specified in the doc id
parameter. The patient’s record is also passed as a
parameter and will be provided to the other workflow.

Because this workflow should be executed by an
Entity object of type Intern the reference to the
AAPD workflow is added to a EntityDefinition ob-
ject for type Intern, as shown in Figure 4. Adding
the AADP workflow to the intern’s EntityDefinition
will trigger the parsing of the workflow specification tp
provide:

1. the APTs for each of the workflow’s tasks. Once
the ATPs are created, they are also added to the
EntityDefinition.

2. the generation of code that is included in the
Entity object. This code contains a method for
each of the tasks in the workflow. The fulfillment
of a task in a workflow corresponds to the execu-
tion of the corresponding method by the Entity
object.

To start the execution of the AAPD workflow, the
Entity object corresponding to the intern must be in-
stantiated. This instantiation is the result of an au-

Figure 4. Instantiation of an Entity for an in-
tern.

thentication phase, as depicted in Figure 4. The in-
tern needs to provide valid credentials for authentica-
tion. For instance, the intern’s digital credentials can
be stored in a SmartCard and validated through the PC
in the visiting room assigned to the patient. After the
credentials are verified the authentication service finds
the EntityDefinition with matching credential set
(1). The EntityDefinition instantiates the Entity
object (2) and loads the workflow in the WMS using
the WMSMO object (3 and 4). Now the intern is ready to
execute the workflow.

The execution of a workflow requires references
to the target resources of the tasks. For instance,
these references could be provided by another work-
flow that is executed at the admission desk. When
all the required references are available, the authori-
sation policies are generated from the ATPs in the
EntityDefinitionand loaded in the policy interpreter
but are disabled. During the execution of the workflow,
the access control adapts the access rights to the cur-
rent needs of the entity executing the workflow. This
means that if the intern wants to write the diagnosis
before completing the other tasks, then the system will
not authorise such an action.

An authorisation policy is dynamically activated
when the relevant task in the workflow is to be ex-
ecuted. Important here is the notion of the current
task, that is the task that the entity has to execute be-
fore moving on in the workflow. When a new current
task is activated, the WMS sends an event providing
the details that identify such a task. This event is cap-
tured by an obligation policy (event-condition-action
rule) that checks-out the task from the workflow en-
gine and enables the corresponding authorisation pol-
icy. The execution of a task in the workflow corre-
sponds to the execution of a specific method in the
Entity object. When the method is executed the ac-
tion on the target resource will be granted since the
corresponding authorisation policy is enabled.

117117

When the method concludes another event is sent.
This event triggers two obligation policies. One obli-
gation policy disables the authorisation policy used for
performing the task. The second obligation policy in-
forms the WMS that the current task is concluded by
checking back the task in the engine. The WMS selects
the next task in the workflow, sets it as the current task
and sends an event to announce the new current task.

Another interesting aspect of our model is that ac-
cess rights can be delegated to other entities as long
as such action is contemplated in the actual workflow.
For instance, in our case study the AADP workflow
allows the intern to ask for the second opinion from
another colleague. Such an action corresponds to start-
ing another workflow executed by the doctor entity
that the intern selects. For instance, let us assume
that the intern wants to ask for the opinion of doc-
tor Ross. The intern specifies in the request doctor
Ross’s id and the patient’s record. The request is for-
warded to the Entity object corresponding to doctor
Ross that triggers the execution of a new instance of
the AADP workflow. While doctor Ross executes the
workflow, our framework grants the appropriate access
rights for the patient’s record. The main advantage of
this approach is that new entities can dynamically ac-
quire access rights without the need of capturing the
exact details regarding the subject and the target dur-
ing the specification phase.

When the intern completes the workflow, all the ac-
cess rights will already have been revoked. This ensures
that when the workflow is terminated there are no valid
access rights for the entity to access a resource. How-
ever, it could be the case that an entity erroneously
(or maliciously) leaves the execution of a workflow sus-
pended on a task that is not completed, leaving the ac-
cess right enabled. To prevent such situations, an expi-
ration time can be associated with the given workflow.
After the time expires, the workflow is automatically
terminated and all the access rights will be disabled.
Moreover, a message will be logged to record such a
situation and trigger some further investigation if the
situation is logged too often for a given entity.

Discussion In this section we have presented an im-
plementation of a case study based on a real medical
scenario that is realised using our framework. Such an
implementation allows us to pragmatically assess the
feasibility of our approach and to highlight its advan-
tages. Clearly, our proposed WBAC mechanism is flex-
ible enough to cope well with dynamic environments.
At the same time, sensible data and resources are pro-
tected from being accessed by unauthorised users. As
the case study shows, the patient’s record becomes ac-

cessible to a carer because that carer is fulfilling his
responsibilities in the ED. It is not required to know in
advance the arrival of the patient to provide privileges
to carers. Responsibilities of carers are captured by
means of tasks in a workflow. In this way, the frame-
work provides access rights only to the entity that re-
quires to perform accesses on a specific target resource.
It should be noted that the access rights to a specific
patient’s record are given only to the specific instance
of an intern that is performing the diagnosis and not to
all carers in the ED that have a role of intern. More-
over, access rights will be dynamically removed after
the responsibility is fulfilled. Another advantage of our
approach is that access rights can be delegated to other
entities, as long as the delegation action is part of the
responsibilities captured by the workflow that the en-
tity is executing.

6 Conclusions and Future Work

In this paper, we have presented the Workflow-
based Access Control (WBAC), a flexible access con-
trol mechanism that adapts the access rights of sub-
jects to the actual tasks that they have to fulfil. The
requirements of entities’ duties are expressed by means
of workflows. WBAC ensures that entities can access
the resources associated with a workflow task but only
while such a task is active. Our framework is built by
integrating two components: an authorisation module
based on the Ponder language, and the YAWL work-
flow management system. We also outlined a medical
case study using our framework.

The main advantages of our approach can be sum-
marised as follows. Firstly, the approach provides fine-
grained control on the granting of access rights. An en-
tity will be granted access only to the specific resource
that is bound to the execution of the task.Secondly, our
approach provides each entity with the minimal access
rights for carrying out their duties. This corresponds to
the principle of least privilege. Finally,access rights are
dynamically granted according to the workflow execu-
tion. Using a feedback loop between the authorisation
module and the workflow engine, we are able to grant
access rights during a task execution. Once the task is
completed the access rights are invalidated.

As shown in this paper, the WBAC mechanism is
practically realisable. This is proven by presenting an
implementation of a case study derived from real case
scenario.

As part of our future work, we intend to carry out
performance measurements of our prototype. Cur-
rently, our framework is in a early prototyping phase
that needs further fine-tuning. Another area that

118118

we are exploring is related to security issues raised
when workflows are executed by competing organisa-
tion (conflict-of-interest) or need to be executed by dif-
ferent entities (separation-of-duties). To this end, we
are planning to introduce constraints in the authorisa-
tion policies that are generated and to keep track of
the workflows that each entity is executing.

Acknowledgments

This research was supported by the UK’s EPSRC
research grant EP/C537181/1 and forms part of the
CareGrid, a collaborative project between the Univer-
sity of Cambridge and the Imperial College London.
The authors would like to thank the members of the
Policy Research Group at Imperial College for their
support.

References

[1] W.M.P. van der Aalst, L. Aldred, M. Dumas, and
A.H.M. ter Hofstede. “Design and implementation
of the YAWL system.” In A. Persson and J. Stirna,
editors, Proceedings of The 16th International Con-
ference on Advanced Information Systems Engi-
neering (CAiSE 04), volume 3084 of LNCS, pp.
142–159, Riga, Latvia, June 2004. Springer Verlag.

[2] W.M.P. van der Aalst and A.H.M. ter Hofstede.
“YAWL: Yet Another Workflow Language.” Infor-
mation Systems, 30(4), pp. 245–275, 2005.

[3] L. Ardissono, A. Di Leva, G. Petrone, M. Seg-
nan, and M. Sonnessa. “Adaptive Medical Work-
flow Management for a Context-Dependent Home
Healthcare Assistance Service.” In Electronic Notes
in Theoretical Computer Science, Elsevier, 2005.

[4] V. Atluri and W.-K. Huang. “An Authorization
Model forWorkflows.” In Proceedings of the Fifth
European Symposium on Research in Computer
Security, Rome, Italy, pp. 44-64. Lecture Notes
in Computer Science, no. 1146. Berlin: Springer-
Verlag.

[5] P. Barthelmess. “Security in
Workflow Systems.” Available at
http://www.barthelmess.net/Survey Pages/Security/security.html.
2001.

[6] M. Becker and P. Sewell “Cassandra: Flexible
Trust Management, Applied to Electronic Health
Records.” In Proc. of the 17th IEEE Computer
Security Foundations Workshop (CSFW’04), pp.
139–154, June 2004.

[7] S. Chaari, F. Biennier, C. Ben Amar, J. and Favrel.
“An authorization and access control model for
workflow.” First International Symposium on Con-
trol, Communications and Signal Processing, pp.
141–148, 2004.

[8] R. Chandramouli. “A framework for multiple au-
thorization types in a healthcare application sys-
tem.” In Proc. 17th Annual Computer Security Ap-
plications Conference (ACSAC), December 2001.

[9] K. Cook. “Evaluating acute
abdominal pain in adults”.
http://www.jaapa.com/issues/j20050301/articles/
belly0305.htm

[10] G. Coulouris, J. Dollimore and M. Roberts “Role
and task-based access control in the PerDiS group-
ware platform.” In Proc. of the 3rd ACM Workshop
on Role-Based Access Control , pp. 115–121 , 1998.

[11] P. Dadam, and M. Reichert. “Towards a new
dimension in clinical information processing.” In
Stud. Health Technol. Inform., 77, pp. 295–301,
2000.

[12] L. Dazzi, and M. Stefanelli. “A patient workflow
management system built on guidelines.” In Proc.
of AMIA 97, pp. 146–150, 1997.

[13] M. Dekker and S. Etalle “Audit-Based Ac-
cess Control for Electronic Health Records.” In
Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 168, pp. 221–236, 2007.

[14] I. Denley and S. Weston Smith. “Privacy in clin-
ical information systems in secondary care.” In
British Medical Journal, 318, pp. 1328–1331, May
1999.

[15] D. F. Ferraiolo, and D. R. Kuhn. “Role-Based
Access Control.” In Proc. of the NIST-NSA Nat.
(USA) Comp. Security Conf., pp. 554–563, 1992.

[16] D. Georgakopoulos, M. Hornick, and A. Sheth.
“An overview of workflow management: from pro-
cess modeling to workflow automation infrastruc-
ture.” In Distributed Parallel Databases, 3, 2, pp.
119–153, 1995.

[17] The Healthcare Role-Based Access Control Task
Force http://www.va.gov/RBAC/.

[18] K. Knorr. “Dynamic Access Control through Petri
NetWorkflows.” In Proceedings of the 16th An-
nual Computer Security Applications Conference,
pp. 159-167, New Orleans, LA, December 2000.

119119

[19] X. Liao,L. Zhang, and S.C.F. Chan. “A Task-
Oriented Access Control Model for WfMS.” Infor-
mation Security Practice and Experience, pp.168-
177, 2005.

[20] The Ponder2 Project http://ponder2.net

[21] M. Poulymenopoulou, and G. Vassilacopoulos.
“A Web-based Workflow System for Emergency
Healthcare.” In Medical Informatics Europ, 2002.

[22] D. Povey. “Optimistic security: a new ac-
cess control paradigm.” In Proceedings of the
1999 workshop on New security paradigms. ACM
Press, Caledon Hills, Ontario, Canada, 2000. ISBN:
1581131496.

[23] S. Quaglini, E. Caffi, A. Cavallini, G. Micieli, and
M. Stefanelli. “Simulation of a Stroke Unit Care-
flow.” In Medinfo, 2001.

[24] L. Røstad and O. Edsberg. “A Study of Ac-
cess Control Requirements for Healthcare Systems
Based on Audit Trails from Access Logs.” In Proc.
of 22nd Annual Computer Security Applications
Conference, Miami, Florida, December, 2006.

[25] G. Russello, C. Dong, N. Dulay. “Authorisation
and Conflict Resolution for Hierarchical Domains.”
In Proc. of Policy07. June 2007.

[26] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C.
E. Youman. “Role-based access control models”. In
IEEE Computer 29, 2 (Feb.), pp. 38-47, 1996.

[27] A. Sheth, D. Worah, K. Kochut, Z.J. Miller, D.
Palaniswami, and S. Das. “METEOR Workflow
Management System and its use in Prototyping
Healthcare Applications.” In Proceedings of the
Towards an Electronic Patient Record (TEPR97)
Conference, Nashville, TN, April 1997.

[28] M. Sloman and E. Lupu. “Security and Man-
agement Policy Specification.” In IEEE Network,
pp.10–19, Vol. 16, Issue 2, March, 2002.

[29] R.K. Thomas and R.S. Sandhu. “Towards a Task-
based Paradigm for Flexible and Adaptable Access
Control in Distributed Applications.” In Proceed-
ings of the Second New Security Paradigms Work-
shop, IEEE Press, pp. 138–142, 1993.

[30] R. Thomas and R. Sandhu “Conceptual founda-
tions for a model of task-based authorisations.” In
Proc. of the 7th IEEE Computer Security Founda-
tions Workshop (CSFW’94), pp. 66–79 , 1994.

[31] R. Thomas and R. Sandhu “Task-Based Autho-
rization Controls (TBAC): A Family of Models for
Active and Enterprise-Oriented Autorization Man-
agement.” In Proc. of the IFIP TC11 WG11.3 11th
International Conference on Database Securty XI:
Status and Prospects , pp. 166–181, 1997.

[32] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong.
“Access control in collaborative systems.” In ACM
Comput. Surv., 37(1), pp. 29-41, 2005.

[33] S. Wu, A. Sheth, J. Miller, and Z Luo. “Autho-
rization and Access Control of Application Data in
Workflow Systems.” In Journal of Intelligent In-
formation Systems, 18(1), pp. 71–94, 2002.

120120

