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Using EMD-FrFT Filtering to Mitigate Very High
Power Interference in Chirp Tracking Radars

Sherif A. Elgamel, Student Member, IEEE, and John J. Soraghan, Senior Member, IEEE

Abstract—This letter presents a new signal processing sub-
system for conventional monopulse tracking radars that offers
an improved solution to the problem of dealing with manmade
high power interference (jamming). It is based on the hybrid use
of empirical mode decomposition (EMD) and fractional Fourier
transform (FrFT). EMD-FrFT filtering is carried out for complex
noisy radar chirp signals to decrease the signal’s noisy compo-
nents. An improvement in the signal-to-noise ratio (SNR) of up
to 18 dB for different target SNRs is achieved using the proposed
EMD-FrFT algorithm.

Index Terms—Empirical mode decomposition, fractional
Fourier transforms, high power interference suppression.

I. INTRODUCTION

A high power noise interference introduced to a monopulse
tracking radar processor through the radar antenna pro-

duces an interference error that affects the radar tracking ability
and may cause target mistracking [1]. Various methods [2]–[4]
for combating high noise power interference have been pub-
lished.
In our previous work [1] the mistracking problem due to in-

terference signals was addressed using the filtering in the Frac-
tional Fourier Transform domain. In this letter we propose the
use of both empirical mode decomposition (EMD) and frac-
tional Fourier transform (FrFT) to implement EMD-FrFT fil-
ters in an attempt to reduce the very high power interference sig-
nals introduced from the antenna main lobe or from the antenna
side lobes for radar receiving channels. Following a brief in-
troduction on EMD and FrFT the letter then describes the struc-
ture of the new EMD-FrFT filtering algorithm based monopulse
radar processor. The superior performance of the new algorithm
is demonstrated using a set of simulation results.

II. CLASSICAL AND BIVARIATE EMD

The intrinsic mode functions (IMFs) of an EMD signal de-
composition are oscillatory and have no DC component, so the
signal in the EMD domain may be represented as [5]

(1)
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where , are the IMFs and is the
residual. When a signal , comprising a slow oscillation su-
perimposed on a highly oscillating signal (in our case additive
high power interference noise signal), is applied to an EMD al-
gorithm, the first few IMFs tend to contain the highly oscillation
signal (noise) and the remaining IMFs contain the useful signal
(in our case radar chirp signal).
The bivariate EMD [6] may be used for complex valued time

series. As with the classical EMD, the bivariate EMD is used
to separate the more rapidly rotating components from slower
ones. The procedure is to define the slowly rotating compo-
nent as the mean of some envelope which is a three-dimensional
cylinder that encloses the signal. In our work the bivariate EMD
(complex EMD) is used to decompose the complex radar signal
into a complete and finite set of complex IMFs in order to sub-
sequently minimise the additive noise interference.
The concept of detrending in high frequency noise environ-

ments is to calculate an estimate of the IMF number at which
all previous IMFs may be regarded as noise and the subsequent
IMFs may be considered to contain the useful signal compo-
nents.
The IMF detrending technique assumes that the 1st IMF,

, captures mostly noise, the noise level is estimated
in by computing [5]

(2)

where is the number of samples. The model for noise only
IMF energies can be approximated for white Gaussian noise
dependence on the energy of the first IMF from [5]

(3)

The threshold level energies are used to distinguish be-
tween signal and noise. They are calculated using the approxi-
mated IMF energies in (3) from [5]

(4)

Computing the IMFs energies by applying the EMD algo-
rithm on (noisy signal) from [5]

(5)

Comparing IMFs energies with the threshold level ener-
gies allows us to determine exactly when the signal energy
level crosses the threshold level.
Assuming this occurs at , the signal is denoised

by reconstruction using only IMFs whose energy exceeds the
threshold according to:

1070-9908/$26.00 © 2011 IEEE
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Fig. 1. Detrending and the thresholding.

(6)

In Fig. 1 the EMD algorithm is applied to a noisy signal re-
sulting in 10 IMFs. Using (2) and (3) the 1st IMF is used to
estimate the noise only energies for the remaining IMFs. The
resulting noise only model outputs are shown in Fig. 1. The ac-
tual IMFs energies calculated from (5) are also illustrated on
Fig. 1 along with the threshold model for each IMF. It is clear
that the actual IMFs energies are close to those estimated for
the noise only model up to IMF 6 at which the threshold level
is crossed. This means that these IMFs (from 1 to 6) may be re-
garded as essentially noise only. Thus, the sum of IMFs from 7
to 10 represents the detrended and thresholded signal.
For the noisy signal, a higher sampling frequency yields a

higher number of samples and as a result a greater number of
IMFs using the EMD algorithm. Consequently a higher accu-
racy of detrending IMFs in the EMD-DT algorithm is expected.
This concept of detrending and thresholding is used later in
Section V.

III. FRACTIONAL FOURIER TRANSFORM
The fractional Fourier transform of order of an arbitrary

function , with an angle is defined as [7], [8]

(7)

where is the transformation kernel, is the transfor-
mation of to the order, and with . The
optimum order value, for a chirp signal may be computed
as [9]

(8)

where is the sampling frequency, is the chirp duration,
is the number of samples in the time received window, and
is the chirp bandwidth.

Fig. 2. Basic structure of monopulse radar.

IV. MONOPULSE RADAR SIGNAL
A block diagram of a typical monopulse radar is shown in

Fig. 2. A pulsed chirp signal is produced from the waveform
generator. This is up-converted to the radar carrier frequency,
amplified and passed through the duplexer to be transmitted:

(9)

where is the time, is the chirp start frequency, and
is the chirp stop frequency. This is up-converted to the radar
carrier frequency, amplified and passed through the duplexer
to be transmitted. The down-converted received signal passes
through a band limited Gaussian before passing through the
chirp matched filter to maximize the target return signal. The
target information parameters (azimuth angle, elevation angle,
and target range) are then calculated by themonopulse processor
from the filtered signal.
The structure of monopulse radar shown in Fig. 2 is repeated
times ( equal to the of array antenna elements). Thus each

antenna will have its own complete receiving system and all the
output data will be processed using only one monopulse pro-
cessor.
The radar received chirp signal may be expressed in the

baseband as [1] shown in the equation at bottom of page, where
is the received signal amplitude, is a random phase shift,
is the Doppler vector, is antenna phase factor, and

is the start time of the returned pulse.
The start time depends on the target range and can

be computed from

(11)

where is the speed of light. As indicated in (10) the Doppler
shift and delay effect on the target chirp signal is determined

(10)
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Fig. 3. EMD-FrFT filtering.

by the dot product of the chirp signal by the Doppler vector
defined as

(12)

where is the target Doppler frequency.
For the phased array receiving antenna, an antenna phase

factor is introduced as

(13)

where is a vector represented as ,
is a unitary vector, and is calculated from

(14)

where is the separation between the antenna elements, is
the target angle from the antenna boresight.

V. FILTERING BASED EMD-FRFT ALGORITHM
It is proposed to combat the high power noise interference

by filtering the received signal in the optimal fractional Fourier
transform (FrFT) domain using the transmitted chirp radar infor-
mation. Normally the magnitude of chirp signal in the optimum
FrFT domain would be significantly higher than the noise signal
in the fractional domain [1]. However in high power jamming
scenarios this is not usually true and it becomes difficult to dis-
tinguish between the target spike and the noise spikes in the op-
timal FrFT domain.
The proposed EMD-FrFT radar filtering process, which must

be applied to the received signal before the band pass filter, is
shown in Fig. 3. The radar received noisy complex chirp signal

is sampled using the radar sampling frequency to form .
The signal recovery is carried out in two stages: i) EMD
Filtering Stage and ii) the FrFT Filtering Stage.
EMD Filtering Stage: In stage one the received signal is

input to a bivariate EMD to produce the complex IMFs .
The complex IMFs are detrended and thresholded to estimate
the non-noisy IMFs using (2)–(5) as described in Section II.
Only IMFs whose energy exceeds the threshold are retained.
The resultant thresholded IMFs are combined to produce the
complex denoised signal as in (6).
FrFT Filtering Stage [1]: For the second stage, the com-

plex denoised signal in the optimal fractional domain is calcu-
lated from the information supplied from the transmitted chirp
signal as in (8). Knowing the peak position of the target chirp
signal in the optimum FrFT domain, the received data is filtered
by keeping the chirp target data (peak position sample and its
adjacent samples) and forces all the remaining samples in the
tracking window to zero. The inverse FrFT is used with the
known optimal order to transform the signal back to time do-
main after filtering. The EMD-FrFT filtered data is supplied to
the radar processor to continue data processing to calculate the
target information.
The EMD-FrFT filtering process illustrated in Fig. 3 is at-

tached to receiving channels in which the received signal
from each of the antenna elements will fill range gates.

Fig. 4. Radar data EMD-FrFT filtering.

Fig. 5. High noisy chirp signal in time domain (real).

The total radar data size is therefore equal to for each
pulse return. The EMD-FrFT filter block seen in Fig. 4 consists
of EMD-FrFT filters shown in Fig. 3. The overall filtered data

are processed to determine the target information pa-
rameters as illustrated in Fig. 2.

VI. SIMULATION RESULTS
The computer based simulations comprise an array of 14

elements spaced 1/3 m apart. The radar pulse width is 100
microseconds and a pulse repetition interval of 1.6 ms for a
435 MHz carrier was used. The incoming baseband signals are
sampled at 1 MHz. Also it is assumed that the radar operating
range is 100:200 range bins with a starting window at 865 m
and a window duration of 403 m. The target is considered at

at angle 32 from the look direction with
target signal to noise ratio (SNR) set to 56 dB. A jamming signal
with interference noise ratio (INR) set to 75 dB at angle 32
from the look direction (main beam jamming) is introduced.1

A. High Power Interference Scenario
Considering the simulation parameters for one of the 14 re-

ceiving channels (first channel), the receiving target chirp signal
appears at range bin 150 in case of no jamming while the chirp
signal is completely corrupted in the time domain (also in the
frequency domain) by the noise due to high power jamming
signal as seen in Fig. 5.
The bivariate EMD is applied to the noisy signal to produce

the complex IMFs. A sampling frequency is increased to 10
MHz (ten times the radar sampling frequency ) to increase
the number of IMFs.
The resultant complex IMFs from applying the bivariate

EMD to the noisy chirp 1 4029 produces 14 IMFs each of
length 4029. Keeping only IMFs whose energy exceeds the
threshold using the EMD-DT algorithm described in Section II
the signal is reconstructed summing the non-noisy IMFs from
1The simulations parameters are extracted from DARPA/Navy Mountaintop

Program. See URL http://spib.rice.edu/spib/mtn_top.html.
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Fig. 6. High noisy chirp signal in optimum FrFD.

Fig. 7. EMD denoised chirp in optimum FrFD.

6 to 14 to obtain the filtered signal after applying EMD-DT
algorithm.
Substituting the monopulse radar parameter values given

above into (8) with a high sampling frequency of 10 MHz, the
order of the optimal FrFT domain is computed as 1.1266.
The EMD filtered signal is transferred to the optimal FrFD
using the optimal order FrFT domain 1.1266.
Transforming the radar received signal directly to the op-

timum FrFD using the calculated , is expected to produce a
high magnitude value (spike) due to transferring the chirp signal
to the optimum FrFD. However as seen in Fig. 6 due to the high
power interference the spike of the target chirp is highly cor-
rupted also by noise spikes in the optimum FrFD and cannot be
filtered in this domain.
It is therefore difficult to distinguish between the target spike

and the noise spikes in the optimal FrFD. The proposed EMD-
FrFT filtering algorithm is used to address this problem. Fig. 7
shows the EMD denoised chirp in optimum FrFD. It is evident
that the noise is significantly reduced especially the high fre-
quency components and the chirp target spike is also the highest
spike which is shown in the zoomed portion of Fig. 7.
The proposed filtering algorithm in the optimum FrFD keeps

the sample with maximum magnitude (sample no. 2018) and its
ten adjacent samples from 2013–2023 while forcing all other
samples window to zero. The filtered signal is then transformed
back to time domain by applying inverse optimum FrFT
using— ( 1.1266) by applying (7). The real and imagi-
nary parts of the denoised signal (recovered) after applying the
proposed EMD-FrFT filtering algorithm is shown in Fig. 3.
Fig. 8 compares the denoised chirp signal using EMD-FrFT

filter with the non noisy signal. In the simulation example, the
considered signal total input SNR is approximately equal 8 dB
(after adding the jamming noise) and the output SNR is approx-
imately 10 dB. The proposed EMD-FrFT filtering algorithm of-
fers signal enhancement of approximately 18 dB.

B. Signal Improvement at Different SNR
Table I shows the improvement results of applying different

target SNR for the same jamming scenario (INR set to 75 dB

Fig. 8. Recovered chirp signal. (a) Real; (b) imaginary.

TABLE I
THE IMPROVEMENT RESULTS IN dB FOR MONOPULSE PROCESSORS

at angle 32 ) and calculating the total input SNRs to the radar
receiving channel. The results in Table I comprise an average
over 50 independent noise generations.
Table I indicates an improvement of approximately 18.1 dBs

for input and an improvement of approxi-
mately 4.9 dBs for input . The proposed EMD-
FrFT algorithm yields a higher improvement for the lower SNRs
rather than the higher SNRs.

VII. CONCLUSION

A system to reduce the distortion problem due to high power
interference in chirp radar systems is presented. The proposed
EMD-FrFT filtering algorithm successfully decreases the high
power noise interference and improves the received radar SNR.
A resulting improvement in the radar received signal is obtained
for different SNR and the highest gain is achieved in the case of
lower SNR (up to 18 dB in the considered case).

REFERENCES
[1] S. A. Elgamel and J. J. Soraghan, “Enhanced monopulse radar tracking

using fractional fourier filtering in the presence of interference,” in 11th
Int. Radar Symp. (IRS), 2010 11th International, 2010, pp. 1–4.

[2] A. Farina, G. Golino, and L. Timmoneri, “Maximum likelihood esti-
mator approach to determine the target angular co-ordinates in pres-
ence of main beam interference: Application to live data acquired with
a microwave phased array radar,” in IEEE Int. Radar Conf., 2005, pp.
61–66.

[3] Y. Seliktar, E. J. Holder, and D. B. Williams, A Space/Fast-Time Adap-
tive Monopulse Technique. New York: Hindawi, 2006, pp. 218–228.

[4] J. Zongsheng and S. Xicai, “Analysis on the tracking performance of
active radar seeker under the condition of coherent interference,” in
IEEE Int. Conf. Intelligent Computing and Intelligent Systems, 2009,
pp. 418–422.

[5] P. Flandrin, P. Goncalves, and G. Rilling, “Detrending and denoising
with empirical mode decompositions,” in 2004 Eur. Signal Processing
Conf. (EUSIPCO-2004), 2004.

[6] G. Rilling, P. Flandrin, P. Gonalves, and J. M. Lilly, “Bivariate em-
pirical mode decomposition,” IEEE Signal Process. Lett., vol. 14, pp.
936–939, 2007.

[7] C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete frac-
tional fourier transform,” IEEE Trans. Signal Process., vol. 48, pp.
1329–1337, 2000.

[8] H. M. Ozaktas, G. Zalevsky, and M. A. Kutay, The Fractional Fourier
Transform: With Applications in Optics and Signal Processing. New
York: Wiley, Jan. 2001.

[9] C. Capus and K. Brown, “Short-time fractional fourier methods for the
time-frequency representation of chirp signals,” J. Acoust. Soc. Amer.,
vol. 113, no. 6, pp. 3253–3263, 2003.



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 4, APRIL 2011 1

Using EMD-FrFT Filtering to Mitigate Very High
Power Interference in Chirp Tracking Radars

Sherif A. Elgamel, Student Member, IEEE, and John J. Soraghan, Senior Member, IEEE

Abstract—This letter presents a new signal processing sub-
system for conventional monopulse tracking radars that offers
an improved solution to the problem of dealing with manmade
high power interference (jamming). It is based on the hybrid use
of empirical mode decomposition (EMD) and fractional Fourier
transform (FrFT). EMD-FrFT filtering is carried out for complex
noisy radar chirp signals to decrease the signal’s noisy compo-
nents. An improvement in the signal-to-noise ratio (SNR) of up
to 18 dB for different target SNRs is achieved using the proposed
EMD-FrFT algorithm.

Index Terms—Empirical mode decomposition, fractional
Fourier transforms, high power interference suppression.

I. INTRODUCTION

A high power noise interference introduced to a monopulse
tracking radar processor through the radar antenna pro-

duces an interference error that affects the radar tracking ability
and may cause target mistracking [1]. Various methods [2]–[4]
for combating high noise power interference have been pub-
lished.

In our previous work [1] the mistracking problem due to in-
terference signals was addressed using the filtering in the Frac-
tional Fourier Transform domain. In this letter we propose the
use of both empirical mode decomposition (EMD) and frac-
tional Fourier transform (FrFT) to implement EMD-FrFT fil-
ters in an attempt to reduce the very high power interference sig-
nals introduced from the antenna main lobe or from the antenna
side lobes for radar receiving channels. Following a brief in-
troduction on EMD and FrFT the letter then describes the struc-
ture of the new EMD-FrFT filtering algorithm based monopulse
radar processor. The superior performance of the new algorithm
is demonstrated using a set of simulation results.

II. CLASSICAL AND BIVARIATE EMD

The intrinsic mode functions (IMFs) of an EMD signal de-
composition are oscillatory and have no DC component, so the
signal in the EMD domain may be represented as [5]

(1)
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where , are the IMFs and is the
residual. When a signal , comprising a slow oscillation su-
perimposed on a highly oscillating signal (in our case additive
high power interference noise signal), is applied to an EMD al-
gorithm, the first few IMFs tend to contain the highly oscillation
signal (noise) and the remaining IMFs contain the useful signal
(in our case radar chirp signal).

The bivariate EMD [6] may be used for complex valued time
series. As with the classical EMD, the bivariate EMD is used
to separate the more rapidly rotating components from slower
ones. The procedure is to define the slowly rotating compo-
nent as the mean of some envelope which is a three-dimensional
cylinder that encloses the signal. In our work the bivariate EMD
(complex EMD) is used to decompose the complex radar signal
into a complete and finite set of complex IMFs in order to sub-
sequently minimise the additive noise interference.

The concept of detrending in high frequency noise environ-
ments is to calculate an estimate of the IMF number at which
all previous IMFs may be regarded as noise and the subsequent
IMFs may be considered to contain the useful signal compo-
nents.

The IMF detrending technique assumes that the 1st IMF,
, captures mostly noise, the noise level is estimated

in by computing [5]

(2)

where is the number of samples. The model for noise only
IMF energies can be approximated for white Gaussian noise
dependence on the energy of the first IMF from [5]

(3)

The threshold level energies are used to distinguish be-
tween signal and noise. They are calculated using the approxi-
mated IMF energies in (3) from [5]

(4)

Computing the IMFs energies by applying the EMD algo-
rithm on (noisy signal) from [5]

(5)

Comparing IMFs energies with the threshold level ener-
gies allows us to determine exactly when the signal energy
level crosses the threshold level.

Assuming this occurs at , the signal is denoised
by reconstruction using only IMFs whose energy exceeds the
threshold according to:

1070-9908/$26.00 © 2011 IEEE
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Fig. 1. Detrending and the thresholding.

(6)

In Fig. 1 the EMD algorithm is applied to a noisy signal re-
sulting in 10 IMFs. Using (2) and (3) the 1st IMF is used to
estimate the noise only energies for the remaining IMFs. The
resulting noise only model outputs are shown in Fig. 1. The ac-
tual IMFs energies calculated from (5) are also illustrated on
Fig. 1 along with the threshold model for each IMF. It is clear
that the actual IMFs energies are close to those estimated for
the noise only model up to IMF 6 at which the threshold level
is crossed. This means that these IMFs (from 1 to 6) may be re-
garded as essentially noise only. Thus, the sum of IMFs from 7
to 10 represents the detrended and thresholded signal.

For the noisy signal, a higher sampling frequency yields a
higher number of samples and as a result a greater number of
IMFs using the EMD algorithm. Consequently a higher accu-
racy of detrending IMFs in the EMD-DT algorithm is expected.
This concept of detrending and thresholding is used later in
Section V.

III. FRACTIONAL FOURIER TRANSFORM

The fractional Fourier transform of order of an arbitrary
function , with an angle is defined as [7], [8]

(7)

where is the transformation kernel, is the transfor-
mation of to the order, and with . The
optimum order value, for a chirp signal may be computed
as [9]

(8)

where is the sampling frequency, is the chirp duration,
is the number of samples in the time received window, and
is the chirp bandwidth.

Fig. 2. Basic structure of monopulse radar.

IV. MONOPULSE RADAR SIGNAL

A block diagram of a typical monopulse radar is shown in
Fig. 2. A pulsed chirp signal is produced from the waveform
generator. This is up-converted to the radar carrier frequency,
amplified and passed through the duplexer to be transmitted:

(9)

where is the time, is the chirp start frequency, and
is the chirp stop frequency. This is up-converted to the radar
carrier frequency, amplified and passed through the duplexer
to be transmitted. The down-converted received signal passes
through a band limited Gaussian before passing through the
chirp matched filter to maximize the target return signal. The
target information parameters (azimuth angle, elevation angle,
and target range) are then calculated by the monopulse processor
from the filtered signal.

The structure of monopulse radar shown in Fig. 2 is repeated
times ( equal to the of array antenna elements). Thus each

antenna will have its own complete receiving system and all the
output data will be processed using only one monopulse pro-
cessor.

The radar received chirp signal may be expressed in the
baseband as [1] shown in the equation at bottom of page, where

is the received signal amplitude, is a random phase shift,
is the Doppler vector, is antenna phase factor, and

is the start time of the returned pulse.
The start time depends on the target range and can

be computed from

(11)

where is the speed of light. As indicated in (10) the Doppler
shift and delay effect on the target chirp signal is determined

(10)



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

ELGAMEL AND SORAGHAN: USING EMD-FrFT FILTERING TO MITIGATE VERY HIGH POWER INTERFERENCE IN CHIRP TRACKING RADARS 3

Fig. 3. EMD-FrFT filtering.

by the dot product of the chirp signal by the Doppler vector
defined as

(12)

where is the target Doppler frequency.
For the phased array receiving antenna, an antenna phase

factor is introduced as

(13)

where is a vector represented as ,
is a unitary vector, and is calculated from

(14)

where is the separation between the antenna elements, is
the target angle from the antenna boresight.

V. FILTERING BASED EMD-FRFT ALGORITHM

It is proposed to combat the high power noise interference
by filtering the received signal in the optimal fractional Fourier
transform (FrFT) domain using the transmitted chirp radar infor-
mation. Normally the magnitude of chirp signal in the optimum
FrFT domain would be significantly higher than the noise signal
in the fractional domain [1]. However in high power jamming
scenarios this is not usually true and it becomes difficult to dis-
tinguish between the target spike and the noise spikes in the op-
timal FrFT domain.

The proposed EMD-FrFT radar filtering process, which must
be applied to the received signal before the band pass filter, is
shown in Fig. 3. The radar received noisy complex chirp signal

is sampled using the radar sampling frequency to form .
The signal recovery is carried out in two stages: i) EMD
Filtering Stage and ii) the FrFT Filtering Stage.

EMD Filtering Stage: In stage one the received signal is
input to a bivariate EMD to produce the complex IMFs .
The complex IMFs are detrended and thresholded to estimate
the non-noisy IMFs using (2)–(5) as described in Section II.
Only IMFs whose energy exceeds the threshold are retained.
The resultant thresholded IMFs are combined to produce the
complex denoised signal as in (6).

FrFT Filtering Stage [1]: For the second stage, the com-
plex denoised signal in the optimal fractional domain is calcu-
lated from the information supplied from the transmitted chirp
signal as in (8). Knowing the peak position of the target chirp
signal in the optimum FrFT domain, the received data is filtered
by keeping the chirp target data (peak position sample and its
adjacent samples) and forces all the remaining samples in the
tracking window to zero. The inverse FrFT is used with the
known optimal order to transform the signal back to time do-
main after filtering. The EMD-FrFT filtered data is supplied to
the radar processor to continue data processing to calculate the
target information.

The EMD-FrFT filtering process illustrated in Fig. 3 is at-
tached to receiving channels in which the received signal
from each of the antenna elements will fill range gates.

Fig. 4. Radar data EMD-FrFT filtering.

Fig. 5. High noisy chirp signal in time domain (real).

The total radar data size is therefore equal to for each
pulse return. The EMD-FrFT filter block seen in Fig. 4 consists
of EMD-FrFT filters shown in Fig. 3. The overall filtered data

are processed to determine the target information pa-
rameters as illustrated in Fig. 2.

VI. SIMULATION RESULTS

The computer based simulations comprise an array of 14
elements spaced 1/3 m apart. The radar pulse width is 100
microseconds and a pulse repetition interval of 1.6 ms for a
435 MHz carrier was used. The incoming baseband signals are
sampled at 1 MHz. Also it is assumed that the radar operating
range is 100:200 range bins with a starting window at 865 m
and a window duration of 403 m. The target is considered at

at angle 32 from the look direction with
target signal to noise ratio (SNR) set to 56 dB. A jamming signal
with interference noise ratio (INR) set to 75 dB at angle 32
from the look direction (main beam jamming) is introduced.1

A. High Power Interference Scenario

Considering the simulation parameters for one of the 14 re-
ceiving channels (first channel), the receiving target chirp signal
appears at range bin 150 in case of no jamming while the chirp
signal is completely corrupted in the time domain (also in the
frequency domain) by the noise due to high power jamming
signal as seen in Fig. 5.

The bivariate EMD is applied to the noisy signal to produce
the complex IMFs. A sampling frequency is increased to 10
MHz (ten times the radar sampling frequency ) to increase
the number of IMFs.

The resultant complex IMFs from applying the bivariate
EMD to the noisy chirp 1 4029 produces 14 IMFs each of
length 4029. Keeping only IMFs whose energy exceeds the
threshold using the EMD-DT algorithm described in Section II
the signal is reconstructed summing the non-noisy IMFs from

1The simulations parameters are extracted from DARPA/Navy Mountaintop
Program. See URL http://spib.rice.edu/spib/mtn_top.html.
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Fig. 6. High noisy chirp signal in optimum FrFD.

Fig. 7. EMD denoised chirp in optimum FrFD.

6 to 14 to obtain the filtered signal after applying EMD-DT
algorithm.

Substituting the monopulse radar parameter values given
above into (8) with a high sampling frequency of 10 MHz, the
order of the optimal FrFT domain is computed as 1.1266.
The EMD filtered signal is transferred to the optimal FrFD
using the optimal order FrFT domain 1.1266.

Transforming the radar received signal directly to the op-
timum FrFD using the calculated , is expected to produce a
high magnitude value (spike) due to transferring the chirp signal
to the optimum FrFD. However as seen in Fig. 6 due to the high
power interference the spike of the target chirp is highly cor-
rupted also by noise spikes in the optimum FrFD and cannot be
filtered in this domain.

It is therefore difficult to distinguish between the target spike
and the noise spikes in the optimal FrFD. The proposed EMD-
FrFT filtering algorithm is used to address this problem. Fig. 7
shows the EMD denoised chirp in optimum FrFD. It is evident
that the noise is significantly reduced especially the high fre-
quency components and the chirp target spike is also the highest
spike which is shown in the zoomed portion of Fig. 7.

The proposed filtering algorithm in the optimum FrFD keeps
the sample with maximum magnitude (sample no. 2018) and its
ten adjacent samples from 2013–2023 while forcing all other
samples window to zero. The filtered signal is then transformed
back to time domain by applying inverse optimum FrFT
using— ( 1.1266) by applying (7). The real and imagi-
nary parts of the denoised signal (recovered) after applying the
proposed EMD-FrFT filtering algorithm is shown in Fig. 3.

Fig. 8 compares the denoised chirp signal using EMD-FrFT
filter with the non noisy signal. In the simulation example, the
considered signal total input SNR is approximately equal 8 dB
(after adding the jamming noise) and the output SNR is approx-
imately 10 dB. The proposed EMD-FrFT filtering algorithm of-
fers signal enhancement of approximately 18 dB.

B. Signal Improvement at Different SNR

Table I shows the improvement results of applying different
target SNR for the same jamming scenario (INR set to 75 dB

Fig. 8. Recovered chirp signal. (a) Real; (b) imaginary.

TABLE I
THE IMPROVEMENT RESULTS IN dB FOR MONOPULSE PROCESSORS

at angle 32 ) and calculating the total input SNRs to the radar
receiving channel. The results in Table I comprise an average
over 50 independent noise generations.

Table I indicates an improvement of approximately 18.1 dBs
for input and an improvement of approxi-
mately 4.9 dBs for input . The proposed EMD-
FrFT algorithm yields a higher improvement for the lower SNRs
rather than the higher SNRs.

VII. CONCLUSION

A system to reduce the distortion problem due to high power
interference in chirp radar systems is presented. The proposed
EMD-FrFT filtering algorithm successfully decreases the high
power noise interference and improves the received radar SNR.
A resulting improvement in the radar received signal is obtained
for different SNR and the highest gain is achieved in the case of
lower SNR (up to 18 dB in the considered case).
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