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Multi spacecraft architectures have been addressed in response to the demand for flexible architectures with high 

reliability and reduced costs compared to traditional monolithic spacecraft. A task that can be easily carried out by 

this kind of systems is the deployment of distributed antennas; these are composed of, typically, receiving elements 

carried on-board multiple spacecraft in precise formation. In this paper decentralised control means, based on 

artificial potential functions, together with a fractal-like connection network, are used to produce the autonomous and 

verifiable deployment and formation control of a swarm of spacecraft into a fractal-like pattern. The effect of using 

fractal-like routing of control data within the spacecraft generates complex formation shape patterns, while 

simultaneously reducing the amount of control information required to form such complex formation shapes. 

Furthermore, the techniques used ensure against swarm fragmentation, while exploiting communication channels 

anyway needed in a fractionated architecture. In particular, the superposition of potential functions operating at 

multiple levels (single agents, subgroups of agents, groups of agents) according to a self-similar adjacency matrix 

produces a fractal-like final deployment with the same stability property on each scale. Considering future high-

precision formation flying and control capabilities, this paper considers, for the first time and as an example of a 

fractionated spacecraft, a decentralised multi-spacecraft fractal shaped antenna. A fractal antenna pattern provides 

multiple resonance peaks, directly related to the ratios of its characteristic physical lengths. Such a scenario would 

significantly improve the level of functionality of any multi-spacecraft synthetic aperture antenna system. 

Furthermore, multi-spacecraft architecture exploiting particular inter agent spacing can be considered to investigate 

multi-scale phenomena in areas such as cosmic radiation and space plasma physics. Both numerical simulations and 

analytic treatment are carried out demonstrating the feasibility of deploying and controlling a fractionated fractal 

antenna in space through autonomous decentralised means. 

 

 

I. INTRODUCTION 

Fractionated architectures are attracting big 

expectation for the potential benefits disclosed by this 

approach in terms of flexibility.
1
 Beside this, formation 

flight techniques for space science and remote sensing 

applications have been put forward since a while
2
. In 

both these areas, that sometimes happen to coincide, a 

relatively small number of spacecraft is envisaged. This 

has been, in part, due to the complexity of 

simultaneously operating and managing a large number 

of independent spacecraft.
3
 Considering spacecraft as 

already autonomous agents the need of an additional 

capability required to perform collaborative tasks 

emerges. This can turn in precision relative positioning 

or coordination of computational efforts towards the 

accomplishment of any mission task. This requirement 

has led to the popularisation of artificial potential 

functions (APF) based control method,
4-6

 which can be 

used to gain an emergent group behaviour in agents 

without the need for a high-level on board intelligence. 

APF also gave the further advantage of providing a 

tractable control through stability.
4
 Literature on the use 

of APF shows that through inter-agent interactions 

alone swarms of mobile agents can be made to 

crystallize in regular lattice configurations.
7
 These ones 

are scalable, and present intrinsic symmetry 

characteristics. Furthermore, the final pattern is 

homogeneous and typically does not require the 

positioning of individual agents, as agents 

autonomously select their relative positions driven by 

the artificial potential field. The drawback of this stands 

in the awkwardness in achieving complex patterns as 

different planar or three-dimensional lattices. 

Overcoming this was attempted by introducing multiple 

levels of control:
8-9

 in this approach agents are grouped 

in smaller ensembles which maintain a cohesive 

behaviour by means of one agent for each group 

ensuring connectivity across different groups. 

This paper investigates both the influence of a self-

similar adjacency matrix and of asymmetric potential 

functions as means to obtain self-similar patterns which 

then replicates at multiple levels providing both control 

for subgroups position and, indirectly, for orientation. 

Particular attention is put in showing how the change of 

a single parameter along the directed edges entering one 

node of the communication graph is a condition 

sufficient to the emergence of a central symmetry in the 

pattern. 
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II. METHODOLOGY 

An ensemble of N spacecraft is considered. This 

ensemble is divided in subgroups of 5 agents such that 

N = 5
k
 for some integer k > 0. The agents are connected 

according to a non-weighted non-directional graph 

described by the adjacency square matrix A of 

dimension N. The spacecraft are controlled through APF 

which operate only along the edges of the graph with a 

pair-wise scheme. The spacecraft dynamics are 

described through the acceleration field ( , )x f x x  

where idealised sensors and actuators are assumed. The 

reason behind the choice of the number of agent is the 

intention of creating a pattern that resembles the 

“Purina Fractal”
10

 where each agent carries a radio 

element able to be phase shifted with respect to the 

others and hence creating a distributed array with 

further benefits from fractal shape. For the numerical 

integration performed the initial positions are uniformly 

distributed within a sphere of given radius centred on 

the agent expected final equilibrium position as well as 

initial velocities in the corresponding velocity field. 

There is no global position or orientation of the final 

spacecraft formation but within the formation relative 

positions are considered for both spacecraft and groups 

of spacecraft while relative orientation is considered for 

groups of spacecraft only. In section III it will be shown 

that it is possible to obtain a self-similar formation 

starting from mutually interacting agents. In the 

remaining of this section potential function 

characteristics and communication graph topology is 

described. For simplicity, all the paper is centred about 

a planar configuration, but the same argumentations can 

be used in three dimensional formations. With reference 

to fractal terminology, the term “initiator” will be used 

to indicate the basic geometry of the formation 

composed of individual agents. The initiator is then 

propagated to group levels through the “generator”. 

Here the difference between the two, in terms of 

formation, is just the level of control involved; i.e. there 

is no difference in the pattern but while the pattern of 

the initiators is composed of single agents, the pattern of 

generators is composed of groups of agents. 

 

II.I Artificial Potential Functions 

The spacecraft are controlled by artificial potential 

functions and in particular the Morse potential is used. 

This is composed of an attractive potential component 

(Ua) and a repulsive one (Ur), respectively defined as, 
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where, aijC , rijC ,
aijl  and rijl are constants whose 

values shape potential sensed by agent i because of 

interaction with agent j; 
ijx  is the relative position 

vector of agent i respect to agent j.  

A one-dimensional plot of the Morse potential is 

reported in Fig. 1 

 
Fig. 1 – Morse like potential as sum of attraction and 

repulsion components for 
aC

 
= 

rC = 2, rl = 30, 

al =80. 

 

The control law is completed by a virtual viscous-

like damping in the form
iv . This control law together 

with the hypothesis of no external disturbances and 

idealised sensing and actuation capabilities results in the 

following equation of motion, 
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and where, aij is the entry of the adjacency matrix as 

defined in section 2.2 and σ is a constant which provides 

a viscous damping effect. 

 

II.II Self-similar Network 

The network of interactions can be studied through 

the graph theory which makes use of the adjacency 

matrix. The adjacency matrix is a matrix which presents 

non-zero entries in the ij location whenever there is a 

directed edge from node i to node j which corresponds 
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to a communication link between the two agents 

represented by nodes i and j. Moreover the matrix is not 

weighted, that means that only has 0−1 entries, the 

”weight”, i.e. the strength of the interactions is provided 

by the APF used. The adjacency matrix here proposed is 

symmetric, hence the graph is not directed but this does 

not imply that the virtual interactions amongst the 

agents are symmetric. Artificial potential functions are 

not symmetric along every edge of the graph. 

Edges belonging to fully connected 5-agent groups form 

blocks along the main diagonal of the adjacency matrix. 

These can be regarded as initiators as defined 

previously, which are fully connected. In each group of 

n
2
 nodes, groups of n nodes are linked through 4 

directed edges. As 2 links between two distinct pairs of 

nodes in two groups are alone sufficient to uniquely 

define the relative orientation of the two groups of 

nodes, these links account for both relative position and 

orientation. Fig. 2 pictures the nonzero entries as dots 

for N=25. 

Extending this scheme to more agents it can be 

concluded that for any group of 5
k
 agents for any integer 

k > 0 the connections with groups of equal number of 

nodes are ensured through a maximum of 12 5k  nodes. 

Adjacency matrix for 125 agents is reported in Fig. 3. 
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Fig. 2: Adjacency matrix for an ensemble of 25 nodes. 

Nonzero entries are represented by dots. 
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Fig. 3: Adjacency matrix for an ensemble of 125 nodes. 

The self-similarity of the matrix can be noticed. 

 

 This kind of network has the weakest part in the 

peripheral nodes. This means that loss control of one 

node due to loss of link is more likely for nodes that do 

not connect two levels but are just endpoints of their 

branch. This is advantageous as the loss of some links is 

more likely to produce the loss of a smaller portion of 

the network than of a large portion. Anyway each node 

is at least connected to 4 others and the most critical 

scenario is encountered for simultaneous loss of the two 

edges that link the initiator to the first generator in a 

configuration with just a generator. This would lead to 

the disconnection of a whole 5-agent fully connected 

group. When the number of generators increases those 

groups which were end-points for the previous 

generator become embedded and more firmly bonded 

into the larger pattern. This ensures that in the most 

critical scenario the loss of at least 2 links is needed for 

the fragmentation to occur. 

 

 

III. CONTROL LAW ANALYSIS 

Control method applied to the spacecraft formation 

studied is based on APF as mentioned in Section II.I. In 

this section it is first shown how an asymmetry in 

attraction-repulsion potential leads necessarily to a 

central symmetry configuration. It is then shown how 

the APF coefficients are calculated in order to get the 

desired distance between agents. Finally nonlinear 

stability characteristics are drawn using total energy as 

Lyapunov function.  

 

III.I Central Symmetry Emergence 

Central symmetry emerges at initiator level by 

means of asymmetry between the interactions of one 

single agent and the others at the same level. This is 

here explained by finding the conditions that make the 

artificial potential derivative null along two orthogonal 
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axes centred on the agent considered. Considering the 5-

agent scheme in Fig. 4 the first derivative of the 

artificial potential “sensed” by agent 2 can be calculated 

for the regular pentagon formation pictured
*
. Then the 

conditions that apply to the coefficients of the APF to be 

satisfied to get stable equilibrium are drawn. APF 

derivatives can be then derived from [4] for i=1. 

 

 
Fig. 4: 5-agent “pentagon” configuration. The shaded 

agent is the one which analysis refers to. 
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 [4] 

 

Excluding the trivial case for rij aijl l and 

rij aijC C , Equations [4] can be made null while 

satisfying the stability conditions
5
 r ij aijl l  . From here 

on, just changes in rijl  parameter are considered while 

al , 
aC  and 

rC  are considered independent from the 

pair of agents i-j which they are referred to that is they 

take the same value for every i,j and it is assumed that 

the set of parameter used makes the APF a single 

minimum function, able to provide a stable behaviour. 

Taking the planar formation in fig. 4 the equilibrium 

along y is trivially satisfied for all possible distances d 

either in case rij rl l for all ij, that is it takes the same 

values along all the edges or in the case one agent has a 

                                                           
*
 Regular pentagon and in general regular polygon or solid shape 

emerge due to the fact that all the agents interact with the same 

strength, so no agent is supposed to be closer or further from the 
others 

different repulsive scale distance. This can be 

understood by simply considering the symmetry of the 

formation about x-axis.  

Equilibrium along x-axis does not lead to an explicit 

expression for the equilibrium distance, nonetheless the 

expression  
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where, 
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can be determined.  Considering an initial equilibrium 

scenario in which agents are arranged as in Fig. 4 for 

some equilibrium distance 
xd d and for 

*

r rl l  that 

is the same repulsive scale distance sensed by all the 

agents. In this scenario Equation [5] must return zero 

but if 
*

r rl l  and in particular 
*

r rl l  the separation 

distance must shrink, that is equilibrium distance 

shrinks as the scale separation distance shrinks. This can 

be verified by differentiating Equation [5] with respect 

to
*

rl . This returns  
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 [7] 

Expression [7] can be shown to be negative, that is 

verifying that a reduction of 
*

rl  
produces an acceleration 

on agent 1 in the direction of positive x-axis, hence a 

reduction of its equilibrium distance: 
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 This is always verified for 
*

x rd l  as the second 

bracket is always positive. The condition 
*

x rd l  can 

be obtained by a wide choice of system parameters as 

1 
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understandable by inspecting equilibrium distance for 

the simple case of two agents. 

 

 lna r a r
r

r a r a

l l C l
d l

l l C l

 
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 [9] 

 

 The other agents in the group considered, on the 

other hand, tend to keep the same relative distance with 

respect to agent 1. This produces the new equilibrium 

configuration that sees the agent with reduced 

separation distance finding its equilibrium position in 

the centre of the 5-agent group while fulfilling also 

equilibrium conditions for the other agents. A contour 

plot of the potential which agent 1 senses is reported in 

Fig. 5 for both equilibrium and non equilibrium 

parameter choice. 

 

 
Fig. 5: Contour plot for artificial potential sensed by 

agent 1 in the origin. In case the scale repulsive 

distance is the same for all the agents an equilibrium 

at the origin is found (left). In case repulsive scale 

distance for of agent 1 is reduced (here halved) the 

equilibrium point moves towards the centre of the 

formation (right). 

 

The cross configuration generated by the asymmetry 

in the potential repulsive scale length is sketched in Fig. 

6. 

 
Fig. 6: Cross configuration for a 5-agent group. The 

shaded agent is the one with reduced repulsive scale 

distance. 

 

Considering that interactions amongst agents are 

only along the edges of the adjacency matrix, a 

representation of the repulsive and attractive scale 

parameter as well as of the other coefficients playing 

into Equations [1] can be given in terms of matrix which 

have the same structure of the adjacency matrix 

described in Section II.II. An extract from repulsive 

distance matrix is reported in [10]  
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where, zeros are in the same positions as blanks in the 

adjacency matrix in Fig. 2 and Fig. 3, and where the 

coefficients regulating the interactions among nodes 

which are centres of two different 5-agent groups are 

denoted by 
2rl . Finally 

3rl  is use to indicate the value 

along the edges connecting peripheral agents across 

different 5-agent groups. 

Hence coefficients rl , 
al , aC  and rC can be arranged 

in square matrices of dimension N as they are referred to 

the edge and take a different value depending on which 

agents the edge connects.  
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Two considerations must hence be done: 

a. Having 
*

r rl l does not imply that a 5-agent 

group will surely arrange itself into a pentagon 

configuration escaping the cross one. So while 

with rl  taking the same value across all the 

links, two configurations are possible, 

changing one single parameter along the edges 

exiting from one single agent will completely 

exclude the possibility of a circular formation. 

The latter may represent an unwanted outcome, 

or local minimum, of the self-arranging 

process. 

b.Moreover in the pentagon formation proposed, in 

case 
*

r rl l , calculating the potential sensed 

by one agent rather than another does not make 

any difference due to the central symmetry of 

the formation.  

 

The second consideration does not apply when 

considering a cross configuration as in Fig. 6. Here the 

agent in the centre should be analysed too as its position 

cannot be considered as the one of any other agent in 

the group. Anyway it is in equilibrium whatever choice 

of rl parameter is done. This is due to the symmetry of 

potential acting on this agent which translates in two 

couples of equal and opposite terms for the sums in [4] 

making both equations trivially null. For this reason the 

agent with 
*

r rl l will find its equilibrium position at 

the centre enabling the cross formation. This also justify 

the first consideration as being the central position an 

equilibrium one, also a group of agents with the same 

repulsive potential can spontaneously arrange in a cross 

configuration.  

Equilibrium for the surrounding agents according to 

the scheme of Fig. 6 is only determined by the first of 

the [4] as the y-component is null by symmetry. 

Equilibrium distance “d” as reported in Fig. 6 is found 

by finding values for “d” that satisfies 
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Which is obtained by expanding the first of 

Equations [4] for the present case. As it can be seen this 

is not solvable analytically. On the other hand 

equilibrium can be found, for a given “d”, by tuning aC  

and rC  parameters. This is better explained in the next 

paragraph.   

 

 

III.II APF Coefficient Calculation 

The coefficients of the APF acting along the edges 

of the graph are calculated such to set the desired 

distance amongst the spacecraft. In the following of this 

paragraph, the distance between agents is denoted as dd 

to stress that this is a design distance and not an output 

of the definition of the control law. Moreover the ij 

index will be dropped for practical purpose only. Just 

the 
rC  coefficient is calculated as function of the others 

which are set. The change of 
rC  parameter only or, 

more precisely, the change in the ratio /r aC C , is 

sufficient to modify the position of the minimum, hence 

the design distance, for the APF used. In particular, an 

interaction between two spacecraft belonging to two 

different 5-agent groups is considered, with a design 

distance dd; rC  coefficient can be hence calculated as 
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Equation [12] can be reversed to calculate the 

equilibrium distance once the coefficients are set 

obtaining the right hand side of Equation [9].  
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 [13] 

When more than 2 agents are involved, an analytic 

expression for the equilibrium distance cannot be 

defined, but given a desired distance, one can always 

get an expression for the value of the ratio /r aC C that 

produces that separation. In particular for a fully 

connected group of 5 agents /r aC C
 

ratio can be 

calculated equating to zero the gradient of the potential 

for the formation according to the scheme in Fig. 6. As 

the y-component is trivially null, /r aC C  can be 

calculated considering just  x-component of the gradient 

in Equation [4]. It is then possible to solve for 

/r aC C ratio and obtain 
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This tuning method can be extended to the other 

links of the adjacency matrix defining so the 

coefficients to produce the desired self-similar pattern. 
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III.III APF Stability 

Control law used can be proved to present non-linear 

stability characteristics. This is done here by 

considering a nonnegative Lyapunov-like function and 

proving that its time derivative is everywhere negative 

except at equilibrium where it is required to be null. 

Let’s take to this end the total energy of the system 

E given by the virtual potential energy U and real 

kinematic energy T; 

 

  21 1

2 2

N N N

i i ij ij

i i j

a rN N
ij iji

i i ij ij

i j

d T UdE d
m v a U

dt dt dt

dU dUdv
m v a a

dt dt dt

 
    

 

  
      

  

 

 

 [15] 

 

Substituting [2] 

 

 

 

  

    

2 0

a rN N N N
ij ija r

i ij ij ij ij i ij ij

i j i j

a rN N
a r i i

i i i i

i i

N N
a r a r

i i i i i i i

i i

N

i

i

dU dU
v a U a U v a a

dt dt

dU dU
v U U v

dt dt

v U U v v U U

v









  
           

   

 
       

 

       

  

  

 

 



[16] 

 

Hence total energy is an always decreasing function, 

that is, the ensemble will leak energy and stabilise 

eventually into a static formation which corresponds to 

the minimum of total energy. As requested the chosen 

function is zero at equilibrium, that is characterised by 

having the speed of the spacecraft null. This of course 

does not consider the orbital speed in case of spacecraft 

but just the speed calculated in an orbiting reference 

frame.  

The stability characteristics just outlined does not 

imply that the system will relax into the desired 

formation as the energy might be minimized, even just 

in local sense, with a configuration that is not the one 

the system was meant to take. 

 

 

IV. SIMULATION RESULTS 

The control architecture presented was implemented 

in a numerical model simulating a swarm of spacecraft 

arranging in fractal cross shape formations. Due to the 

limitation in memory for computation, simulations have 

been carried out for two formations of 25 and 125 

spacecraft, but orbital dynamics was considered just for 

the first one. As for the formation of 125 agents results 

can be considered valid in Lagrange L1 environment. As 

for the 25 agent configuration a circular orbit was 

considered and Clohessi-Wilthshire
11

 (CW) linearised 

equations were used. The orbiting reference system used 

has x-axis tangent to the orbit and parallel to orbital 

velocity vector, y-axis parallel to angular momentum 

vector and z-axis orthogonal to the first two and 

pointing towards the Earth centre. In this reference 

frame CW equations take form 

 

2

2

2

2 3

x nz

y n y

z nx n z

 

 

  

 [17] 

 

where, n is the orbital frequency (the inverse of the 

orbital period). 

 Initial conditions for both cases were set such as each 

spacecraft had an initial position randomly selected 

within a sphere centred on its final position and radius 

equal to the distance to its nearest neighbour. This 

distance was set to be 1m; reasons leading to this choice 

are explained in details in section V. It is assumed  that 

a carrier spacecraft or launcher releases the satellites 

with coarse accuracy although not completely 

randomly.  The agent at the centre of the formation (say 

agent 1) is the only one linked to the centre of reference 

frame by a quadratic potential in the form 
2

1cU k x  

with k as a weighting parameter set to 0.1. This is to 

provide a kind of orbit tracking capability or, in 

practical terms, the possibility to stay anchored to centre 

of the reference frame. Also this suggests that the task 

of tracking the orbit can be potentially carried out by 

one agent only, while the others just track their relative 

position with respect to the first one. This is not 

necessarily the one in the centre as it is done here for 

simplicity. The control law is applied for just x and y 

axis of the orbital reference frame with control on z-axis 

performed through a simple parabolic potential plus a 

dissipative term in the form 
2

zi i iU k z z  , for 

i=1…N, where, k and σ have the same roles and value as 

used previously, that flatten the formation on the plane 

z=0. 

For the case of 25 spacecraft of unit mass the 

formation was deployed in a circular orbit with an 

altitude of 1000 km. For the case of 125 agents the 

connections between 25 agents groups are ensured by 

pairs of agents instead of groups of agents. This allows 

a reduction of the computational efforts for each agent 

and a reduction of the computational demand for the 

simulation. On the other hand this reduces the control 

power and slows down the deployment of the formation. 

Table 1 reports the value of the coefficients used.  
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aC  

rC  
al  rl  

Fully 

connected 
groups 

4 3.94722 2 1 

*

rl =0.5 

Centres of 

f.c.g. 
1 0.99596 4.5 4 

Peripheral 
between 

adjacent 

f.c.g. 

0.892521 1 2 0.5 

Centres of 

25-agent 

groups 

1250 1252.66 10 9.9 

Peripheral 

f.c.g. in 25 

agent 
groups 

34.98 35 3 2.9 

σ = 0.1 for all the agents 

Table 1: Coefficients for the APF used to control the 

formation  

 

 

 

 

 
Fig. 7: Numerical simulation output - final pattern and 

trajectories. The formation is composed of 25 

spacecraft in 1000 km altitude circular Earth orbit. 

The plane of the formation is perpendicular to the 

orbit plane. 

 

 

  

  

  
Fig. 8: Numerical simulation output – Motion and 

forces along the axes. The formation is composed of 

25 spacecraft in 1000 km altitude circular Earth 

orbit. The plane of the formation is perpendicular to 

the orbit plane. 

 

  

  
Fig. 9: Numerical simulation output – Snapshots from 

deployment of 125 agent formation at t=0 s (i), 

t=200 s (ii), t=30000 s (iii), t=160000 s (iv).  

 

The slow pattern formation is mainly due to the 

elastic band effect that manifests when an ensemble of 

25 agents is controlled by “pulling” one of them which 

is not rigidly linked to the others. The “virtual” links 

amongst agents are provided by APF which provide 

loose bonds, especially about the equilibrium position. 

It can be noticed how first small 5-agent groups form 

and then gather together in more structured formation. 
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V. DISCUSSION 

Distances between spacecraft are designed to be 

with reference to the mission task. When spacecraft 

carry radio antenna designed to work as a distributed 

array, design distance depends on the wavelength used. 

Space based radio telescopes distributed on several 

spacecraft usually need for large separation distances 

(see for example Terrestrial Planet Finder 

Interferometer project
12

) while in case of perspective 

distributed antennas for telecommunications, inter-

spacecraft distances would be in the order of metres or 

less. Considering the use of UHF that allow a good 

atmosphere penetration as well as not so short 

wavelength the separation distance between two 

spacecraft would not be larger than 50cm. This comes 

as the separation between two elements of a distributed 

array should not exceed λ/2. This suggests that such an 

application would be only suitable for small satellites 

and actuators using Lorentz forces or Coulomb forces.
13-

14
 and justifies the separation distance used in 

simulations that was anyway doubled to further test 

system capabilities. Moreover the emergent fractal 

shape, which resembles the so-called “Purina fractal”
10

 

is expected to enhance exploitation of fractal antennas 

characteristics for distributed orbiting array defined. 

Indeed fractal antennas have multiple resonant peaks 

corresponding to the ratio of the characteristic length in 

their shape. The study of one-dimensional arrays with 

uniform spacing compared to arrays that are spaced 

according to some fractal law, highlighted the potentials 

of exploiting the fractal structures to increase the 

bandwidth, and hence the capabilities of the arrays.
15

 

For what concerns possible applications as sensor 

network (see for example ESA Cross Scale
16

 or NASA 

Themis
17

 mission) separation distances depends on the 

particular phenomenon one wants to investigate. Further 

details can be found in the references quoted. 

One aspect that can be considered in the design of a 

spacecraft system is that a number of communication 

channels should be enabled to allow the fractal pattern 

to emerge, but these channels can be exploited for the 

communication needs amongst the different modules of 

a fractionated architecture beside control ones. For 

instance the guidance for the whole formation can be 

carried out by a number of spacecraft which 

communicate in an all-to-all scheme in order to share 

the computational efforts, and then passed to another 

module (possibly composed by more spacecraft) able to 

compare this to the navigation to eventually generate a 

control input for the whole formation. This is different 

from the GNC function that each spacecraft carries out: 

while each spacecraft should find its position in a 

distributed architecture, the whole system should follow 

a guidance law that enables the mission task 

achievement. The fractal communication network can 

be also exploited to allocate and distribute the 

computation tasks on several levels. Nodes in the fractal 

communication network can be grouped into different 

levels as either belonging to the initiator or to one of the 

generators. This sorting of the nodes can be used as 

base for the design of the computational architecture 

with agents on the same level carrying out tasks in 

parallel. For instance, referring to the 5-agent group 

based architecture described previously, peripheral fully 

connected groups can be assigned to a lower level 

computations with higher level carried out by central 5-

agent group in each group of 25.  

Finally, for what concerns simulation outputs, the 

persistency of oscillations, with consequent activation 

of the actuators, about the equilibrium position when the 

formation is deployed can be avoided at control level 

using a time varying value for the artificial viscosity. It 

is anyway advisable to avoid thrusters as actuators with 

consequent reduction of plume impingement, especially 

in applications that require small separation distances, 

and fuel wasting due to oscillations. This suggests once 

again the use of Lorentz and Coulomb forces to control 

the formation. 

 

 

VI. CONCLUSIONS 

In this paper artificial potential functions and self-

similar adjacency matrix are used to obtain self-similar 

patterns in a formation of autonomous mobile agents. 

The use of APF method enables an analytic 

development of the theory although some results can be 

shown just numerically. The system is cooled-down 

using artificial damping which, in terms of control, 

represent an improvable means as the dissipation of 

artificial potential energy may translate into real fuel 

waste for the actual spacecraft.  

Although the stability of the method can be 

analytically proved the risk of local minima is not 

excluded and as the number of links shrinks the 

eventuality of stacking in local minima gets higher. It is 

moreover to note that the connection scheme used 

accounts for at least double redundancy towards 

dispersion, that is any link between two agents can be 

lost without catastrophic consequences for the whole 

formation. 

The emergence of self-similar, or fractal, patterns by 

combining APF and self-similar adjacency matrix can 

be exploited in space-based telecommunications and 

space science having benefits from the separation 

amongst the agents in the formation. 

 

 

VII. FUTURE WORK 

The present research will be further developed by 

assessing the feasibility and performances of actuation 

through electromagnetic forces (Coulomb and Lorentz) 

to control the formation and by considering possible 
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reconfiguration manoeuvres. Comparison with low 

thrust electric actuator can be considered an asset. The 

case of elliptic orbits shall be included as well.    
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