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IAC-11-A5.1.11 

Use of Orbiting Reflectors to Decrease 

the Technological Challenges of Surviving the Lunar Night 

Russell Bewick*, Joan-Pau Sanchez and Colin R. McInnes 

Advanced Space Concepts Laboratory, University of Strathclyde 

Glasgow, G1 1XJ, United Kingdom 

In this paper the feasibility of using lunar reflectors to decrease the technological challenges of surviving the lunar 

night is investigated. This is achieved by attempting to find orbits in the two-body problem where the argument of 

periapsis is constantly Sun-pointing to maximise the time spent by the reflectors over the night-side of the Moon. Using 

these orbits the ability of reflectors of varying sizes to provide sufficient illumination to a target point on the surface is 

determined for scenarios where a latitude band is constantly illuminated and a scenario where a specific point is 

tracked. The optimum masses required for these far-term scenarios are large. However, a nearer-term scenario using 

low altitude orbits suggest that the effective duration of the lunar night can be reduced by up to 50% using a set of 300 

parabolic reflectors of 100m radius with a total system mass of 370 tonnes. A system is also demonstrated that will 

allow a partial illumination of the craters in the Moon’s polar region for a mass up to 700kg.  

 

1.  INTRODUCTION
*
 

In recent years there has been significant interest in both 

the human and robotic exploration of the Moon. The 

scientific and economic reasons for a return to the moon are 

varied and in some cases disputed and so shall not be 

discussed here. This paper shall propose a method to 

mitigate one of the key difficulties with long-term lunar 

exploration; surviving the lunar night. 

The key difficulties associated with lunar exploration 

arise from the dynamics of the Moon’s orbit around the 

Earth and absence of an atmosphere. The tidally locked 

orbit with a period of approximately 27.5 days results in 

long periods of sunlight and darkness. This creates a 

challenging thermal environment where the surface 

temperature, unfiltered by an atmosphere during the day, 

can reach a maximum of 390K in the equatorial regions 

whilst during the long night, where there is no atmosphere 

to insulate/trap solar heat, temperatures can reach a 

minimum of 100K. The length of the lunar night makes the 

use of solar panels to power electric heaters unfeasible and 

hence heat must be generated, or stored, by other methods.  

The most straightforward solution to the problem of the 

lunar night is to use Radioisotope Heater Units (RHUs). 

These devices generate heat through the radioactive decay 

of Plutonium-238 (or other radioactive sources) and, due to 

its long half-life, can last for many years. However, there 

are many challenges to using this method [1], most notably 

special considerations are required to shield sensitive 

instruments from the radiation source and there is currently 

a shortage of Plutonium-238. Additional issues, such as 

their high cost, make surviving the lunar night without such 

devices desirable. 
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To achieve this, heat or energy storage is necessary in 

combination with improved insolation, such as placing 

critical systems such as batteries in thermally isolated boxes 

[1, 2]. The required mass of secondary batteries and 

idealised thermal capacitors to enable a lander to survive on 

the lunar surface has been estimated in [1]. It was found 

that to survive the lunar night, without a continuation of 

normal operations, would require an excessive mass 

fraction for storage devices, particularly for landers below 

600kg. 

Another possible solution is to utilise the low thermal 

conductivity of lunar regolith and bury a lander or crewed 

lunar base. It has been found that the temperature of the 

lunar sub-surface remains constant below a depth of order 

1m [3]. Clearly this method is not suitable for a rover or 

lunar lander, however it may be suitable for a crewed lunar 

base. 

This paper aims to investigate the possibility of 

reflecting sunlight onto the lunar surface to enable the 

survivability of missions that would otherwise not live 

through the lunar night, such as the SELENE-2 mission [4]. 

This shall be achieved by a discussion of  a family of non-

Keplerian orbits [5] where a series of orbiting reflectors in a 

forced Sun-synchronous orbit are used to reflect sunlight 

towards; 

 the centre of the moon 

 a latitude band on the lunar surface 

 a given point on the lunar surface, tracking it 

whilst orbiting 

For each of these scenarios, the area to mass ratio 

necessary to have a certain semi-major axis and eccentricity 

can be found. Using this and a range of reflector diameters 

the ability of each orbit to reflect sunlight, and the cost in 

mass, can be determined. The minimum necessary mass to 
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provide sufficient illumination to the target point or area 

over the range of orbital parameters and reflector sizes can 

finally be found. Before the orbital dynamics of these 

scenarios are discussed reflector concepts must first be 

introduced, followed by an analysis of the reflector 

requirements. 

 

2. REFLECTOR SYSTEMS 

2.1. Reflector Image 

The physical aspects associated with the reflection of 

light onto a planetary surface have been dealt with 

previously in [6]. In summary, the area of the reflected 

image of the Sun at a given distance y away from an 

unfocused reflector can be given as; 
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where Dr
2
 is the diameter of the reflector, ε is the elevation 

of the reflector above the surface and β is the solid angle 

subtended by the Sun. The value of β at the Earth’s distance 

from the Sun is 0.0093. It can also be shown that for a 

parabolic reflector, where y is also the focal distance, the 

image area is given by; 
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Subsequently the fraction of the normal solar constant, 

defined later as η, supplied by the reflector over this area 

can be calculated by; 
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with ρ being the reflectivity, or efficiency, of the reflector, 

Ar the area of the reflector and α the angle between the 

incoming and reflected rays at the reflector. The value of ρ 

used throughout this paper is 0.9 [7]. Substituting in eqn. 

(1) and eqn. (2) and the area of the reflector, Ar=π(Dr/2)
2
 

gives; 
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and 
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We can define a variable, χD, as the distance to the target in 

units of reflector diameter, to analyse the behaviour of these 

two equations. The results of this can be seen in Fig. 1. 

 
Fig. 1- Concentration ratio as a function of focal point distance in terms of 

reflector diameter. 

The results in Fig. 1 show that above a distance equal to 

approximately 200 times the reflector diameter there is little 

difference between the results of the flat and parabolic 

mirrors. For any reasonable advantage of using a parabolic 

mirror the maximum value of χD is nearer 100. Using eqn. 

(4) and (5) the ability to provide sufficient illumination for 

a reflector in a given orbit or position can be analysed. 

 

2.2. Required Insolation 

Before proceeding, the quantity of sunlight required to 

enable night-time survival must be determined. Since the 

Moon experiences extremes of temperature in both the 

night and day periods a value reasonably removed from 

both extremes will be required. A benchmark shall be 

calculated by estimating the solar insolation required to 

give a surface temperature of 273K. The solar constant 

fraction, η, was calculated using a thermal model of the 

surface as seen in Fig. 2. In this model the surface 

temperature, TS, is found by the balance of incoming and 

outgoing radiation and conduction between the surface and 

subsurface.  

 

 
Fig. 2 - Model showing the main influences on the lunar surface 

temperature 

The model can be expressed as an energy balance equation, 

eqn. (6), from which η can be calculated.  
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In this equation the solar constant, I0, used is 1368 Wm
-2

 

[8], the lunar bond albedo, A, is 0.11 [1], the thermal 

emissivity of the surface, BB , is 0.97 and the thermal 

conductivity of the Moon, κ, is 9.3x10
-3

 Wm
-1

K
-1

 [9]. The 

temperature of the sub-surface, TSS, changes with latitude, 

as can be seen in Fig. 3, with the maximum at the equator 

249K [1]. The solar constant fraction is required to ensure a 

surface temperature 273K in the equatorial regions can thus 

it can subsequently be calculated to be η=0.251. As can be 

seen in Fig. 3 due to the low thermal conductivity of lunar 

regolith little extra illumination is required to achieve a 

surface temperature of 273K for higher latitudes. 

 

 
Fig. 3 - Lunar sub-surface temperature and required solar constant to raise 

the surface temperature to 273K as a function of latitude. 

2.3. Lander Thermal Model 

Alternatively, a system model of a lander, as described 

in Ulamec [1], can be used to define a more accurate value 

of  η. In this model the mass fraction, χ, of secondary 

batteries (SB) and thermal capacitors (TC) required to 

survive the lunar night, as a function of lander mass, can be 

calculated. This was achieved by using the assumption that 

the lander is a cube, coated on all sides by MLI, the volume 

of which scales with the mass fraction.  

The volume of the cube is found using the estimate of 

the mass fraction of the energy storage device and the 

densities of the lander, ρL, and storage device, ρSB, from 

which the surface area, AL, can be calculated; 
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Here the lander mass is seen as mL whilst βL is a geometry 

coefficient that describes the ratio of total to cross-sectional 

surface area, i.e. βL=6 for a cube. Using the total surface 

area the heat loss can be estimated; 
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where ΔT1 and ΔT2 are the temperature differences between 

the lander and the surface and sky respectively and h is the 

heat transfer coefficient of an MLI blanket. The total 

energy storage requirement to survive the lunar night, of 

length N, for the lander with mass, mL, can be estimated and 

the mass fraction of storage required, with energy density 

C, can be determined; 

 

 
L

qN

Cm
 


 (9) 

 

Thus the true mass fraction for energy storage can be 

determined for a given lander mass by solving; 
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The values for the constants used are summarised in Table 

1. It is shown in [1] that the mass fraction of secondary 

batteries is consistently lower than that for thermal 

capacitors and so only secondary batteries shall be 

considered here. Using secondary batteries has the added 

advantage over thermal capacitors that if the stored energy 

is used to provide power for night time operations, this 

energy will be dissipated as heat, with the exception of that 

used for communications, which will thus have a similar 

effect as providing power to electrical heaters. 

Symbol Parameter Value 

ρSB
 Secondary Battery 

density 
1,250 kg m

-3
 

ρL

 
General lander density 220 kg m

-3
 

h 
Heat transfer coefficient 

(MLI) 
0.04 W K

-1
 m

-2
 

βL Geometry coefficient 6 

TL Lander temperature 283 K 

C Energy density (SB) 136 Wh kg
-1

 

N Length of lunar night 384 h 

Table 1: Values used to determine the mass fraction of secondary 
batteries (SB)  required to survive the lunar night [1]. 

 

Now the lunar surface temperature model, described in 

eqn. (6), can be used along with the Stefan-Boltzmann law 

to calculate the temperatures of the surface and sky, in the 

direction of the reflected sunlight, respectively for different 

lighting conditions. It shall be assumed that only one face 

will receive the new sky temperature whilst two of the six 

lander faces will receive the old sky temperature of 2.7K. 

Now eqn. (10) can be solved numerically for a range of 

lander masses. The results of this analysis can be seen for 

two scenarios; a) there is a constant illumination from the 

zenith with η ranging from 0.02-0.25, Fig. 4, and b) a value 

of 0.25 for η is used whilst the elevation angle above the 

horizon, ε, ranges from 15
o
 to 90

o
, Fig. 5. In the second 

scenario it is assumed that the elevation angle only has an 

effect on the flux input to the surface temperature whilst the 
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sky temperature remains constant. It can be seen in Fig. 4 

that for increasing values of η the mass fraction of batteries 

required decreases, with the greatest gain being made for 

relatively low illuminations. The benefit of increased 

illumination above η=0.15 appears to be small with a 

battery mass fraction saving of just under 50% for the 

largest lander mass considered. For off-zenith illumination 

there is little change initially but for large deviations away 

from the zenith angle there mass fraction of batteries 

required increases considerably.  

Shown in Fig. 4 is a data point for a proposed lunar 

lander network Lunette [2]. This lander survives the lunar 

night by thermally isolating the most sensitive components, 

such as batteries and data storage etc, in a warm electronics 

box (WEB). This box is insulated with MLI and will lose 

heat at a rate of 3W which is significantly lower than the 

calculation suggested by the use of eqn. (8). An estimate of 

the value of η required to offset this loss of 3W can be 

performed by estimating the volume of the box as in eqn. 

(7), with the mass of batteries being 36kg with a total box 

mass of 73kg (estimated using data found in [2]). Now the 

sky temperature required to offset this thermal loss again 

assuming only one face is illuminated can be estimated to 

be the equivalent of η=0.1. This value shall be used as the 

minimum necessary to survive the lunar night with the 

maximum being η=0.15, beyond which the mass fraction 

saving comes at a much higher cost of η 

 

3. REFLECTOR ORBITAL DYNAMICS 

This study will investigate two main orbits from which 

sunlight will be reflected onto the surface. The orbital 

dynamics of both these systems will assume that the third 

body perturbations of the Sun and Earth are minimal 

providing that the orbit does no cross the Hill radius of the 

Moon, at a distance of order 60,000km. Similarly, the 

harmonics of the lunar gravitational potential will be 

assumed to be negligible with the high orbits considered. 

These assumptions are made to determine the initial 

feasibility of the concepts proposed. 

 

 

 
Fig. 4 - Mass fraction of secondary batteries required to survive the lunar 

night with differing average values for the solar constant fraction. 

 

Fig. 5 - Mass fraction of secondary batteries required to survive the lunar 

night with differing elevation angles for a solar constant fraction of 0.25. 

3.1. Forced Sun-pointing orbits 

Previous studies [5] propose the use of a solar sail to 

enable a spacecraft to explore the Earth’s geomagnetic tail 

by precessing the orbit apse line at the same rate as the 

orbital motion of the Earth around the Sun. The same 

dynamics can be exploited here to artificially precess the 

elliptical orbit of a lunar reflector, ensuring that the 

reflector apocentre is always above the lunar night-side, 

maximising the fraction of the orbit which can be used for 

illumination. Continuous low-thrust propulsion can be used 

but a much more attractive solution is provided by the use 

of solar radiation pressure on the reflector. The 

characteristic acceleration of the solar sail, a0, that is 

required to precess the orbit apse line at the same rate as the 

Sun, 
S

 , can be found using the Gauss equation [10]; 

  

2d
cos 1 sin

d

r r
R f T f

f e p
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where ω is the argument of pericentre of the orbit, r is the 

distance between the solar sail and centre of the Moon, μ is 

the gravitational parameter of the Moon, p is the semi-latus 

rectum, R and T are the radial and transverse components of 

the acceleration on the solar sail and f is the true anomaly. 

For a sun-pointing reflector the solar radiation pressure 

acceleration can be defined as; 
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0
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cos ( )

sin
S

R f
a

T f
 

   
    

   
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This definition arises from the orientation of the reflector, 

which has the normal to the surface continually pointing 

parallel to the semi-major axis. By integrating eqn. (11) 

analytically and dividing by the period of the orbit the 

required characteristic acceleration can be determined. This 

method can now be used to find the characteristic 

acceleration for different pointing scenarios for the lunar 

reflector 
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Fig. 6 - Geometry of the centre-pointing lunar reflector system 

 

Moon-centre pointing 

This scenario shall assume that the reflector is 

orientated such that the reflected sunlight is directed 

towards the centre of the Moon. The geometry of this 

configuration can be seen in Fig. 6 where the angle γ can be 

seen to vary as; 
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This results in the radial and transverse acceleration 

components being; 
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Now the Gauss equation can be integrated over an orbit to 

give the precession of the perigee; 
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where the change in semi-major axis and eccentricity is 

zero due to the symmetry of the solar radiation pressure 

acceleration components. Since the orbit period is defined 

as 3

0
2 /T a   and the rate of precession must be 

S
  the 

required acceleration can be found to be; 
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     (16) 

 

An additional factor that must be also taken into account is 

the effect that an eclipse has on the precession of the orbit. 

This is due to the necessity of solar radiation pressure to 

provide the acceleration on the reflector. Additionally, 

during eclipse illumination of the surface will not be 

possible. Low altitude orbits will have a higher proportion 

of the orbit in eclipse and will therefore require a higher 

acceleration to be continually Sun-pointing.  

To incorporate eclipses eqn. (11) must be integrated 

between true anomalies of π and fE,1 and from fE,2 to 3π/2. 

The integrations do not cover below π and above 3π/2 as it 

is assumed that within this region the lunar rover or base 

will be in sunlight and hence no illumination is required. 

During this phase of the orbit the reflector will be edge-on 

to the Sun and will not provide any acceleration. This 

integration can be performed analytically, but the lengthy 

result is not given here explicitly. 

The accelerations required for the simple precessing 

orbit and the Moon-pointing scenario including eclipse 

periods can be seen in Fig. 7, and Fig. 8 respectively. This 

result shows that for the Moon-pointing scenario the 

acceleration necessary is increased, approximately be a 

factor of 4. 

 

 
Fig. 7 - Acceleration required for a simple forced orbit to precess at the 

same rate as the Sun. 

 
Fig. 8 - Acceleration required by the Moon-centre pointing scenario to 

precess at the same rate as the Sun, taking into account eclipses. 
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Moon-centre pointing with latitude band 

In this scenario the reflector will also be orientated 

within the orbital plane such that the sunlight will be 

reflected towards the centre of the Moon. The additional in 

this scenario is that there will also be an out-of-plane 

orientation. This out-of-plane angle will be added so that 

the reflector can target a specific latitude on the Moon’s 

surface. As the distance to the centre of the Moon varies 

throughout the orbit this out of plane angle will vary.. This 

will allow smaller reflectors to be used to reach higher 

latitudes. Due to this new method eqn. (14) can be modified 

to give; 
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where θ is the out-of-plane pitch angle of the reflector. This 

equation describes the acceleration within the plane but 

there will be an additional out of plane acceleration 

component; 
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It is assumed that this can be offset by the use of low-thrust 

propulsion. The geometry of this scenario as seen from 

above is the same as that in scenario 1. An analytical 

expression can be found to describe the out of plane pitch 

angle for any point on an orbit for a given latitude target; 
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where r=a(1-e
2
)/(1+ecos(f)) is the reflector orbit radius. 

This scenario can be integrated numerically to give the 

required acceleration. 

 

Moon tracking 

For this scenario the rover or lunar base shall be 

assumed to be on a single point on the lunar surface. Then 

as the Moon rotates the reflectors will orbit the Moon, 

reflecting sunlight onto the surface when above the horizon. 

A minimum elevation angle of 15
o
 is assumed. The 

reflectors will not be orientated towards the centre of the 

Moon in this case and so the analytical expressions to 

determine the acceleration required to maintain a sun-

synchronous orbit cannot be used. Therefore a numerical 

method will be used to determine the angle between the 

Sun and normal vectors required to reflect sunlight, with 

the radial and transverse accelerations being subsequently 

determined.  

The required acceleration will be determined by 

calculating the difference between the acceleration vector 

required to reflect sunlight onto the target point and the 

vector calculated in eqn. (14). At the times when the 

reflector is not above the surface it will revert to the Moon-

centre pointing scenario and thus will not require low-thrust 

propulsion to offset the acceleration vector.  

3.2. Displaced polar orbit 

The final type of orbit that will be discussed is a circular 

non-Keplarian polar orbit. This is essentially a circular 

polar orbit, however due to the effect of solar radiation 

pressure the orbit is displaced along the anti-Sun line. This 

is achieved if the reflector assumes a constant attitude in a 

cylindrical polar coordinate system. This type of orbit has 

been discussed in [11] for the purpose of climate 

engineering on Mars. The geometry of the problem can be 

seen in Fig. 9. 

 

 
Fig. 9 - Geometry of the displaced circular polar orbit under the influence 

of solar radiation pressure. 

 

In cylindrical polar coordinates the equations of motion 

for a reflector are [11]; 
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where ap is the characteristic acceleration of the reflector. 

For this type of orbit to exist it is required that 0
p

   and 

0
p

z  . Then, from eqn. (20) it can be found that; 

 

 

2

tan 1
ˆ

p

p

p
z

 




  
   

   

 (21) 

 

where 2 3ˆ /
p

r  . The characteristic acceleration is found 

to be; 

  
3/2

2 2ˆ 1 tan
p p p

a z     (22) 

 

From Fig. 9 the required angle αp can be found 

geometrically to be; 
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11

tan
2

p

P

p
z


 

 
  

 
 

 (23) 

 

Now using eqn. (21) and (22) the angular velocity and 

characteristic acceleration can be found for a given set of ρp 

and zp. It is a pre-requisite of the system that the length of 

ρp must be greater than the radius of the Moon to be able to 

reflect sunlight. Also it has been noted in [11] that for these 

orbits to be stable ρp>4zp. Using this limitation the 

minimum angle away from the Sun-line that can be 

illuminated can be calculated to be 76°. This offers both 

positive and negative effects; the reflector can reach high 

latitudes without the need for low-thrust propulsion to 

offset the out-of-plane thrust, as is the case for the 

precessing elliptical orbit. However, if these displaced 

orbits were used to illuminate a target in the equatorial 

regions there would likely be a large period between passes, 

around 85% of the night time. This is likely to be offset 

slightly by the increase in image size observed due to the 

non-point source qualities of the Sun, however, using a 

deliberately dispersed beam, with a large spot size, to 

reduce the gap will likely be inefficient. 

 

 

Fig. 10 - Acceleration (in units of log10(ms-1)) required to enable a reflector 

to be positioned in a displaced polar orbit for varying orbital parameters. 

The acceleration required by a reflector in a displaced 

polar orbit can be seen in Fig. 10. The acceleration is 

clearly greater than that required for the precessing ellipse, 

however this will have the effect of placing a minimum 

requirement on the area-to-mass ratio which will force a 

significant reduction in the overall system mass. The 

reflector loading required for a displaced polar orbit can be 

seen in Fig. 11. Clearly for lower orbits the sail loading 

becomes more challenging to achieve, especially 

considering that this takes into account the mass required 

for other subsystems such as control and communications 

etc. For these reasons areal densities below 1g/m
2
 may be 

unfeasible though they are theoretically possible [12]. 

Those reflectors that are along the ρ=4z boundary also 

appear to have a relatively low areal density as they appear 

to intersect continuously with the 1g/m
2
 plane seen in Fig. 

11. 

 

Fig. 11 - Sail loading required for displaced polar orbits with varying 
values of z and ρ. Also shown is a plane for a sail loading of 1g/m2. 

To offset the problem of long periods with no 

illumination it is desired that the reflector will be able to be 

directed at a point along the Sun-axis to decrease the 

maximum angle from the Sun-line. The angle that a 

reflector can reach for different fractions of rM and varying 

distances to the centre of the Moon, rp, assuming that the 

reflector is at an angle of 76° to the x-axis can be seen in 

Fig. 12. It can clearly be seen that large distances are 

required to enable the equator to be targeted which will lead 

to a reduction in the intensity of reflected sunlight. 

 

 
Fig. 12 - Minimum latitude achievable for displaced polar orbit for a range 

of distances and target positions, as a fraction of the lunar radius. 

4. RESULTS 

The mass of reflector required for each scenario can be 

estimated using the required acceleration. The acceleration 

on a reflector due to solar radiation pressure can be 

expressed as; 

 0 R
R R

R

I A
a C

c m
  (24) 

 

where AR is the cross-sectional area of the reflector, CR is 
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the coefficient of reflectivity (assumed to be equal to 1.8), c 

is the speed of light and mR is the reflector mass. Setting the 

acceleration in eqn. (24) equal to the characteristic 

acceleration required for a given orbit type enables the area-

to-mass ratio to be calculated for a reflector to be stable on 

a given orbit. Now since the area of the reflector can be 

selected the total reflector mass can be determined. 

For the precessing ellipse cases the mass and solar 

constant fraction, calculated using eqn. (4) and (5), are 

calculated for semi-major axes within the range 

2,000km≤a≤30,000km, eccentricities within 0.01≤e≤0.9 

and for a range of reflector radii with the lower bound of 

100m. The range of semi-major axis was chosen to reduce 

the influence of the third body perturbation of the Earth and 

the uneven gravity field of the Moon by reducing the time 

spent in high altitudes and low altitudes. From these data 

points a Pareto front is then constructed to show the range 

of optimal solutions. The number of reflectors required to 

provide the solar constant fraction η of 0.1 can then be 

optimised for all the entries along the Pareto front. From 

this the total system mass can be calculated. 

When the value of η is calculated for a specific point or 

latitude the solar constant received by the lander and 

ground are determined differently. It is considered that the 

lander will receive a solar constant fraction with a value 

equal to η on a single face, under the assumptions discussed 

previously. The solar constant received by the ground, 

however, must take into account the elevation angle of the 

reflector above the surface which results in the solar 

constant per unit area of the surface being η sinε. 

What must additionally be taken into account is the 

system mass that is required to maintain a stable orbit using 

low thrust propulsion, where the assumptions of tracking or 

latitude pointing scenarios apply. This can be achieved by 

the use of the rocket equation where the mass fraction of a 

spacecraft remaining after a change in velocity, ∆v, is 

determined using; 

 

 0

0

1

ln
sp

m
v I g

m
   (25) 

 

where Isp is the specific impulse of the propulsion system 

(assumed to be 3,000s), g0 is the acceleration due to gravity 

at Earth and m0 and m1 are the initial and final masses 

respectively. The change in velocity required over the 

period of an orbit for the case of the latitude pointing 

system can be determined by the integration of eqn. (18) for 

the first orbit. After the initial orbit the reduction in mass 

will lead to a larger characteristic acceleration as can be 

calculated in eqn. (24). Thus, after the initial orbit the 

additional acceleration within the plane must be offset as 

well as the out of plane components. The same principles 

apply to the Moon tracking scenario with the addition that 

the required acceleration vector must be calculated 

numerically. 

 

 

4.1. Moon-centre pointing 

For the basic Moon-centre pointing scenario the values 

of η and mass are calculated under the assumption that the 

reflector must be able to reach a minimum latitude at the 

spot’s maximum diameter, i.e., when the reflector is at 

apoapsis. This sets a minimum bound on the reflector size 

with the maximum being calculated to give a reasonable 

range of values. The data points with the corresponding 

Pareto front for a minimum latitude of 0.1° using a single 

reflector can be seen in Fig. 13. 

 
Fig. 13 - Plot of mass and solar constant fraction data points, with 

corresponding Pareto front, for a Moon-centred scenario with a minimum 

latitude of 0.1° using a flat reflector. 

The mass ranges greatly with the general trend being 

that increased mass leads to a higher value of η, since the 

higher masses correspond in general to larger reflectors. 

The Pareto fronts for the full range of minimum latitudes 

can be seen in Fig. 14 for the flat reflector and Fig. 15 for 

the parabolic reflector. There is a smaller range of latitudes 

for the parabolic case as the spot sizes for these reflectors 

are smaller and hence will not illuminate the higher 

latitudes. Also shown in these figures are lines representing 

the level of light that is observed due to the natural 

reflection of light from the Moon and Earth viewed at the 

opposite body respectively.  

It can be seen that many of the points along the Pareto 

fronts fall below one or both of these lines. This makes it 

unlikely that these will be viable systems for thermal 

survivability unless vast numbers are deployed which will 

be undesirable due to the complexity of constructing such 

large numbers and organising their control. It can be 

imagine that such low level light systems can be useful for 

other scenarios, such as an increased illumination to allow 

imaging during night time. This is particularly a possibility 

in the polar regions where craters may have never been 

exposed to sunlight. In these regions certain volatiles may 

exist that will be evaporated if too great an insolation is 

reflected. 
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Fig. 14 – Pareto fronts for the Moon-centred scenario for a range of 

minimum latitudes using a single flat reflector. 

On a close inspection of Fig. 14 and Fig. 15 it can be 

observed that for the low mass portion of a given Pareto 

front the results are the same for the flat and parabolic 

mirror results. However for the larger mass portion of the 

same Pareto front the value of η provided by the parabolic 

reflector is greater than that for the flat reflector case. This 

is due to the results described in Fig. 1. As stated previously 

the desired value of η  is 0.1 and it can be seen in the results 

for the Moon-centre pointing case that this is achievable 

with the use of a single reflector. However, on closer 

inspection of the radii of the reflectors involved the 

scenario appears much less feasible. For example to 

generate a band which covers a maximum latitude of 1° 

requires a 3km radius reflector. To achieve η=0.1 with a 

single mirror would require a very large radius. It is 

possible to achieve this value using multiple mirrors though 

for this type of scenario it is unfeasible to do so as there is 

little flexibility in the system. For example should a rover 

mission wish to travel beyond a few degrees latitude the 

reflector diameter would be too large to be feasible in the 

near term. 

When the optimisation is performed to determine the 

required number of reflectors the masses seen in Fig. 14 

and Fig. 15 will increase. As stated previously the target η 

is 0.1 and in the optimisation there is a required tolerance of 

±0.005. The minimum mass results for the case of the 0.1° 

band are 5.3x10
9
kg and 3.8x10

9
kg for the flat and parabolic 

mirrors respectively. 

 

 

 
Fig. 15 - Pareto fronts for the Moon-centred scenario for a range of 

minimum latitudes using a single parabolic reflector. 

 

4.2. Moon-centre pointing with latitude band 

Since it is considered that the value of η experienced by 

the rover or base will not change with decreased elevation it 

will be expected that latitude will not greatly effect this 

scenario directly. There will be some effect on the solar 

constant fraction due to the increased distance to the 

latitude band but it is expected this not to be significant. 

The Pareto fronts for flat and parabolic mirrors for latitudes 

of 0° and 64° can be seen in Fig. 16. It can be seen that the 

latitude lines for the same reflector are very similar but it is 

the higher latitude that experiences the greatest average 

insolation. This is due to the increased spot size at higher 

latitudes, due to the larger distance, allowing the target 

point to spend more time in the spot, offsetting any reduce 

in intensity. Additionally it can be seen that the parabolic 

case is again superior to the flat mirror for larger sizes 

though to a lesser degree in this scenario. This is due to a 

smaller maximum reflector radius (100km) in comparison 

to the previous scenario. 

 
Fig. 16 - Pareto fronts for the flat and parabolic mirrors in the latitude 
pointing scenario for latitudes of 0° and 64°. 
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For the parabolic case, and for the most challenging 

insolation increase, the optimised final mass is 3.8x10
9
kg 

which corresponds to a set of 83 reflectors, each with a 

radius of 15km, in an orbit with a semi-major axis of 

2,600km and eccentricity of 0.14. An alternative option for 

the parabolic case is to use a smaller reflector with a radius 

of 660m. The advantage of this scenario over the previous 

is that a much more feasible reflector size is available, 

though the final mass of 5.3x10
9
kg is slightly larger, with 

the main disadvantage being that 61,000 of these reflectors 

would be required to give the desired average insolation. 

This would clearly be a large logistical challenge, probably 

requiring the reflector systems to be manufactured from 

material processed from the lunar regolith for example, and 

would require autonomy to be designed into the reflector 

system. Should one or several of these reflectors fail the 

effect on the total average insolation will be minimal, in 

contrast to the use of larger reflectors. 

As these systems require an out of plane acceleration 

component to be offset the amount of propellant mass that 

must be used for this will now be discussed. The area-to-

mass ratios of the reflectors required to maintain the stable 

orbits are typically small, with the maximum being 

0.03m
2
kg

-1
. In comparison the two solar sails, IKAROS and 

NanoSail-D2 launched in 2010, have area-to-mass ratios of 

0.63m
2
kg

-1
 and 2.5m

2
kg

-1
 respectively. Therefore it can be 

envisaged that the area-to-mass ratio of the reflector system 

will be much greater than the values calculated here, with 

low-thrust propulsion being used to a greater extent to 

stabilise the orbit. Therefore the system masses seen in Fig. 

16 will be the maximum initial mass for a single reflector 

with the majority being a mix of propellant and subsystems.  

The minimum and maximum mass fraction of 

propellant for a period of a lunar month, over the range of 

orbits, that must be used to reach a range of latitudes for 

this scenario can be seen in Fig. 17. It can be observed that 

the minimum value increases steadily with latitude as 

expected since there will be an increasingly large out-of-

plane component. The maximum value, however, decreases 

above a latitude of approximately 24°. This is because the 

inner most orbits cannot observe latitudes greater than this 

and therefore cannot be used. Therefore orbits with larger 

semi-major axes must be used which have smaller 

acceleration requirements. 

 

4.3. Moon tracking 

The results of the Moon tracking scenario can be seen 

for latitudes of 0° and 64° in Fig. 18. As expected, for the 

range of masses the average insolation found is greatly 

improved with many points along the Pareto fronts for the 

parabolic mirror being greater than the η=0.1 target.  

 

 
Fig. 17 - Minimum and maximum mass fraction of propellant required to 

maintain the stability of the orbit from the whole range of orbits for the 

latitude pointing scenario. 

 

Fig. 18 - Pareto fronts for the flat and parabolic mirrors in the latitude 

pointing scenario for latitudes of 0° and 64°. 

The optimisation result for the parabolic mirror suggests 

that the minimum mass solution requires a single reflector 

of radius 3.2km, with a mass of 5.1x10
6
kg, in a low, 

a=2,000km, near circular orbit, e=0.024. The value of η 

provided by this reflector is, averaged over the lunar night 

is 0.134 which suggests short periods of high intensity 

illumination, with the highest been 4-5 times the normal 

solar constant. In this case the solution may be unfeasible as 

the temperature will likely be too high during the 

illuminated phases. Another solution is a set of 5 reflectors 

with the same radius at a higher altitude of 2,600km and 

eccentricity of 0.23 and total system mass of 7.1x10
6
kg. A 

third option is a set of 10 of the same reflector with an 

altitude of 3,400km and eccentricity of 0.366 and total 

system mass of 1.3x10
7
kg. This final option would appear 

to be the most feasible in terms of insolation with the 

insolation averaged over periods of 30 minutes being seen 

in Fig. 19. The maximum value of η  is approximately 0.25 

which is not too great to exclude this result. There are 

additionally short periods of zero illumination and thus 

secondary batteries will still be necessary to store energy 

but the mass fraction will be a less significant amount. The 
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mean mass fraction that must be used to maintain the 

stability of the reflectors orbits over the period of a lunar 

month is 6x10
-4

 for the parabolic case. 

 
Fig. 19 - Insolation provided by a set of 10 reflectors of 3.2km radius 

averaged over periods of 30 minutes for a parabolic mirror. 

For a flat mirror system the system masses are, as 

anticipated, greater than for the parabolic case. There are 

again several options for the system with large single mirror 

applications and larger numbers of smaller mirrors. The 

large single mirror has a mass requirement of 1.5x10
8
kg 

which again suggests short periods of very high 

illumination which is undesirable. The following two 

minimum mass solutions require large numbers of 

reflectors. The first of these requires 22,000 reflectors of 

200m radius in an orbit of 2,600km semi-major axis and an 

eccentricity of 0.233 with the second scenarios requiring 

2,200 reflectors of 400m radius in an orbit with semi-major 

axis of 2,000km and eccentricity of 0.061. These are both 

viable solutions with total system masses of 3.1x10
8
kg and 

4.9x10
8
kg respectively. The first of the systems is 

preferable in terms of nearer-term reflector sizing whilst the 

second scenario is preferable in general logistical terms due 

to the order of magnitude less reflectors that must be 

controlled. 

4.4. Displaced polar orbit 

The feasibility of the displaced polar orbit scenario shall 

be determined in a scenario where relatively distant 

reflectors will attempt to illuminate the point on the Moon 

furthest along the Sun-line. This scenario has the advantage 

that all reflectors in the orbit will be able to reflect sunlight 

simultaneously onto the centre point and therefore to 

achieve the desired value of η a larger number of smaller 

reflectors can be used rather than one very larger reflector. 

This is in contrast to the other scenario where a band with a 

constant angular distance away from the centre-point is 

illuminated. In this case the reflector will only have a 

relatively short time when the target point on the Moon’s 

surface will fall beneath its ground track. However, due to 

the large distance of the reflectors that can illuminate the 

centre point it may well be that a collection of several 

different reflectors of the second type will be able to 

provide a greater average illumination. 

It can be shown that for the scenario where the reflector 

is directed at a point along the Sun-line equal to the radius 

of the Moon that the image seen on the surface will be a 

half ellipse, with the base at the centre point. This is 

because the reflectors that can see this point have distances, 

to the centre of the Moon, rp of greater than 8,500km. Since 

the maximum value of rp considered is 10,000km, all the 

reflectors that can view the centre-point will have small 

elevation angles, thus creating the elliptical shape of the 

image. The semi-major axis of the elliptical spot can be 

found to be less than 300km though the decrease is minimal 

over the acceptable range of r. The semi-minor axis of the 

ellipse will, in contrast, increase with r from approximately 

37.5km to 45km. Assuming many reflectors are used the 

insolation will form a large spot in a circular pattern though 

the intensity will be greatest at the centre. The maximum 

spread of 300km means that for a target along the equator 

11% of the night will be illuminated by the spot. 

Additionally, due to the low elevation angles it can be 

assumed that all sides of a cubic lander, with the exception 

of the bottom face can be illuminated. The number of 

reflectors to provide an average value for η of 0.1 over the 

illuminated region can now be found. The overall mass 

necessary to give a value of η=0.1 over the spot is shown in 

Fig. 20. The mass is constant regardless of the radius of the 

reflector but decreases with decreasing distance to the 

Moon. 

 

 
Fig. 20 - Total reflector mass required to give an average value for η of 0.1 

for the displaced orbit scenario. 

The possibility of using reflectors to enable the 

exploration of craters at the lunar poles is an interesting 

possibility. For example the Cabeus crater, where the 

LCROSS spacecraft crashed, is at a latitude of 84.9°S. The 

diameter of this crater is approximately 100km. The radius 

and mass of the reflector required to illuminate the crater to 

different scales, from a spot 1km in diameter to the entire 

crater, can be seen in Fig. 21. The scale of these reflectors 

are within current capabilities. Should a constant 

illumination be required over the entire crater the system 

mass will clearly increase but should illumination be 

required intermittently to enable imaging or to simply relay 

communications then this reflector system is very feasible 

option. 
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Fig. 21 - Reflector radius and mass required to illuminate the Cabeus 

crater at the lunar south pole. 

 

5. NEAR-TERM SCENARIO 

All of the scenarios discussed thus far appear to be 

unfeasible in the near-term, either due to the large mass 

requirements or other logistical challenges. Many are also 

only suitable for fairly grand large-scale exploration 

scenarios and would not be worthwhile for smaller missions 

such as lunar rovers or other landers or short duration 

human missions. What will follow is an attempt to provide 

a near-term solution to the problem of surviving the lunar 

night by investigating whether a small number of reflectors, 

on the order of a few hundred metres in radius, can be used 

to enable survival. This shall be attempted by specifically 

targeting low orbits under the assumption that the lifetime 

of the lunar mission which the reflectors must support will 

be of relatively short duration, i.e. a maximum of several 

months. This assumption is necessary as low altitude orbits 

will be perturbed by the harmonics of the lunar 

gravitational potential and will require larger amounts of 

propellant to maintain the orbit. As such these low orbits 

are unfeasible in the long term. 

To calculate more accurately whether a mission would 

be able to survive on the lunar surface the thermal model 

discussed previously was modified. The key change here is 

that it is now considered to be any object on the surface, a 

lander or human exploration vehicle, which will have solar 

panels that can be used to generate power which can be 

directly used to generate heat within the vehicle. 

Additionally, it is assumed that the solar panel area will be 

greater than area of a single face, as is the case for the 

Lunette mission which deploys one solar panel per side 

face. The Lunette mission has a hexagonal side structure 

and can therefore deploy 6 panels but for the case of this 

scenario four are assumed. It is also assumed that the top 

face of the object will not have a solar panel but will 

receive the full amount of illumination.  

The results were calculated using a range of semi-major 

axes from 1758km to 1938km, eccentricities ranging from 

0.005 to 0.1 and reflector radii of 100m to 1,000m. As for 

previous scenarios a Pareto front of mass and η was 

constructed from the results. Using these values of η for the 

illuminated phases only, the fraction of the night time that 

can be covered and the reduction in power consumption 

from the batteries can be calculated. These results are all 

shown as fractions in Fig. 22 for the case of a single 

reflector targeting the equator. Also seen are lines showing 

the first result, along the x-axis, for each size of reflector. 

So for example all points to the left of the 150m are for 

reflectors of 100m. For the 250m line this is the only result 

and for the results greater than this the reflector size grows 

steadily. It can be seen in Fig. 22 that the lines do not 

maintain a consistent direction. This is due to the finite 

nature of the points considered as follows: As the initial 

points are for small reflectors in distant orbits as these 

require the lowest mass. As the lines move along the x-axis 

the reflector orbit decreases in semi-major axis, reducing 

the coverage of the night time due to the increase in eclipse 

period discussed previously. When the next size reflector 

provides a greater value of η for the same reflector mass 

this it will in general be in a higher orbit, thus it will have a 

better coverage than the previous reflector. 

 
Fig. 22 - Fraction of; the night time that can be illuminated, the solar 

constant in the illuminated phases only and the battery capacity that can be 
saved as a function of reflector mass. 

The three options that appear to be the most suitable are 

those that are on the boundaries of the reflector radius. 

These points appear to give the best trade-off between the 

different factors. For example the smallest mass reflectors 

provide the largest night coverage but the lowest power to 

the lander. Hence a large number of the smaller reflectors 

will be required which is against the principles of the near-

term scenario. Similarly the larger reflectors above the 

250m line provide a solar constant that is several times 

great than one, thus making survival increasingly difficult. 

Around the 250m line gives a relatively good charge per 

reflector however the maximum coverage flattens to 16.4%. 

The key points of each of these scenarios can be seen in 

Table 2.  
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Option 1 2 3 

Mass 5,100kg 10,300kg 19,400kg 

Radius 150m 200m 250m 

Night Cover 25% 21.5% 16.4% 

Battery charge 

(per reflector) 
0.35% 0.61% 1.31% 

I/I0 0.06 0.16 0.55 

a 1776km 1767km 1758km 

e 0.02 0.01 0.01 

Table 2 – Key properties of the two most favourable near-term scenarios. 

 

While these scenarios cannot enable easy survival 

during the entirety of the lunar night, it is shown that the 

effective length of the lunar night can be decreased. Using 

approximately 300 of the smallest reflectors shown in Fig. 

22 the effective night time duration can be more than 

halved. This system would have a mass in excess of 370 

tonnes which is still clearly challenging. The total system 

masses for options 1 to 3 are 367, 371 and 252 tonnes 

respectively. This shows that there is no advantage of 

choosing larger reflectors other than decreasing the overall 

logistical challenge. 

 

6. CONCLUSION 

The scenarios presented in this paper show that 

reflectors can in principle be used to enable the survival of 

both small and large scale missions on the lunar surface. It 

has been shown that scenarios exist that allow survivability 

at high latitudes using the principle of the displaced polar 

orbit. The lifetime of the forced, precessing ellipse with 

latitude pointing and tracking type orbits are limited if the 

target point is offset from the lunar equator due to the need 

to offset the out-of-plane thrust. The optimum system 

masses for these two orbits are 5.3x10
9
kg and 1.3x10

7
kg 

respectively. 

For the near-term scenario, where a set of short-lived 

reflectors in a low orbit are used, the best solution is the use 

of 300 reflectors of 100m radius which requires a total 

system mass of 370 tonnes. This system will enable the 

effective period of the lunar night to be halved. This 

requirement will be too large to be justifiable for a small 

lunar lander type mission, but it will greatly increase the 

capabilities of a short-term human presence on the Moon, 

increasing the operational duration by 50%. Any increased 

cost in deploying the reflector system will be offset, in part 

or completely, by savings made from a reduced total 

mission lifetime and a reduction in the size of the systems 

required to survive the night. 

The technological challenges of constructing the 

reflectors is reduced significantly by the undemanding area 

to mass ratio of less than 1m
2
/kg. These values are well 

within current capabilities.  
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