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Summary 
 

Hemostasis is the set of mechanisms that maintains blood in a fluid state under normal 

conditions and responds to vessel damage by the rapid formation of a clot. The equilibrium 

between procoagulant and anticoagulant forces is tightly balanced and the deficiency of any 

of the coagulation factors could leads to disequilibrium provoking bleeding or thrombosis.  

Both protein S (PS) and growth arrest-specific gene 6 (Gas6) belong to the vitamin K-

dependent protein family. Apart from a γ-carboxyglutamic acid-domain interaction with 

phospholipid membranes, PS and Gas6 also bind to the receptor tyrosine kinases Tyro3, Axl 

and Mer (or TAM receptors) by their carboxy-terminal globular domains. PS is an important 

natural anticoagulant. This is evidenced by the fact that homozygous PROS1 deficiency 

promotes dramatic clinical manifestations including disseminated intravascular coagulation 

(DIC) and purpura fulminans (PF) that, if untreated, are incompatible with life. Heterozygous 

patients deficient in PROS1 have an increased risk of thromboembolic events. Gas6 is 

redundant for normal homeostasis but critical for stress-responses. Therefore, inactivation of 

Gas6 does not cause life-threatening developmental defects, but modulates the severity of 

disease related phenotypes. The pathophysiology of PF is uncertain although the imbalance 

between pro- and anticoagulant forces is supposed to be the etiological factor. A murine 

model recapitulating aspects of PS deficiencies in human is now available. The examination 

of PS deficiency associated PF revealed that besides extensive bleeding and thrombosis, 

Pros1-/- embryos displayed altered vasculature. The question was then to find out if PF could 

result not only from the lack of the PS anticoagulant effect, but also from the lack of PS 

signaling in the endothelium and its role in vascular development or both.  

In order to study more in detail PF development, we used Pros1 gene silencing by Cre 

inducible recombination approach in adult Pros1lox/- mice to achieve null or very low PS level. 

Although thrombi were found in liver, heart and lungs, Pros1lox/-Mx1Ce+ mice displaying low 

PS plasma level (16% of the level found in control mice) did not develop PF. A second 

strategy was to use warfarin, a vitamin K antagonist, that leads to inactive PS. Most of 
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Pros1+/- mice succumbed to the challenge. Among the few survivor mice, some developed PF. 

Histological examinations of these lesions revealed thrombosis occurring with vascular wall 

damage. Investigations of Pros1-/- embryos vasculature revealed damaged endothelium and 

poorly formed vessel networks further confirming that the lack of PS might disturb the 

vasculature development and maintenance. We also observed ongoing inflammation, altered 

phagocytosis and erythropoietic defects. Gas6-/- mice were previously described to be 

protected against thrombosis. To find out if PS deficiency induced PF is strictly due to the 

imbalance between pro- and anticoagulant factors, we hypothesize that synergic deficiency of 

PS and Gas6 should rebalance hemostasis in Pros1-/- and rescue them from PF. Surprisingly, 

Pros1-/-Gas6-/- embryos exhibited a more dramatic phenotype with earlier and more frequent 

mortality, altered vasculature, phagocytosis, inflammation and erythropoiesis indicating that 

PS deficiency induced PF is not only due to lack of PS anticoagulant activity but also to the 

lack of PS signaling involved in vasculature, phagocytosis, inflammation and erythropoiesis. 

Bleeding diathesis sustained by the loss of F8 (hemophilia A :HA) or F9 (hemophilia B : HB) 

activity that remarkably impairs the generation of thrombin and imbalance hemostasis. 

Patients with severe hemophilia frequently suffer from spontaneous recurrent muscle and 

joint bleeding, such as hemarthrosis, which leads to severe and progressive musculoskeletal 

damage. The main treatment is administration of the deficient clotting factor. Complication of 

such therapy is the development of neutralising antibodies. The disequilibrium of the 

hemostatic balance caused by PS complete lack allows us hypothesize that synergic 

deficiency of F8/ F9 and PS might be suitable to achieve hemostasis in HA and HB and 

rescue Pros1-/- mice from PF. Attractively, Pros1-/-F8-/- and Pros1-/-F9-/- mice are viable, 

displayed normal hemostatic parameters and did not present PF. Fascinatingly, we observed 

complete prevention from acute and chronic hemarthrosis in Pros1-/-F8-/- and Pros1-/-F9-/- 

mice. Recombinant F8 administration in Pros1-/-F8-/- mice restored the imbalance of the 

coagulation and promotes DIC and thrombosis. However, no PF was observed. 

Pregnancy is associated with a shift of the coagulation balance leading to a hypercoagulable 

state that predispose to thromboembolism. Pregnant women with partial PS inherited 
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deficiency have an elevated risk of late fetal loss and whether thromboprophylaxis could 

ameliorate pregnancy outcomes is debated. We used Pros1-/- mice that are fully rescued from 

lethality by targeting Factor VIII (FVIII) (F8-/-Pros1-/-). We did not observed pregnancy loss 

in F8-/-Pros1+/- females. Differently, F8-/-Pros1-/- females never produced a litter, 

demonstrating that complete lack in PS is incompatible with a positive pregnancy outcome. 

Examination of pregnancy in F8-/-Pros1-/- revealed dead and macerated embryos from E11.5 

onwards with no evidence of increased fibrin deposition in placentas, females liver, lung and 

kidney. Reduced platelet count, low fibrinogen, increased thrombin-antithrombin complexes 

and platelets activation in these pregnant females point to coagulation activation but no overt 

DIC. Treatment of F8-/-Pros1-/- pregnant mice with enoxaparin largely prevented abortion 

with slightly reduced litter size. Less efficiently, aspirin also ameliorated pregnancy outcome 

with smaller litter as compared to enoxaparin. In summary, our findings provide evidence that 

the thrombotic process occurring during PS deficiency induced PF should be less central than 

currently admitted. PS possibly plays an additional role in vasculature development. The lack 

of its signaling in the endothelium might lead to vascular defects and further promotes PF. 

The mechanism by which PS is involved in vascular development and maintenance should be 

further investigated. Concomitant F8 and PS deficiency overcome Pros1-/- lethal phenotype, 

prevented hemarthrosis and perfectly restored the hemostatic balance in F8-/-Pros1-/- mice 

advocating PS targeting as potential therapy for hemophilia. The absence of PF lesions in F8-

/-Pros1-/- mice after recombinant F8 injection further indicate that in PF, PS might play other 

role than anticoagulation. Thromboprophylaxis was very beneficial the context of very severe 

PS deficiency indicating that it might apply to pregnancy with inherited thrombophilias. 

However, litters produced under anticoagulation treatment were smaller suggesting that 

beyond its anticoagulation role, PS likely plays a role in uteroplacental vasculature. 
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Resumé 

L'hémostase est l'ensemble des mécanismes maintenant le sang dans un état fluide dans des 

conditions normales et réagissant aux dommages vasculaires par la formation rapide d'un 

caillot sanguin. La balance entre forces procoagulantes et anticoagulantes est strictement 

équilibrée. Le déficit de l'un des facteurs de la coagulation peut provoquer un déséquilibre 

induisant des saignements ou des thromboses. La protéine S (PS) et le Gas6 (Growth arrest 

specific gene 6) appartiennent à la famille des protéines dépendantes de la vitamine K. En 

plus de leur interaction avec les membranes phospholipidiques grace à leur domaine riche en 

résidus de l’acide γ-carboxyglutamique, PS et Gas6 sont également capables de se lier aux 

récepteurs tyrosine kinases Tyro3, Axl et Mer (ou récepteurs TAM) grace à leur domaine 

carboxy-terminal globulaire. La PS est un important anticoagulant naturel. Sa déficience 

totale provoque une coagulation intravasculaire disséminée (CIVD) et un purpura fulminans 

(PF), qui sans traitement peuvent être fatals. Les patients souffrant d’une déficience en PS 

moins sévère présentent un risque accru d'événements thromboemboliques veineux. Gas6 est 

redondant pour l'homéostase normale. Cependant, il joue un rôle critique lors des réponses au 

stress. L’inactivation de Gas6 ne provoque pas des défauts de développement fatal mais 

module la sévérité des phénotypes liés aux maladies. Bien que le déséquilibre entre les forces 

procoagulantes et anticoagulantes est supposé être le facteur étiologique, la physiopathologie 

du PF est méconnue. Un modèle murin récapitulant les aspects de la déficience en PS chez 

l'être humain est maintenant disponible. Grâce à ce modèle murin, l’analyse du PF lié à la 

déficience en PS a révélé qu'en plus d’abondants saignements et de thromboses, les embryons 

Pros1-/- avaient des anomalies vasculaires. La question est alors de discriminer si le PF résulte 

non seulement de l'absence de l’effet anticoagulant de la PS, mais aussi du manque de sa 

signalisation dans l'endothélium et lors du développement vasculaire, ou les deux. 

Afin de clarifier le mécanisme lié au développement du PF, nous avons utilisé le système de 

recombinaison inductible de Cre chez les souris adultes Pros1lox/- afin d’inactiver le gène 

Pros1 et atteindre un taux de PS très bas voire indétectable. Bien que des thrombi aient été 
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observés dans leur foie, cœur et poumons, les souris Pros1lox /-Mx1Cre+ ayant un taux 

plasmatique de PS très faible (16% du taux constaté chez les souris témoins), n'ont pas 

développé de PF. Notre deuxième stratégie était d'utiliser la warfarine, un antagoniste de la 

vitamine K empêchant la formation de la forme active de la PS. Suite à ce traitement, seule 

une partie des souris Pros1+/- a succombé. Parmi les rares survivantes, quelques-unes ont 

développé un PF. Les examens histologiques de ces lésions ont révélé des thromboses et des 

lésions de la paroi vasculaire. L’analyse des vaisseaux des embryons Pros1-/- a révélé un 

endothélium endommagé et des réseaux vasculaires mal formés confirmant que le manque de 

PS pourrait perturber le développement et la maintenance du système vasculaire. Nous avons 

également observé des signes d’inflammation et une réduction de la phagocytose et des 

troubles de l’érythropoïèse. Les souris Gas6-/- ont été précédemment décrites comme étant 

protégées contre les thromboses. Pour déterminer si le PF induit par la déficience en PS est 

strictement dû au déséquilibre entre les facteurs procoagulants et anticoagulants, nous avons 

supposé que la déficience combinée en PS et en Gas6 devrait rééquilibrer l'hémostase des 

embryons Pros1-/- et les protéger contre le PF. Etonnamment, les embryons Pros1-/-Gas6-/- ont 

montrés un phénotype encore plus dramatique avec une mortalité plus précoce et plus 

fréquente. Le réseau vasculaire, la phagocytose, l’inflammation et l’érythropoïèse étaient 

aussi altérés. Ceci laisse supposer que le PF induit par la déficience en PS n'est peut-être pas 

uniquement dû au manque de l’activité anticoagulante de la PS, mais aussi à la possible 

absence de la signalisation de la PS impliquée dans la vascularisation, la phagocytose, 

l'inflammation et l'érythropoïèse. 

Dans le cadre de l’hémophilie, la perte de l'activité du facteur VIII (FVIII) (hémophilie A: 

HA) ou du facteur IX (FIX) (hémophilie B: HB) diminue considérablement la génération de 

thrombine et déséquilibre la balance hémostatique. Les patients avec une hémophilie sévère 

souffrent fréquemment de saignements musculaires et articulaires, comme l'hémarthrose, qui 

entraîne des lésions musculo-squelettiques graves et progressives. Le traitement principal 

étant l'administration du facteur de coagulation manquant, une thérapie qui conduit souvent 

au développement d'anticorps neutralisants contre les facteurs administrés. Le déséquilibre de 
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l’équilibre hémostatique causé par le manque complet de la PS nous a permis de supposer que 

le manque combiné  des FVIII ou FIX et de la PS pourrait être une bonne alternative pour 

rééquilibrer la balance hémostatique dans le contexte de l’HA ou HB et prévenir le PF chez 

les souris Pros1-/-. De manière surprenante, les souris F8-/-Pros1-/- et F9-/-Pros1-/- étaient 

viables avec des paramètres hémostatiques normaux sans aucun signe de PF. De plus, une 

prévention complète de l'hémarthrose aiguë a été observée chez les souris F8-/-Pros1-/- et F9-/-

Pros1-/-. Cependant, l'administration de FVIII recombinant aux souris F8-/-Pros1-/- a ré-induit 

le déséquilibre de la coagulation et favorisé le développement de la CIVD et de thromboses,  

mais l’apparition de PF n'a toutefois pas été observée. 

La grossesse est associée à un déséquilibre de la coagulation conduisant à un état 

hypercoagulable qui prédispose les femmes enceintes à des événements thromboemboliques. 

Les femmes enceintes atteintes d'une déficience héréditaire partielle en PS ont un risque accru 

de perte fœtale. L’effet favorable de la prophylaxie antithrombotique sur le déroulement de 

ces grossesses à risque est fortement débattu. Nous avons utilisé des souris Pros1-/- viable 

(grâce à leur déficience concomitante en FVIII (F8-/-Pros1-/-). Nous n'avons pas observé de 

perte fœtale chez les femelles F8-/-Pros1+/-. En revanche, les femelles F8-/-Pros1-/- n'ont jamais 

mis bas, démontrant que la déficience complète en PS est incompatible avec une issue 

favorable de la grossesse. L’évaluation de la grossesse chez les femelles F8-/-Pros1-/- a révélé 

des embryons morts et macérés à partir de E11.5, sans augmentation de dépôt de fibrine ni 

dans les organes des femelles portantes (foie, poumons et reins) ni dans les placentas de 

celles-ci. La diminution du nombre de plaquettes, la réduction du taux de fibrinogène et 

l'augmentation des complexes de thrombine-antithrombine chez ces femelles enceintes ont 

indiqué une activation de la coagulation, mais pas de CIVD décompensée. Le traitement des 

souris F8-/-Pros1-/-  portantes avec de l'énoxaparine a sensiblement diminué les pertes fœtales, 

les femelles ayant  donné naissance à des portées légèrement réduites. L'aspirine a également 

amélioré le résultat de la grossesse, mais de manière moins efficace,  les portées étant encore 

plus réduites qu’avec l'énoxaparine. En résumé, nos résultats démontrent que le processus 

thrombotique lors du PF (induit par  la déficience complète en PS) devrait être moins central 
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qu’actuellement admis. En effet, la PS joue peut-être un rôle supplémentaire dans le 

développement vasculaire. L'absence de sa signalisation dans l'endothélium pourrait entraîner 

des défauts vasculaires et favoriser davantage la survenue de PF. Le mécanisme par lequel la 

PS est impliquée dans le développement et la maintenance vasculaire mérite d’être étudié plus 

à fond. La déficience concomitante en FVIII et en PS a corrigé le phénotype Pros1-/- létal, 

s’est révélée être une protection contre l'hémarthrose et a parfaitement restauré l'équilibre 

hémostatique chez les souris F8-/-Pros1-/-. Ces résultats spectaculaires permettent de proposer 

le ciblage de la PS comme traitement potentiel de l’hémophilie. L’absence de lésions de PF 

chez les souris F8-/-Pros1-/- après l’injection de FVIII recombinant indique en outre que lors 

du PF, la PS pourrait jouer un autre rôle que l’anticoagulation. Dans la grossesse, la 

prophylaxie antithrombotique s’est montrée très bénéfique dans le contexte d'un déficit très 

sévère en PS, ce qui indique qu'elle pourrait être profitable dans le contexte de la grossesse en 

présence de thrombophilies héréditaires. Cependant, les portées réduites obtenues sous 

anticoagulation laissent suggérer qu'au-delà de son rôle d'anticoagulation, la PS joue 

probablement un rôle dans le système vasculaire utéro-placentaire. 
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TLRs                 toll-like receptors 

TOLLIP            toll interacting protein 

TRAF6              tumor necrosis factor receptor associated factor 6  

TReg                 regulatory T cells 
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Chapter I. General introduction 

 

1.1 Hemostasis and inflammation 
 

Hemostasis is the set of mechanisms that maintains blood in a fluid state under normal 

conditions and responds to vessel damage by the rapid formation of a clot. 

The coagulation system is characterized by the sequential, rapid and highly localized 

activation of a series of serine proteases, culminating in the generation of thrombin, with 

subsequent conversion of fibrinogen into a fibrin clot. The role of tissue factor (TF) and 

collagen that are localized in the subendothelial matrix is to maintain a closed circulatory 

system. Indeed, after vascular injury or endothelium disturbance, collagen and TF become 

exposed to the flowing blood allowing the formation of a clot. There, exposed collagen 

activates platelets that accumulate at the site of injury and TF induces thrombin generation, 

resulting into the conversion of fibrinogen to fibrin and platelet aggregation. Numerous 

positive feedback mechanisms between platelets and the coagulation system ensure the 

effective sealing of the vascular wound. For example, phosphatidylserine (PtdSer) exposure 

on the surface of activated platelets functions as the docking site for gamma-carboxyglutamic 

acid (GLA)-containing coagulation factors. Besides, activated platelets produce an excess of 

factors that promote endothelial cell survival, proliferation, and vascular repair [1]. 

Thrombosis related fatal and life threatening pathologies are ischemic heart disease, ischemic 

stroke and venous thromboembolism (VTE) comprising pulmonary embolism and deep vein 

thrombosis. 

According to the study ‘Global Burden of Diseases, Injuries and Risk Factors’ initiated by the 

World Health Organization and the World Bank in 2010, 7 million deaths were due to 

ischemic heart disease and 5.9 million deaths caused by stroke. Approximately half of all 

stroke deaths resulted from ischemic stroke caused by thrombosis [2].  

It is widely known that inflammation can activate the coagulation system and leads to 

consumptive coagulopathy, thrombosis and tissue damage. A link between hemostasis and 
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host defence was well established from early studies analysing the blood of primitive 

invertebrates supporting that coagulation and inflammation are finely balanced biological 

systems with extensive cross talks that optimize the organism response to injury and invasion 

by pathogens [3].  

The classical example of inflammation caused coagulopathy is bacterial sepsis where acute 

systemic inflammatory response to infection induces endothelial injury and expression of TF. 

The resultant activation and consumption of coagulation factors and platelets, along with 

decreased fibrinolysis, disturbance of endothelial barrier function and loss of physiological 

antithrombotic factors create a clinical situation in which patients may be at risk for 

hemorrhage and arterial, venous or microvascular thrombosis. However, acute fulminant 

coagulopathy can also be triggered by noninfectious inflammation such as cancer, trauma, 

severe burns or complications of pregnancy. Besides, chronic inflammation conditions such 

as obesity, inflammatory bowel disease and other autoimmune disorders could also favor 

thrombosis [4, 5]. 

This work will describe the involvement and the role of two proteins in hemostasis and 

inflammation: Growth arrest specific gene 6 (Gas6) and protein S (PS). They are ligands for 

Tyro3, Axl and Mer (TAM) receptors belonging to a family of receptor tyrosine kinases 

(RTKs). Their downstream signalling upon Gas6/PS binding not only controls the magnitude 

of the immune response but is also active during inflammation resolution and recovery of 

tissue function via the clearance of apoptotic debris and the restoration of vascular integrity. 

1.2 Identification, characterization of Gas6, protein S and TAM receptors 

   1.2.1 Gas6 identification  

Growth arrest-specific genes or GAS genes expression has been studied during the different 

phases of the cell cycle and in different tissues. They are induced during the growth arrest 

phase of the cell cycle (G0), such as after serum starvation or removal of growth factors [6]. 

One of them is GAS6 and encodes a vitamin K-dependent protein (VKDP) of 75 kilodaltons 
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(kDa) characterized by post-translational γ-carboxylation of certain glutamic acid residues by 

a carboxylase, using vitamin K as cofactor. In mouse, GAS6 mRNA (2.6 kb) is

 

expressed by 

serum-starved embryonic fibroblast NIH3T3 cells. Its expression decreases

 

in the presence of 

fetal calf serum or under basic fibroblast growth factor stimulation. It is located on 

chromosome 13 at q34. Human Gas6 cloning and sequencing revealed a high degree of 

homology and a similar pattern of expression in IMR90 human fibroblasts [7]. Important 

tissues where Gas6 is expressed are neuronal [8], hepatic [9] and renal tissues [10]. Gas6 is 

also expressed in various cell types: endothelial cells [7], vascular smooth muscle cells [11], 

bone marrow (BM) cells [12] and platelets [13]. Gas6 concentration in human plasma ranges 

from 20 to 50 µg/L [14]. 

    1.2.2 Gas6 structure 

 
The murine cDNA sequence of Gas6 is 2556 nucleotides long and encodes a protein of 673 

amino acid residues. With 81% identity of amino acid residues, the human GAS6 is 2461 

nucleotides long and encodes a protein of 678 amino acids. As a multidomain protein, Gas6 is 

composed by 4 regions: (1) region A includes the amino terminus which contains a very 

conserved hydrophobic stretch typically resembling a signal peptide followed by a GLA 

domain formed by amino acids containing GLA that confers to VKDP the ability to bind to 

anionic phospholipids at the cell surface (residues 1 to 87); (2) region B comprises a loop 

maintained by disulfide bridges called the “thrombin sensitive region” (TSR) which, in Gas6, 

is not sensitive to thrombin (residues 88 to 115) followed by (3) region C formed by four 

epidermal growth factors domains (EGF), 2 of them contain calcium-binding consensus 

sequences (residues 116 to 276); (4) region D, also named C terminal domain, contains the 

sex hormone binding globular like domain (SHBG) (residues 277 to 673) [7]; this last region 

has 2 subdomains with a similar structure to the globular modules of laminin G (LamG) 

usually found in proteins interacting with heparin [15]. (Fig 1) 
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Fig.1: Structure of growth arrest-specific gene 6, a multidomain vitamin K dependent protein 

composed by 4 regions. Region A includes the amino terminus followed by a gamma-carboxyglutamic 

acid domain formed by amino acids containing gamma-carboxyglutamic acid (GLA residues 1 to 

87 in green). Region B comprises a loop maintained by disulfide bridges (residues 88 to 115 in blue). 

Region C is formed by 4 epidermal growth factors (EGF) like domains, 2 of them containing calcium-

binding consensus sequences (residues 116 to 276 in light blue). Region D (C terminal) contains sex 

hormone binding globular (SHBG)-like domain (residues 277 to 673 in brown). This last region has 2 

subdomains with a similar structure to the globular modules laminin G (LamG). 

    1.2.3 Protein S identification 
 

Protein S (PS) with the S referring to Seattle, the city where this protein was purified for the 

first time in 1977 from human plasma as a protein with properties comparable to prothrombin 

(PT), factor IX (FIX) and factor X (FX) [16]. PS, a natural anticoagulant, is a VKDP of 70.69 

kDa mainly synthetized by liver parenchymal cells [17], vascular endothelial cells [18], 

testicular Leydig cells, macrophages [19] and megakaryocytes [20]. PS circulates in human 

plasma at a higher concentration than Gas6 (Gas6: 20 to 50 µg/L, PS: 350 nanomolar (nM) 

corresponding to 25 mg/L). Sixty percent of circulating PS form a complex with C4b-binding 

protein (C4BP), a protein involved in the complement system.  The remaining 40% circulate 

in free form [20, 21]. In human, two PS genes were described: PROS1 gene, which expressed 

PS and PROSP as a pseudogene. Both are located on chromosome 3 at q11.2. 

 

      

GLA	  domain EGF-‐like	  
domains 

SHBG-‐like	  domain 

H2N-‐-‐	   -‐-‐COOH 
  

 

-‐-‐S-‐S-‐-‐ 

  

Region	  B 
(88	  -‐	  115) 

Region	  A 
(1	  -‐	  87) 

Region	  C 
(116	  –	  276) 

Region	  D 
(277	  –	  673) 

Disulfide	  
bridges	   

 LamG LamG 



 24 

   1.2.4 Protein S structure 
 
PROS1 gene is 80 kb long and encodes a protein of 676 amino acid residues organized in a 

single-chain glycoprotein [20]. PS has high structural homology (~42%) with Gas6 and the 

modular composition is the same. However, unlike the TSR in Gas6 (disulfide bridged thumb 

loop), PS TSR is sensitive to cleavage action of serine proteases [7]. The multiple domains of 

PS are organized as following: (1) region A which contains N terminus with a 24 amino acids 

peptide (residues 1 to 41), followed by GLA domain required for the binding to negatively 

charged phospholipids (residues 42 to 86) [22]; (2) region B contains the TSR susceptible to 

thrombin cleavage by thrombin and activated FX (FXa); the PS anticoagulant activity is 

suppressed by the removal of this region [23] (residues 87 to 113); (3) in region C, four EGF-

like domains in tandem are responsible for calcium binding (residues 114 to 283); (4) like in 

Gas6, region D or C terminus contains SHBG domain composed by two LamG known to be 

determinants of the PS half life and mutations [24]. Interestingly and unlike Gas6, these 

LamG are involved in the binding of PS to C4BP (residues 284 to 676) [21]. (Fig 2) 

  

 

Fig.2: Structure of protein S, a multidomain vitamin K-dependent protein comprising 4 regions. Region 

A includes the amino terminus (N terminus) with a 24 amino acids peptide followed by a gamma-

carboxyglutamic acid domain (GLA, residues 1 to 86 in green). Region B consists in a loop 

maintained by disulfide bridges that contains the thrombin sensitive region (TSR) susceptible to 

thrombin cleavage by thrombin and factor Xa (residues 87 to 113 in purple). Region C is formed by 4 

epidermal growth factors (EGF)-like domains in tandem responsible for calcium binding (residues 114 
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to 283 in blue). The last region (C terminus) contains the sex hormone binding globular (SHBG)-like 

domain composed by two laminin G (LamG) involved in the binding of protein S to C4b-binding 

protein (residues 284 to 676 in brown).  

   1.2.5 TAM receptors identification  
 

The name of the TAM receptors is derived from the first letter of its three constituents: Tyro3, 

Axl and Mer). They were discovered over the two last decades [25] as transmembrane RTKs 

and revealed incredible insights into the biology of many diseases.  

The cloning of full length Tyro3 was performed and named developmental tyrosine kinase 

(Dkt) with regard to its expression during the differentiation of murine stem cells [26]. 

Shortly after, 5 groups reported the cloning of Tyro3 and referred to it as brain tyrosine kinase 

(Brt) [27], Sea related tyrosine kinase (Sky) [28] and receptor sectatoris (Rse) [29]. It was also 

named TIF for tyrosine kinase with immunoglobulin and fibronectin type III domains [30] for 

its expression in ovaries and testes, and finally Tyro3 due to its expression in mammalian 

central nervous system [31]. In human, it is located on chromosome 15 at q15.1. Its protein 

contains 890 amino acids with sizes from 100 to 140 kDa [32]. Tyro3 is most abundantly 

expressed in the nervous system [31]  and is also found in ovary, testis, breast, lung, kidney, 

osteoclasts [33], retina [34], platelets [13] as well as in a number of hematopoietic cell lines 

including megakaryocytes, monocytes and macrophages cell lines [29]. 

Axl gene was named in reference to the Greek term anexelekto (uncontrolled) due to the 

abnormal cell growth in its presence. It is located on human chromosome 19 at q13.2 and 

encodes a protein of 894 amino acids with a molecular weight of 104 kDa. Axl expression 

was detected in most human cells: fibroblasts, epithelial, mesenchymal, hematopoietic cells 

[35] and platelets [13] suggesting an important cellular function for this receptor. It was also 

named Ufo referring to a not yet defined gene function [36] and lately named adhesion related 

kinase (Ark) based on the presence of domains of neuronal cell adhesion molecules [37].  
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The Mer gene was discovered for the first time as a viral oncogene (v-Ryk). Shortly after, its 

cellular equivalent (c-Eyk) was described in chicken embryonic and spleen tissue [38]. 

Therefore, the human Mer gene (MERTK) whose name is derived from monocytes, epithelial 

and reproductive tissues was cloned. MERTK is located on chromosome 2 at q14.1. It encodes 

a 999 amino acids protein with a predicted molecular weight of approximately 110 kDa, the 

extracellular domain of Mer possesses sites for NH2-linked glycosylation and the mature 

fully glycosylated form of Mer is approximately 205 [39]. It is widely expressed in tissues: 

testes, ovary, prostate, lung, retina and kidney. Mer is also expressed in a spectrum of cell 

lines of hematopoietic, epithelial and mesenchymal origin [40]. 

   1.2.6 TAM receptors structure 
 

In comparison to all other RTKs ectodomains where two structural modules are used 

repeatedly, the three TAM receptors have a different configuration of two plus two 

combinations. The TAM RTKs family shares structural similarities. Indeed, the amino 

terminal regions carry tandem immunoglobulin-related domains necessary for ligand binding. 

Gas6 and PS were described as the only ligands able to bind to and activate the TAM 

receptors [41]. This tandem is followed by tandem of fibronectin type III repeats, which are 

characteristic of adhesion molecules. All three TAM receptors have a single pass 

transmembrane domain carrying a catalytically competent protein tyrosine kinase. In many 

cells, the activation of this tyrosine kinase is coupled to the downstream activation of the 

phosphoinositide 3 kinase (PI3K)/AKT pathway [42]. 
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Fig.3: Structure of Tyro3, Axl and Mer receptor tyrosine kinases. The extracellular domain (N 

terminus) is composed by 2-immunoglobulin-like domains (residues from 1 to 5 in brown) followed by 

2 fibronectin type III domains (residues from 6 to 9 in grey). The transmembrane domain is encoded by 

exon 10 for Tyro3 and Mer receptors and by exon 11 for Axl (in green). The cytosolic C terminus is 

responsible for downstream activation of Tyro3, Axl and Mer by either Gas6 or protein S (residues 11 

to 19 for Tyro3 and Mer, and 12 to 20 for Axl in purple).  

 

1.3 Gas6 and protein S roles 

    1.3.1 Gas6 in hemostasis 
 
Gas6 binds to and activates the TAM RTKs with a highest affinity for Axl followed by Tyro3 

and Mer [43]. This binding leads to further intracellular signaling including activation of 

PI3K and Akt pathways [44, 45] leading to many cellular effects. 
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GLA module [13]. Gas6-/- mice are viable and fertile, and have an apparent normal 

phenotype. They are born at the expected Mendelian frequency. They do not exhibit 

thrombocytopenia or any sign of coagulopathy. Gas6-/- mice do not suffer from spontaneous 

bleeding or thrombosis but interestingly, when challenged with three different thrombosis 

models (ligation of the abdominal vena cava, photochemical denudation of the carotid artery 

to induce platelet and fibrin rich thrombus and intravenous injection of collagen and 

epinephrine to trigger platelet dependent thromboembolism), they appeared to be protected 

against venous and arterial thrombosis [13]. As platelets play a key role in venous and arterial 

thrombosis and express Gas6 and its receptors (TAM RTKS), their functions were then 

investigated in Gas6-/- mice. In contrast to WT (Gas6+/+) platelets, Gas6-/- platelets fail to form 

tight and irreversible plugs in response to different stimuli (adenosine diphosphate, ADP: < 

10 µM, collagen: 2 µg/ml or thromboxane A2, TXA2, analogue U46619: 10 µM). Because 

ADP secretion from platelet dense granules is essential for the formation of stable aggregates, 

significantly impaired Gas6-/- platelet secretion was reported after stimulation with various 

agonists suggesting that the protection against thrombosis could be partly due to reduced 

ADP release from Gas6-/- platelets. Moreover, the altered phenotype of Gas6-/- platelets is 

completely restored by treatment with recombinant Gas6. According to a study of Angelillo-

Scherrer et al.[46], The loss of any one of the TAM in mice causes rebleeding in a tail 

clipping model and protects mice against thrombosis. Even more, two thrombosis models 

dependent on coagulation and platelet activation or only on platelet (ligation of the inferior 

vena cava and intravenous injection of tissue thromboplastin, and intrajugular injection of 

collagen and epinephrine, respectively) revealed the protection of Axl-/-, Tyro3-/- and Mer-/- 

mice from thrombosis in vivo.  

It is known that the αIIbβ3 integrin plays a critical role in platelet aggregation. In the initial 

phase, activation of platelets by ADP, TXA2 and thrombin leads to “inside-out” signaling via 

αIIbβ3, which is critical for the formation of an irreversible platelet plugs [47]. Interestingly, 

in vitro data revealed that Gas6-/-,  Axl-/-, Tyro3-/- and Mer-/- platelets adhere and spread out less 

efficiently in fibrinogen/collagen coated surfaces and disaggregate more easily suggesting a 
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defect in “outside-in” signaling via αIIbβ3 [46, 48]. Taking into account that Gas6 stimulates 

tyrosine phosphorylation of β3 integrin, it was suggested that resistance of Axl-/-, Tyro3-/- and 

Mer-/- mice to thrombosis challenges could be at least in part attributed to a defect of the 

“outside-in” signaling of platelet via αIIbβ3 and thereby the lack of the second wave of 

platelet aggregation and clot retraction [46].  

In human, the major source of Gas6 is plasma with a plasma concentration of 20 µg/L versus 

only a concentration 1 µg/L for platelet extracts. Plasma-derived Gas6 contributes to the 

stabilization of platelet aggregate formation probably by maintaining αIIbβ3 in an active state. 

Interestingly, platelet activation using both recombinant human Gas6 (rhGas6) and ADP 

revealed a synergy of Gas6 and ADP in Akt phosphorylation. Consequently, Gas6 and its 

receptors cooperate in the activation of PI3K pathway to achieve persistent activation of 

αIIbβ3 and thrombus stabilization [48].  

The strong antithrombotic phenotype of Gas6-/- mice could be due to the platelet aggregation 

defect but taking into account that Gas6 is also produced by endothelium (endothelial cells, 

ECs and vascular smooth cells, VSMCs) [7], Tijwa et al. [49] showed that Gas6 is also acting 

in endothelium by promoting P-selectin, a ligand for the platelet receptor PSLG-1, to 

reinforce the thrombus adhesion to the vascular wall. To determine the respective 

contribution of nonhematopoietic (vascular cells) and hematopoietic (platelet, leucocytes) 

Gas6, Robins et al. [50] used a BM transplantation strategy to generate mice with selective 

ablation of Gas6 in the nonhematopoietic or hematopoietic compartments. Smaller thrombus 

size were found in mice lacking Gas6 in one of these two compartments demonstrating that 

Gas6 from both hematopoietic and nonhematopoietic cells have equal contribution to venous 

thrombus formation. Furthermore, stimulation of Gas6+/+ ECs by thrombin revealed higher 

expression levels of active tissue factor (TF), a protein involved in the initiation of 

coagulation. Interestingly, TF expression was blunted in Gas6-/- ECs. Because Axl is the 

major Gas6 receptor expressed by ECs [49], the Gas6/Axl pathway by which Gas6 promotes 

TF expression in ECs was then explored. Using siRNA mediated knockdown approach, 

Laurence et al. [51] demonstrated that Gas6 induces Axl and c-Src localization in lipid 
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raft/caveolin-1–enriched microdomains that is required for Akt and ERK1/2 phosphorylation. 

Thus, the activation of the c-Src/Akt/ERK1/2 signaling pathway by Gas6/Axl leads to higher 

expression of TF in ECs. 

Several studies demonstrated that platelet-derived microparticles (PMPs) are produced upon 

platelet activation and have a high procoagulant effect. Indeed, PMPs membranes retain all 

properties of the activated platelet membrane and are able to bind components of 

procoagulant complexes such as FVa and FVIII. In this regards, Sinauridze et al. [52] 

reported that the addition of PMPs to platelet free recalcified plasma accelerates initiation of 

thrombin generation. It was also found that the PMPs surface was approximately 50 to 100 

fold more procoagulant than the surface of activated platelets.  

Notwithstanding their possible harmful properties, little is still known about PMPs clearance 

and effects in endothelium. Recently, Happonen et al. [53] showed that PMPs are ingested in 

primary human ECs in a Gas6 dependent manner. Indeed, purified human platelets were 

stimulated with a combination of thrombin and collagen to release PMPs, which exposed 

PtdSer, was phagocytized by primary human ECs in a Gas6/Axl dependent manner. 

Moreover, erythrocyte-derived MPs were found to be ingested in the same manner (see 

Chapter VII: Appendices). 

The characterization of Gas6-/- mice by Angelillo-Scherrer et al. [13] pointed to the absence 

of spontaneous bleeding or thrombosis in these mice suggesting that Gas6 could constitute an 

attractive target to explore in human VTE disease. Indeed, a study of Blostein et al. [54] 

revealed higher Gas6 levels in a cohort of 279 patients with VTE as compare to healthy 

volunteers patients demonstrating an association between VTE and Gas6 levels expression 

and consistent with in vivo murine finding. In addition, analysis of single nucleotide 

polymorphisms (SNPs) from a cohort of 188 stroke patients indicates statistically significant 

differences in the Gas6 allelic distributions as compared to 110 healthy patients [55]. 
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Fig.4: Six independent mechanisms of the role of Gas6 in thrombus formation and stabilization. 1. 

Upon a prothrombotic stimulus, activated platelet release Gas6 from their α granules. 2-3. Gas6 

binding to TAM receptors perpetuates platelet aggregation and supports αIIbβ3 outside in signaling 

through paracrine amplification and PI3K/Akt pathway. Gas6 also exerts a synergistic effect with ADP 

on outside-in platelet signaling promoting further activation of αIIbβ3 that binds fibrinogen and leads 

to irreversible platelet aggregates. 4. Gas6 induces the expression of P-Selectin at the surface of 

endothelial cells and its binding to PSLG-1. 5. Activated platelet releases platelet microparticles, 

known to be 50 to 100 fold more procoagulant than the surface of activated platelet, that are 

ingested by endothelial cells in Gas6/Axl dependent manner. 6. Endothelial cells stimulation by 

thrombin leads to tissue factor (TF) release via Gas6/Axl/c-Src/Akt signaling and the initiation of the 

coagulation pathway resulting in formation of tight fibrin network. 
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1.3.1.2 Vasculature 

The involvement of Gas6 in the vasculature was first described by Nakano et al. [11] in 1995 

when they demonstrated the presence of Gas6 in rat VSMCs conditioned medium. Thus, a 

role for Gas6 in regulating VSMCs proliferation was addressed. Through their study, the 

calcium-dependent role of Gas6 suggested a potential dependent Gas6 response via its 

interaction with RTKs. Three years later, using a rat carotid balloon injury model, a well 

known model to study intracellular signal transduction through tyrosine kinase in VSMCs 

proliferation and migration, Melaragno et al. [56] found a time dependent Axl expression 

localized mainly in neointima after rat carotid injury. In addition, Gas6 was upregulated 

during this challenge indicating an increased activity of Gas6/Axl signaling. Furthermore, a 

great increase in Axl mRNA and protein levels were found in cultured VSMCs specifically 

treated with thrombin or angiotensin II (angII), a well characterized vasoactive agonist that 

binds to G protein coupled receptors. Few years later, the same group demonstrated that Axl 

phosphorylation upon Gas6 binding and PI3/Akt pathway activation in VSMCs leads to 

decreased apoptosis confirming the prominent role of Gas6/Axl signaling in vasculature 

maintenance [57]. Apoptosis is one of the important processes regulating VSMCs 

calcification but statins (lipid lowering drugs) inhibitory effect in vascular calcification is 

controversial. Thus clarification of the mechanism of vascular calcification via statin was 

awaited. Taking advantage of Gas6/Axl signaling new role in the vasculature, Son et al. [58] 

explored the effect of Gas6/Axl in VSMCs survival and proved that the restoration of 

Gas6/Axl signaling inhibits apoptosis in cultured human aortic smooth muscle cells and 

protected them from calcification. 

Intima media thickening (IMT) is the measurement of the thickness of the two layers of the 

blood vessel walls: tunica intima and tunica media. It is a well-described procedure in 

vascular remodeling assessment after blood flow changes. ECs, VSMCs and inflammatory 

cells coordinate in their response during IMT. Due to its promising role in vasculature, 

Gas6/Axl signaling involvement in vascular remodeling initiated by flow changes was further 

assessed by Korshunov et al. [59]. They demonstrated that the lack of Axl leads to 30% 
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decrease in carotid intima, media and adventitia thickening. Moreover, in response to flow 

reduction, Axl-/- vessels display a high number of apoptotic cells as compared to Axl+/+. The 

observed defects in Axl-/- vessels remodeling was Gas6/Axl/p-Akt dependent and further 

confirms the implication of Gas6/Axl pathway in vasculature.  

The role of Gas6 in ECs survival and apoptosis was also studied by Healy et al. [60]. Indeed, 

Axl was found phosphorylated in pulmonary ECs and its phosphorylation was enhanced by 

the addition of exogenous Gas6. Moreover, Gas6 or Axl supplementation to growing 

pulmonary ECs revealed up to 54% less apoptotic cells demonstrating that Gas6/Axl 

signaling plays an important role in ECs survival.  

Acidification (hypocarbia) condition protects ECs from apoptosis with a not well-defined 

mechanism. In this purpose, D’Acangelo et al. [61] evaluated survival and apoptosis of ECs 

in acidification setting. The study revealed that by activating Axl, Gas6 plays a key role in the 

acidification protective effect from apoptosis.  

Endothelial progenitor cells (EPCs) play a key role in endothelium repair and vascular 

regeneration. Indeed, circulating EPCs accumulate at the site of tissue injury and contribute to 

maintain the integrity of the endothelial monolayer by replacing denuded areas of the artery 

[62]. In this regard, Zuo et al. [63] explored the influence of Gas6 in EPCs role in 

endothelium repair. They found that Gas6 treatment significantly increases EPCs proliferation 

and migration in a dose-dependent manner. Furthermore, the addition of a PI3K/Akt pathway 

inhibitor completely suppressed Gas6-related migration and proliferation effect on EPCs. 

Thus, Gas6 via PI3K/Akt signaling participates to EPCs vascular repair after injury.  

Angiogenesis, the process of creating new blood vessels from pre-existing blood vessels, is 

induced by several growth factors such as vascular endothelial growth factor (VEGF), 

fibroblast growth factor (FGF), platelet-derived growth factor (PDGF) and insulin-like 

growth factor (IGF). Taking into account the relevance of the role of Gas6 in ECs 

proliferation and migration, Kim et al. [64] published a study where they investigated the 

probable implication of Gas6 neovascularization in the retina. Using human retinal 

microvascular endothelial cells (HRMECs), they demonstrated that Gas6 enhances 
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proliferation, migration and tube formation of HRMECs. Furthermore, two more 

angiogenesis models were assayed. In one hand, rat aortas explants sprouting vessels treated 

with rhGas6 were longer as compared to non-treated controls. In the other hand, 

neovascularization was examined in zebrafish and microinjected zebrafish embryos showed 

higher sub-intestinal vessels sprouting. In these three models, the extracellular signal-related 

kinase ERK1/2 pathway was involved highlighting a new Gas6/ERK1/2 signaling in 

vasculature. 

The finding that ECs and VSMCs express Axl and secrete Gas6 suggests the possibility for an 

autocrine paracrine growth program involving both VSMCs and ECs.  

Besides VSMCs and ECs, pericytes play a key role in local and systemic hemostasis and 

might undergo osteogenic differentiation to form mineralized nodules [65]. The mechanism 

that triggers this osteogenic differentiation of pericytes is not yet fully understood. To get 

further insights into this mechanism, Collet et al. [66] investigated the role of Axl in this 

process. Indeed, they demonstrated that pericytes express Gas6 and Axl and that Axl is 

greatly upregulated and phosphorylated along the osteogenic differentiation with the highest 

expression pic corresponding to cultured pericytes at confluency. Contradictory, Axl 

expression was highly decreased in pericytes forming mineralized nodules establishing a role 

of Gas6/Axl signaling in osteogenic differentiation of pericytes and vascular calcification.  

It is well described that oxidative stress and reactive oxygen species (ROS) play a major role 

in remodeling vessels after injury. RTKs like FGF, PDGF or EGF are tyrosine 

phosphorylated by H2O2. Accordingly, Konishi et al. [67] reported that besides its activation 

by Gas6, Axl was also phosphorylated by H2O2 in VSMCs during carotid and femoral rat 

arteries injury. Furthermore, the addition of Axl-Fc (extracellular domain of Axl enabling 

neutralization of Gas6/Axl signaling) or warfarin (vitamin K antagonist that abolishes γ-

carboxylation of Gas6) inhibits Axl phosphorylation demonstrating that H2O2 phosphorylation 

of Axl was Gas6-dependent. Finally, an increased Axl phosphorylation within injured arteries 

was found with reduced neointima formation in Axl-/- rat vessels after injury emphasizing the 

important role of Gas6/Axl in vasculature remodeling. To further clarify the mechanism by 
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which ROS enhance Gas6/Axl signaling in VSMCs, Cavet et al. [68] identified glutathiolated 

non muscle myosin heavy chain (MHC)-IIB, a well described protein in directed cells 

migration [69] and whose expression is upregulated in balloon injured carotid vessels [70], as 

a potential interacting protein which enhances Axl phosphorylation in response to Gas6 or 

ROS stimulation providing a direct link between Gas6/Axl signaling and cytoskeletal 

molecular motors, MHC-IIB. 

Since VSMCs are one of the major cell types to consider when investigating aging and 

senescence in blood vessels and that Gas6 plays a major role in vascular remodeling, the 

implication of Gas6/Axl in vascular senescence process was studied by Jin et al. [71]. Using 

two cellular senescence models (replicative senescence by passaging VSMCs ten times or 

induced VSMCs senescence by treating the cells with AngII for 48h), they found that Gas6 

stimulated cells exhibit a younger phenotype as compare to control cells. In addition, VSMCs 

treatment with either Axl specific inhibitor, FoxO3a (known as apoptosis trigger) small 

interfering RNA or PI3K inhibitor confirmed that Gas6 and Axl are involved in VSMCs 

senescence process via PI3K/Akt/FoxO signaling. 

     1.3.2 Gas6 in erythropoiesis 
 

Erythropoiesis, from the Greek words 'erythro' meaning "red" and 'poiesis' meaning "to 

make", is the process of red blood cells (RBC) production. The constant renewal of RBC is 

crucial to ensure proper tissue oxygenation. Erythropoietin (EPO) was identified as a key 

factor in the regulation of the erythropoietic lineage [72]. Indeed, EPO binds to its receptor 

(EPOR) in the erythroid precursors inducing downstream signaling to promote differentiation, 

proliferation and anti-apoptotic processes. Across the mammalian development, the major 

EPO production sites shift from the liver to the kidneys along with the transition of 

hematopoietic tissues. In the fetal liver, hepatocytes produce EPO to support fetal liver 

erythropoiesis via paracrine signaling. Around birth, the erythropoiesis shift to the BM and 

renal EPO producing cells begin to secrete EPO [73]. Blood loss or reduced oxygen levels 

enhance renal and hepatic EPO secretion triggering erythropoiesis and normalizing the tissue 
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oxygen supply [74]. EPO also plays an important role in anemia resulting from insufficient 

production, excessive destruction or loss of RBC by inducing differentiation of hematopoietic 

stem cells to erythroblasts, which subsequently mature to RBC.  

In this context, recombinant EPO (rEPO) is commonly used to treat anemia associated with 

several disease: myelodysplastic syndromes [75], cancer [76], chronic renal failure [77], 

chronic kidney diseases [78], chronic hepatitis C [79] and rheumatoid arthritis [80]. However, 

in many individuals, EPO treatment is not effective and patients remain hyporesponsive. The 

mechanism behind this refractory effect to rEPO treatment is not yet fully understood. 

Because Gas6 and TAM receptors are expressed in hematopoietic cells and BM stromal cells, 

Angelillo-Scherrer et al. [81] investigated whether Gas6 could influence erythropoiesis. 

Indeed by studying the liver of Gas6-/- embryos (the main erythropoietic site during 

embryogenesis), it was found that Gas6-/- embryo liver is reduced in size and contains less 

erythroblasts as compare to Gas6+/+ embryos. Moreover, single cell suspension from E13.5 

Gas6-/- fetal liver displays only half burst forming unit erythroid progenitors (BFU-Es) and 

colony forming unit erythroid progenitors (CFU-Es) as compared to Gas6+/+. 

Supplementation with rGas6 restores the formation of BFU-Es and CFU-Es to the same level 

as in Gas6+/+ confirming that Gas6 regulates erythroid precursors formation. The effect of the 

lack of Gas6 in adult mice erythropoiesis was also studied. Interestingly, Gas6-/- adult mice 

had normal hematocrit level and RBC counts without any sign of dysplasia. However, fewer 

reticulocytes were found in Gas6-/- mice essentially due to reduced erythroid progenitors 

reserve in BM. Further investigations of the reason behind the hematocrit levels preservation 

in Gas6-/- was elucidated by the RBC longer lifespan and impairment of their phagocytosis by 

macrophages. In addition, spleens from Gas6-/- weighed 20% less than Gas6+/+ and spleen and 

BM cells flow cytometry revealed less erythroblasts as compare to Gas6+/+.  

To shed light whether the absence of Gas6 could impair response to anemia, Gas6-/- and 

Gas6+/+ mice were challenged with two acute anemia models. In the first model, two 

intraperitonial injections of phenylhydrazine (PHZ) were performed to trigger rapid 

hemolysis. Consequently, Gas6-/- mice erythropoietic response and recovery from hemolytic 
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anemia was delayed as shown by their low level of hematocrit and RBC count. In the second 

model, anti mouse RBC antibody was used to induce immune hemolytic anemia. As in the 

first model, Gas6-/- mice were not able to achieve a normal hematocrit after the challenge. 

Even more, when treated with a more severe acute anemia challenge (three PHZ injections), 

most of Gas6-/- mice succumbed confirming a protective effect of Gas6 against life 

threatening acute anemia. 

To examine which TAM receptor mediates Gas6 effect on erythropoiesis, erythroblasts were 

screened for TAM expression. Indeed, in resting condition or after EPO stimulation, 

erythroblasts express Axl, Tyro3 and Mer at mRNA and protein levels. Moreover, it was 

found that Axl mediates the major role of Gas6 in erythropoiesis as shown by the more 

dramatic response of Axl-/- to acute anemia in comparison to Gas6-/- mice. 

Cultured Gas6-/- erythroblasts showed improved survival upon EPO stimulation but did not 

achieve Gas6+/+ erythroblasts survival level. Interestingly, addition of rGas6 together with 

EPO enhances Gas6-/- erythroblasts survival response. Thus, alone or by synergizing with 

EPO, Gas6 plays an important role in erythroblasts survival.  

Because erythroblasts adhesion to fibronectin is crucial for their proliferation and expansion, 

Gas6-/- erythroblasts adherence was evaluated. Remarkably, few Gas6-/- erythroblasts are able 

to correctly adhere to fibronectin and addition of rGas6 completely restores this process 

indicating that Gas6 is necessary for erythroblasts adherence and differentiation. To further 

investigate by which mechanism Gas6 acts in erythroblasts adherence and survival process, 

activation of PI3K/Akt and VLA4 (a fibronectin receptor) were assessed using a PI3K 

inhibitor and an antibody directed against anti-VLA4. Interestingly, it has been found that 

Gas6 enhances PI3K and VLA4 activation and that Gas6 synergizes with EPOR to activate 

Akt survival pathway.  

Taking into account that erythroblasts maturate and differentiate within the erythroblastic 

islands (constituted by a central macrophage surrounded by immature erythroblasts) and that 

macrophages secrete erythroid inhibitory factors [82], Angelillo-Scherrer et al. investigated 

whether, in addition to its autocrine effect on erythroblasts, Gas6 could act in a paracrine 
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manner by influencing the release of the erythroid inhibitory factors from macrophages in the 

erythroblastic islands. Indeed, it was found that in the absence of Gas6, high levels of 

erythropoietic inhibitory cytokines are present indicating that Gas6 also regulates 

erythropoiesis via a paracrine effect.  

Considering their new results regarding the autocrine and paracrine effects of Gas6 on 

erythropoiesis, Angelillo-Scherrer et al. [81] examined whether rGas6 treatment could be 

relevant in improving Gas6+/+ mice response in acute anemia setting. Thus, in three different 

anemia models (PHZ induced hemolytic anemia, blood loss induced anemia and EPO 

resistance induced chronic anemia), the therapeutic use of rGas6, like EPO, displays a 

positive effect on erythropoiesis. To get further insights into the role of TAM receptors in 

erythropoiesis, another study from Tang et al. [83] confirmed Axl and Mer expression in all 

stages of developing erythroid cells: erythroid progenitors (R1), proerythroblasts (R2), 

basophilic erythroblasts (R3), polychromatophilic erythroblasts (R4) and orthochromatophilic 

erythroblasts (R5). Interestingly, Axl-/-Mer-/- BM and spleen cells analysis by flow cytometry 

displayed higher R1 and reduced R3/R4 ratios as compare to WT indicating an inhibition of 

the erythropoietic differentiation process. Moreover, Axl-/-Mer-/- mice are not able to correctly 

recover after hemolytic anemia challenge. To investigate the molecular mechanism related to 

the erythropoietic defect in Axl-/-Mer-/- mice, GATA-1 (an important transcription factor in 

erythropoiesis) and EPOR mRNA from BM and spleen R1 progenitors were screened. 

Indeed, GATA-1 and EPOR transcripts are diminished in Axl-/-Mer-/- progenitors underlining 

that Axl and Mer might influence erythropoiesis by regulating the expression of GATA-1 and 

EPOR. 

EPO resistance is a risk factor for cardiovascular diseases, stroke and mortality, which are 

associated with treatment with high dose EPO and inability to achieve correct response to 

anemia. An efficient treatment for anemic patients hyporesponsive to EPO is than awaited. To 

mimic this clinical situation, Gas6-/- and Epo-TAgH mice, both models with refractory 

response to EPO (due to EPO resistance or EPO insufficiency respectively) were co-treated 

with rGas6 and EPO. Strikingly, this preclinical model showed that rGas6 increased the 
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therapeutic activity of EPO. This last finding highlight that the use of rGas6 in association 

with EPO could be beneficial for patients presenting EPO resistance [81]. 

 

  

 
Fig.5: Representation of Gas6 mechanisms in erythropoiesis. 1. Upon EPO stimuli, erythroblasts 

release Gas6 that bind to its TAM receptors on the cell surface. This binding leads to activation of 

PI3K/Akt pathway and downstream signaling for cell proliferation and differentiation. Besides, Gas6 

acts in an autocrine manner by boosting the EPOR stimulation. 2. The binding of Gas6 to TAM 

receptors activates the fibronectin receptor VLA4 and increases erythroblasts adhesion and 

differentiation. 3. Gas6 plays a key role in senescent erythrocyte phagocytosis by macrophages. It 

operates as a bridge between senescent erythrocyte and Gas6 receptors, thus facilitating their 

engulfment. 4. Erythropoietic island formed by a central macrophage surrounded by developing 

erythroid cells: proerythroblasts, erythroblasts, mature erythrocytes. Upon the binding of the TAM 

receptors to their agonist Gas6 in the macrophages surface, PI3K/Akt pathway is activated and 

erythroid inhibitory factors are released, thus leading to cell survival and antiapoptotic effect. 

       1.3.3 Protein S in hemostasis 
 

As mentioned in paragraph 1.2.3, in human, 40% of PS circulates in a free form and the 

remaining 60% form a complex with C4BP. This 40% free PS, either by binding to TAM 
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receptors or exerting direct or indirect anticoagulant functions, have an important role in 

hemostasis. 

1.3.3.1 Thrombosis 

The first clinical observation describing severe recurrent venous thromboembolic (VTE) due 

to PS deficiency was made in 1984. Indeed, three family members receiving oral 

anticoagulant therapy and displaying normal ranges of all other proteins known to play a role 

in VTE diseases (protein C, antithrombin, fibrinogen and plasminogen), exhibited a half 

normal PS levels due to inherited PROS1 deficiency [84]. The prevalence of PS deficiency is 

estimated from 0.16% to 0.21% and augments to 2% in patients with VTE [85, 86]. 

Interestingly, 22% of Japanese patients suffering from VTE exhibit PROS1 mutations [87]. 

The PSTokushima (K155E), a polymorphism of PROS1, exists in about 2% of the Japanese 

population [88]. In addition, 36% of Chinese patients with VTE have diminished PS activity 

levels. Factors that could influence this discrepancy are racial differences and the variance of 

the diagnostic tests regarding the detection of PS deficiency. Interestingly, a recent study, the 

multiple environmental and genetic assessment of risk factor for venous thrombosis (MEGA) 

highlighted that PS deficiency might be less common than previously described. In addition, 

it was found that PS deficiency (free PS < 53 U/dL and total PS < 68 U/dL) was not 

associated with VTE. Nonetheless, when lower cut-off values were applied, subjects at risk of 

VTE could be identified with free PS levels <33 U/dL. Paradoxically, very low levels of total 

PS were not associated with VTE. Furthermore, PROS1 gene was sequenced in 48 subjects 

with decreased free PS levels (<46 U/dL) and copy number variations were investigated in 

2718 subjects with free or total PS < 2.5th percentile. Strikingly, mutations were observed in 

5 patients and 5 controls supporting the observation that inherited PS deficiency is rare in the 

general population. Thus, PS measurement and PROS1 sequencing should carefully 

interpreted in unselected patients with VTE [89].  

PS deficiency might also be acquired. Thus, Vitamin K antagonist therapy, oral 
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contraceptives, pregnancy, liver diseases, nephritic syndrome, disseminated intravascular 

coagulation (DIC) and chronic infections (like HIV) might provoke PS deficiency [90]. 

Acquired PS deficiency was also described as a rare complication of varicella zoster infection 

with development of  crossreacting autoantibodies to the virus and PS [91]. 

In clinic, patients with hereditary PS deficiency mostly suffer from VTE. Ordinarily, the 

thromboembolic events could be caused by transient risk factors for VTE like surgery, 

trauma, immobilization, air travel, pregnancy or systemic hormonal contraception but 

strikingly, half of the thromboembolic events in PS deficient patients are unprovoked and 

these patients become symptomatic around 55 years old. Interestingly, a study from Brouwer 

et al. [92] revealed a nine-fold higher risk for VTE in patients with PS deficiency as 

compared to non-deficient patients.  An additional report from Lejfering et al. [93] revealed  

that in thrombophilic families, free PS level could identify young subjects at risk for venous 

thrombosis, although the cut-off level lies far below the normal range in healthy volunteers. 

Up to now, the raison behind why some PS deficient patients develop VTE while others 

remain unaffected is not completely explained [94]. Homozygous or compound heterozygous 

PROS1 deficiencies are extremely rare with presentation soon after birth with extensive DIC 

and skin necrosis named purpura fulminans (PF) and death occurs within hours if untreated. 

(PS deficiency induced PF will be discussed in paragraph 1.3.4). Up to date, three PS 

deficiency types are known (Table 1).  

Type of PS deficiency Characteristics 

Type I Decreased activated protein C activity, decreased total and free PS 

Type II Decreased activated protein C activity, normal total and free PS 

Type III Decreased activated protein C activity, normal total PS and decreased 

free PS 

 
Table 1: Types of protein S (PS) deficiencies. 
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A murine model recapitulating phenotypes of PS deficiency in human was described by Saller 

et al. [95]. Thus, heterozygous mice (Pros1+/-) did not suffer from spontaneous thrombosis 

and displayed reduced PS plasma levels. They also exhibit a thrombotic phenotype in vivo 

when challenged in a TF-induced thromboembolism model. As in human, homozygous mice 

(Pros1-/-) died in utero from intracranial hemorrhages and PF. One year later, another study 

from Burstyn et al. [96] confirmed embryonic lethality of Pros1-/- mice with macroscopic 

blood clots and fulminant hemorrhages. In addition, plasma from Pros1+/– heterozygous mice 

exhibited accelerated thrombin generation independent of activated protein C (APC). 

       1.3.3.1.1 Protein S activated protein C cofactor activity 

APC plays a central role in reducing thrombin generation resulting from the sequential and 

rapid blood coagulation cascade steps: initiation, propagation, termination and degradation. 

APC has the ability to degrade the activated cofactors of the coagulation cascade: factor Va 

(FVa) and factor VIIIa (FVIIIa) [97] (Fig.5). The PS APC cofactor activity was described for 

the first time by Walker in 1980 [98]. He found that the rapidity of the inactivation of FVa by 

APC was increased approximately ten fold when he added plasma while an equal volume of 

APC-depleted plasma had no effect in FVa activity. Consequently, he assumed that in plasma, 

PS could be a factor that might alter the activity of APC. Few years later, Rising et al. [97] 

described that the presence of PS with APC accelerates twenty fold the FVa inactivation 

specifically by enhancing the Arg306 cleavage.  

The ability of PS to act as APC cofactor was strictly attributed to free circulating form of PS 

until Maurissen et al. [99] demonstrated that PS bound to C4BP could also efficiently reduce 

six to eight fold  FVa inactivation as compared with free PS. 

The APC cofactor activity of PS was further investigated by Shen et al. [100]. Strikingly, in a 

purified system, they found that in the presence of both FV and PS, APC enhances the 

inhibition of FVIIIa activity. Moreover, APC alone or together with FV was ineffective while 

the combination of FV, PS and APC was more efficient in FVIIIa proteolytic inactivation.  
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As mentioned before, PS is a multidomain protein with GLA, TSR, EGF and LamG domain. 

It was demonstrated that APC interacts with PS through its EGF and GLA domains [101]. 

                     

Fig.6: Scheme illustrating protein S (PS) dependent anticoagulant pathways of blood coagulation. 

Exposed tissue factor (TF) binds to activated factor VII (VIIa) and generate TF/VIIa transient complex 

known as the physiological initiator of blood coagulation (1). Subsequently, TF/VIIa activates factor X 

(X), and activated factor X (Xa) binds to its cofactor activated factor V (Va) on negatively charged 

phospholipid surfaces to generate the prothrombinase complex. Initial generated thrombin will activate 

cofactors V and VIII and further triggers factor XI (XI) activation from the propagation phase (2). 

Activated factor IX (IXa) and its cofactor activated factor VIII (VIIIa) accumulate on negatively 

charged phospholipids and activate additional factor X (X) to form sufficient thrombin and produce 

insoluble fibrin polymers. PS exerts 2 feedback mechanisms to tightly regulate thrombin generation: 

primarily, tissue factor pathway inhibitor (TFPI)/PS pathway inactivates FXa and subsequently shuts 

down TF/VIIa (3). Secondly, thrombomodulin (TM)-bound thrombin activates protein C, after which 

the activated protein C (APC)/PS pathway inactivates Va and VIIIa (4). Both PS dependent pathways 

limit thrombin generation during the initiation and propagation phases of coagulation. Adapted from 

Hackeng et al. [102]. 

1.3.3.1.2 Protein S tissue factor pathway inhibitor cofactor activity 
 

TFPI is a Kunitz-type serine protease inhibitor, mainly synthetized by ECs, which abolish the 

formation of the complex TF/FVIIa through two steps feedback mechanism. The first one is 

the formation of FXa/TFPI complex and the second one is via the interaction of FXa/TFPI 
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with TF/FVIIa leading to the formation of an inactive quaternary complex and resulting in 

termination of TF/FVIIa catalyzed FX activation (fig6). 

In 2006, an additional anticoagulant cofactor role was attributed to PS. Indeed, Hackeng et al. 

made two interesting observations. In one hand, PS does not inhibit thrombin generation in 

TFPI deficient plasma and in the other hand; the inhibitory effect of TFPI in thrombin 

generation was reduced in the absence of PS. They then conclude that PS might act as a 

cofactor of TFPI in the inhibition of TF/FVIIa catalyzed FX activation. Furthermore, it has 

been found that the stimulatory effect of PS on FXa inhibition by TFPI is caused by a ten fold 

reduction of the dissociation constant (Ki) of the FXa/TFPI complex, which diminished from 

4.4 nM in the absence of PS to 0.5 nM in the presence of PS. To further investigate how PS 

interact with TFPI, a truncated TFPI (a form of TFPI that lacks the Kunitz-3 domain and the 

C terminus) was used and in this setting where PS failed to inhibit FXa. Thus, it was 

concluded that PS directly interacts with the kunitz 3 (K3) domain of full length TFPI [103]. 

Few years later, Ndonwi et al. [104] confirmed the interaction of PS specifically with K3 

domain of TFPI. 

The co-localization and dynamic interaction between PS and TFPI was further investigated in 

clinic. Thus, the effect of PS type I deficiency in TFPI plasmatic levels was evaluated by 

Castoldi et al. in a patient’s cohort [105]. Indeed, full-length TFPI levels were lower in PS 

type I deficient individuals than in controls. Among these PS deficient individuals with 

thrombosis and under oral anticoagulant treatments, not only decreased total PS levels were 

found but also lower full-length TFPI levels. In addition, oral contraceptive users had reduced 

PS and full-length TFPI levels than non-users. Furthermore, plasma from PS deficient 

individuals displayed three to five folds more thrombin generation than control plasma after 

TF stimuli. Interestingly, the difference was only partially corrected by normalization of the 

PS level, full correction was only archived when TFPI levels were normalized. Additionally, 

it was found that free PS and full length TFPI form a complex in plasma. The conclusion of 
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this interesting study is that full length TFPI binds to PS in plasma and consequently is 

reduced in genetic and acquired PS deficiency and that probably TFPI deficiency could 

contributes to the hypercoagulable state associated with PS deficiency. 

1.3.3.1.3 Protein S direct anticoagulant activity 
 

The first evidence that PS could exhibit direct anticoagulant functions was established by 

Mitchell et al. in 1988 [106]. They developed a monoclonal antibody to PS and used it for PS 

purification. This purified PS, although identical to the conventionally purified protein as 

judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when 

measured using a FXa recalcification time method. 

Another investigation from Heeb et al. [107] regarding PS direct anticoagulant action 

revealed that at 33 nM, PS inhibited 50% of FXa activity in an independent manner from 

phospholipid. This inhibitory effect was 1.6 times higher with the addition of Ca+ ions. 

Besides, the inhibition of prothrombinase activity by PS was 2.3 fold higher in the presence 

of FVa, with 50% inhibition when PS was added at 8 nM, thus demonstrating that PS, 

independently of APC, involves direct binding to FXa and FVa and direct inhibition of FXa.  

It was also reported that PS direct inhibitory effect on prothrombinase complex on endothelial 

and platelet surfaces could be influenced by either PS binding with C4BP or thrombin 

cleavage of PS [108]. 

The diversity of PS purification processes might have an impact on PS anticoagulant activity. 

In this regard, Seré et al. studied the association between the APC independent activity of PS 

and its phospholipid binding properties to clarify the variation in APC independent 

anticoagulant activity between different PS preparations. They found that 5% of total PS form 

multimers with hundred fold higher APC independent anticoagulant activity than the rest of 

PS. Furthermore, It was shown that the capacity of PS to inhibit prothrombin activation 

correlated with the content of multimeric PS. As this multimeric PS could not be identified in 

normal human plasma, it was suggested that this form of PS plays a key role in the APC 
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independent anticoagulant activity of PS. However, another study from Heeb et al. [109] 

showed that PS still has direct anticoagulant activity also in PS monomeric form. Even 

challenging because of their low concentration and association with the high concentration of 

other proteins, PS multimers were found in human plasma with comparable PS direct 

anticoagulant capacity. 

The same group reported later that PS contains Zn2+ that is essential for PS direct 

anticoagulant activity  but is lost during certain purification procedures. For example, 

immunoaffinity purified PS contains 1.4 ± 0.6 Zn2+/mol when MonoQ purified and 

commercial PS contains 0.15±0.15 Zn2+/mol. Indeed, by isolating PS excluding ion chelators 

from the purification steps, they obtained Zn2+ containing PS that have about ten fold higher 

direct prothrombinase activity than the conventionally purified PS, and binds to FXa with 16 

fold greater affinity. Moreover, it was revealed that the content of Zn2+ correlated positively 

with PS direct anticoagulant function in prothrombinase and clotting assays. Thus, Zn2+ is 

required for PS direct anticoagulant and this may explain the discrepancy regarding the 

validity of PS direct anticoagulant effect [110]. 

Platelets contain about 2.5% of all the PS content that is released upon platelets activation. 

Stavenuiter et al. [111] showed that platelets derived PS have higher direct anticoagulant 

effect than plasmatic PS containing Zn2+, and much greater than Zn2+ deficient PS. Thus, 

platelets derived PS abolish both prothrombinase and extrinsic FXase activities. Furthermore, 

neutralizing antibodies against APC and TFPI have no effect on the PS direct anticoagulant 

effect on platelets highlighting that platelets derived PS may be essential to counterbalance 

procoagulant activities on platelets. 

       1.3.3.2 Vasculature 

 
The first report establishing that PS have a potent mitogen effect was published by Gasic et 

al. in 1992 [112]. They observed that DNA synthesis was four fold higher in cultured rat 
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aortic SMCs treated with PS (10-50nM). This PS-related mitogenic effect was different for 

the free form of PS and the PS in complex with C4BP. Interestingly, PS mitogenic effect was 

direct without the induction of any transcription factor. Another study from Benzakour et al. 

[113] confirmed that PS was able to support  human VSMCs growth and division. Strikingly, 

this investigation reported the presence of specific binding sites for PS on the surface of 

human VSMCs. This binding was found to be saturable and reversible.  

As described before in paragraph 1.3.3.1, Pros1-/- mice died in utero from DIC and PF. To 

investigate whether these clinical manifestations are due to the extensive thrombosis (caused 

by the lack of PS related anticoagulant activity) or secondary to lack of PS activity in 

endothelium, Burstyn et al. [96] investigated Pros1-/- embryos at day 13.5 post coitum (E13.5) 

for vessels development abnormalities and functions. Indeed, immunostaining with antibody 

against α-smooth muscle actin (α-SMA), a VSMCs marker, revealed reduced and dispersed 

staining in Pros1-/- embryos vessel walls. Co-immunostaining with an anti-vascular 

endothelial cadherin (VE-cadherin) antibody revealed reduced and fused expression of these 

markers in Pros1-/- embryos as compared to controls. Moreover, E15.5 Pros1-/- embryos spinal 

cord microvasculature staining with ECs adhesion protein 1 (PECAM-1) and fibrin, the major 

constituent of blood clots, indicated a considerable reduction in PECAM-1 signal in poorly 

formed microvessels associated with intravascular thrombosis. Defects in vessel development 

were also observed in Pros1-/- embryo’s yolk sacs and brain. Furthermore, the vascular 

networks hierarchy and morphology was 40% reduced in Pros1-/- embryo’s vasculature.  

Additionally, adult Pros1+/– vessels were investigated by vascular dye extravasation. Indeed, 

Evans blue (EB), EB normally bound albumin and is confined to the circulation and does not 

leak into tissue parenchyma, was injected in Pros1+/– tail vein. Contradictory to WT controls, 

Pros1+/– mice displayed externally visible signs of dye extravasation into multiple organs 

including the gastrointestinal tract, ears, nose pad, paws, subcutaneous fascia, and brain. 

Dye extravasation was measured in tissues of mouse lines with Cre driver lines designed to 

eliminate PS expression specifically in two different cell lineages. Pros1fl/fl/Tie2-Cre mice in 

which PS expression is eliminated from ECs and hematopoietic lineage cells and 
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Pros1fl/fl/Sm22-Cre mice, in which PS is eliminated from VSMCs. Interestingly, no significant 

difference in dye extravasation between WT and Pros1fl/fl/Tie2-Cre mice. However increased 

EB permeation into the liver parenchyma was observed in Pros1fl/fl/Sm22. Finally, although 

these results are very compelling, one question remains: is the defective vascular integrity in 

Pros1+/– mice secondary to thrombosis development and perturbed blood flow during 

vascular development or is a direct consequence of the loss of PS dependent TAM receptor 

signaling or both?  

A cytoprotective role was previously attributed to PS by Liu et al. [114]. Indeed, intravenous 

injection of 0.2 to 2 mg/kg PS to mice prior stroke challenge improved the motor neurological 

deficit up to 3.8 fold, reduced infarction and edema volumes up to 62%, improved post 

ischemic cerebral blood flow by 26% and reduced brain fibrin deposition and infiltration with 

neutrophils by 53%. In cultured ischemic neurons, PS displayed a protective effect from 

hypoxia/reoxygenation-induced apoptosis in a time and dose dependent manner. The PS 

cytoprotective function was further confirmed by Zhu et al. [115] using a human brain 

endothelial cells to study the tightness and permeability of blood brain barrier (BBB), they 

established that PS inhibits oxygen/glucose lack induced BBB collapse and reduced the 

permeability of ECs to dextran (hydrophilic polysaccharides most commonly used in vascular 

permeability evaluation). Interestingly, the PS related vasculoprotection effect was mediated 

by Tyro3. Indeed, upon PS/Tyro3 binding, sphingosine 1-phosphate receptor (S1P1) is 

activated inducing Rac1 (signaling GTPase involved in regulating cellular events like cells 

motility) dependent BBB protection. Therefore, PS was suggested as a potent therapy for 

hypoxic BBB damage induced neurovascular dysfunction.  

Taking advantage from the reports emphasizing the new role of PS is vasculature, Fraineau et 

al. [116] tested whether PS could be involved in angiogenesis. Therefore, it was found that PS 

at 10 µg/mL suppressed the effects of proangiogenic growth factors in capillary like structures 

formation by ECs in Matrigel. This PS inhibitory effect was comparable with the one of the 

well-known angiogenesis inhibitor: endostatin. Since the vascular endothelial growth factor A 

(VEGF-A) is a powerful mitogen for ECs, its effect was tested in the presence of 10 µg/mL of 
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PS. Thus, it was demonstrated that PS significantly decreased VEGF-A induced mitogenesis 

but did not abolish it. The activation of the MAPK-Erk1/2 and Akt signaling is an 

indispensable step in mediating the mitogenic function of VEGF-A on ECs. Therefore, ECs 

treatment with PS before VEGF-A stimulation caused a marked decrease of VEGF-A induced 

Erk1/2 and Akt activation. To further examine the PS mechanistic pathway in angiogenesis, a 

TAM receptors gene silencing approach was used. Interestingly, it was shown that the 

inhibitory effect of PS on VEGF-A mitogenic function was mediated by Mer. Also, PS 

dephosphorylates vascular endothelial growth factor R2 (VEGR-2) on Tyr996, which is 

sensitive to the tyrosine phosphatase SHP2. Consequently, a PS/Mer/SHP2 axis, which 

inhibits VEGF-A mediated VEGFR-2, MAPK Erk1/2, and Akt activation was suggested as a 

probable pathway of PS in vasculogenesis. 

     1.3.4 Protein S deficiency-induced purpura fulminans  
 
PF is a hematological emergency characterized by skin necrosis and DIC that could rapidly 

progress to multi organ failure caused by thrombotic occlusion of blood vessels. PF may 

result from severe sepsis, an autoimmune response or benign childhood infections. It may 

also be a consequence of severe heritable deficiency of the natural anticoagulant protein C or 

PS. Early recognition and treatment of PF is essential to reduce mortality and to prevent 

major long-term health sequelae.  

As introduced in paragraph 1.3.3.1, the complete PS deficiency is incompatible with life 

because of PF. Current knowledge on the molecular basis of PF is uncertain although the 

imbalance between pro- and anticoagulant factors is thought to be the etiological factor.  

Fortunately, severe PS deficiency is a rare disease. The first case of severe PROS1 deficiency 

was reported in 1990 by Mahasandana et al. [117]. A Thai girl born after preeclampsia 

developed 10 days after birth PF and necrotic skin lesions on the left thigh, lower abdomen 

and scalp. After whole blood transfusion, antibiotics and heparinisation, clinical improvement 

was reached. The family history was negative for thrombosis and the routine hematological 

examination at 3 months old revealed signs of DIC. Daily cryoprecipitate transfusion resulted 
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in a remarkable response with healing of necrotic skin lesions. An investigation of the 

etiology of these thrombotic disorders was made. Strikingly, both total and free PS were not 

measurable whereas protein C and antithrombin levels were within the normal range. 

Moreover, the analysis of the parents plasma revealed only half of the normal PS levels. The 

combination of oral anticoagulation therapy (warfarin) and transfusion with fresh frozen 

plasma (FFP) was an efficient treatment. Further examination of molecular basis behind this 

severe PS deficiency was performed. Indeed, the whole PROS1 gene sequencing indicated 

two sequence variations: in the first allele, a frame shift leading to a TAA stop codon at 

position 155 and in the second allele, a nonsense mutation in exon 12 leading to a stop codon. 

Consequently, a compound heterozygous PROS1 mutation was addressed [118].  

One year later, another clinical report describing severe PS deficiency induced PF was 

published. After an uncomplicated pregnancy, a neonate developed ecchymotic areas on his 

scalp and lesions on both lower extremities that progressed to PF. The FFP administration 

every 12 hours leads to the regression of the lesions but the clinical signs of thrombosis 

persisted. Anticoagulant therapy was started when the patient was 5 weeks old. Despite the 

improvement, the intravenous administration was unsuccessful because of recurrent catheter 

occlusion. The intaperitoneal administration of the FFP resolved this problematic. Similarly 

to the first case, protein C and antithrombin levels were within the normal range and PS level 

was almost undetectable. Unfortunately, the molecular basis regarding this severe PS 

deficiency was not established because of the unavailability of the father.   

The routine laboratory results in the context of PF are those of the associated DIC: prolonged 

plasma clotting times, thrombocytopenia, reduced plasma fibrinogen concentration, raised 

plasma fibrin degradation products and sometimes, microangiopathic hemolysis. 

Unfortunately, these abnormalities are not specific to PF and could arise in DIC of any cause. 

Additionally, protein C and PS quantification is mandatory since PF is usually associated with 

reduced protein C or PS levels (<5%). However, it is important to take into account that 

healthy neonates show low and highly variable physiological level of PC and PS (15–55 

IU/dl) as compared to older children and adults, which progressively augments during the 



 51 

first six months of life. Unlike testing in adults, the interpretation of PS levels in neonates is 

not complicated since C4BP is present at very low levels at birth. Crucially, PC and PS level 

should be carefully interpreted since the FFP infusion contains exogenous PC and PS.  

The manifestation of DIC is usually associated with significantly diminished plasmatic PC 

and PS because of consumption of these natural anticoagulants. Thus, the demonstration of 

DIC and decreased PC and PS level is not enough to address the underlying cause of PF. The 

evaluation of PC and PS level in the parents of a neonate with PF could be informative since 

the demonstration of a partial reduction in PC or PS in both parents is favorably indicative of 

severe heritable PC or PS deficiency in the affected neonate. Finally, it should be noticed that 

in healthy women postpartum, PS level is physiologically reduced and is not necessarily a 

strict indication of partial heritable PS deficiency [119]. 

   1.3.5 Protein S in pregnancy  

1.3.5.1 Hemostasis in pregnancy 

Pregnancy is associated with various physiological changes, which may affect most of the 

body system. Some of these changes start immediately after conception and continue through 

delivery to the postpartum period in order to accommodate both the maternal and fetal needs. 

The hematologic system adapts by different mechanisms such as an increased use of cofactors 

necessary for fetal hematopoiesis like iron-sulfur, vitamin B12 and folic acid, and preparation 

for bleeding at delivery necessitating enhanced hemostatic function. These changes simplify 

healthy pregnancy but besides, they could increase the risks of developing thrombotic events 

like VTE.  

One of the major hematologic changes during pregnancy is the augmentation of blood and 

plasma volume. Indeed, it increases by 10% to 15% at 6 to 12 weeks of gestation, and 

expands rapidly until 30 to 34 weeks. The total gain is 30% to 50% above that found in 

nonpregnant women. Plasma volume reduces immediately after delivery. At three weeks 

postpartum, it remains elevated by 10% to 15% as compared to nonpregnant women, but it 

generally reaches normal nonpregnant levels at six weeks postpartum [120, 121]. 
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RBC mass augments by 20% to 30% at 8 to 10 weeks of pregnancy and gradually increases 

above nonpregnant levels by the end of pregnancy in women taking iron supplements. 

Moreover, RBC life span is slightly decreased during normal pregnancy [122]. The main 

moderator of the RBC augmentation mass is the upregulation of EPO levels, which stimulates 

RBC production. Indeed, a study from Milman et al. revealed that EPO levels increase by 

50% in normal pregnancies. Interestingly, the resulting increased RBC mass partially 

supports the higher metabolic requirement for oxygen during pregnancy [123] (Table 2). 

Usually, pregnancy is associated with a modest decrease in hemoglobin levels named 

physiological or dilutional anemia of pregnancy. This decrease is due to the high plasma 

volume expansion and low RBC mass increase. The disproportion between the rates at which 

plasma and RBCs are added to the maternal circulation occurs typically at 28 to 36 weeks of 

pregnancy. By the end of the pregnancy, hemoglobin concentration increases due to cessation 

of plasma expansion and continuing increase in hemoglobin mass [124]. Nonetheless, a report 

from Stephansson et al. indicated that the absence of physiologic anemia could be a risk 

factor for stillbirth [125]. In general, physiologic anemia of pregnancy should resolve by six 

weeks postpartum since plasma volume has returned to normal by that time (Table 2). 

Regularly, leukocytosis is observed during pregnancy and is mainly due to increased 

circulating neutrophils. The neutrophil count starts increasing in the second month of 

pregnancy to reach its maximal level in the second or third trimester [126]. The white blood 

cell count decreases to normal range by the sixth day postpartum. In addition, lymphocyte and 

monocyte counts remain generally unchanged in healthy women with normal pregnancies. 

However, the basophil count could decrease and the eosinophil count could slightly increase 

[127] (Table 2). 

In pregnancy, the balance between hemostatic and fibrinolytic systems is disturbed in order to 

prevent excessive hemorrhage during placental separation. Pregnant women displayed a 

relative hypercoagulable state marked by higher levels of coagulation factors, decreased 

fibrinolysis, and amplified platelet activity. In addition, factors like nitric oxide, endothelin, 

estrogen, progesterone and prostacyclin play a prominent role in the vascular bed to ensure 
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the vascular tone modification in order to boost uteroplacental blood flow.  

During uncomplicated pregnancy, platelet counts are usually within the normal range or 

slightly lower as compared to nonpregnant women [128]. Differently, pregnancies with 

gestational thrombocytopenia are characterized by a slight diminution in platelet count 

occurring in the third trimester. It is not associated with maternal, fetal, or neonatal sequelae 

and spontaneously resolves during postpartum [129]. Three to four weeks after delivery, the 

platelet counts is enhanced before returning to baseline [130] (Table 2). 

It should be taking into account that gestational thrombocytopenia is distinct from other 

various thrombocytopenia’s causes. Indeed, severe preeclampsia, hemolysis elevated liver 

function tests and low platelets (HELLP) syndrome, thrombotic thrombocytopenic purpura 

(TTP), immune thrombocytopenia (ITP), antiphospholipid syndrome, and drug-induced 

thrombocytopenia are characterized by more severe thrombocytopenia and/or other 

hematologic disorders.  

Pregnancy is also associated with a shift of the coagulation balance. Indeed, increased 

concentration of clotting factors, decreased concentration of some of the natural 

anticoagulants and diminished fibrinolytic activity occur in order to maintain placental 

function during pregnancy and meet the delivery’s hemostatic challenge. Consequently, these 

changes in blood coagulation and fibrinolysis, principally around term and the immediate 

postpartum period, create a state of hypercoagulability protecting pregnant women from fatal 

hemorrhage during delivery but predisposing them to thromboembolism [131] (Table 2). 
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Table 2: Hematological and coagulation parameters range in pregnant and nonpregnant women across 

the 3 trimesters. Adapted from UpToDate® 2016 (www.uptodate.com). The following coagulation 

factors are upregulated by ≈ 2 fold: factor VII, VIII, XII and von Willebrand factor. In addition, 

thrombin activatable fibrinolytic inhibitor (TAFI), plasminogen activator inhibitor-1 (PAI-1), tissue 

plasminogen activator (TPA) and products of fibrinolysis are also increased. Protein C, factor V and 

factor IX are unchanged or marginally increased. Protein S and antithrombin are 20% lower during 

Hematology Nonpregnant adult First trimester Second trimester Third trimester
Erythropoietin (units/L) 4-27 12-25 8-67 14-222
Ferritin (ng/mL) 10-150 6-130 2-230 0-116
Folate, red blood cell (ng/mL) 150-450 137-589 94-828 109-663
Folate, serum (ng/mL) 5.4-18.0 2.6-15.0 0.8-24.0 1.4-20.7
Haptoglobin (mg/mL) 25-250 130 +/- 43 115 +/- 50 135 +/- 65
Hemoglobin (g/dL) 12-15.8 11.6-13.9 9.7-14.8 9.5-15.0
Hematocrit (%) 35.4-44.4 31.0-41.0 30.0-39.0 28.0-40.0
Iron, total binding capacity (mcg/dL) 251-406 278-403 Not reported 359-609
Iron, serum (mcg/dL) 41-141 72-143 44-178 30-193
Mean corpuscular hemoglobin (pg/cell) 27-32 30-32 30-33 29-32
Mean corpuscular volume (xm3) 79-93 81-96 82-97 81-99
Platelet (x109/L) 165-415 174-391 155-409 146-429
Mean platelet volume (mcm3) 6.4-11.0 7.7-10.3 7.8-10.2 8.2-10.4
Red blood cell count (x106/mm3) 4.00-5.20 3.42-4.55 2.81-4.49 2.71-4.43
Red cell distribution width (%) <14.5 12.5-14.1 13.4-13.6 12.7-15.3
White blood cell count (x103/mm3) 3.5-9.1 5.7-13.6 5.6-14.8 5.9-16.9
Neutrophils (x103/mm3) 1.4-4.6 3.6-10.1 3.8-12.3 3.9-13.1
Lymphocytes (x103/mm3) 0.7-4.6 1.1-3.6 0.9-3.9 1.0-3.6
Monocytes (x103/mm3) 0.1-0.7 0.1-1.1 0.1-1.1 0.1-1.4
Eosinophils (x103/mm3) 0-0.6 0-0.6 0-0.6 0-0.6
Basophils (x103/mm3) 0-0.2 0-0.1 0-0.1 0-0.1

Coagulation Nonpregnant adult First trimester Second trimester Third trimester
Antithrombin, functional (%) 70-130 89-114 78-126 82-116
D-dimer (mcg/mL) 0.22-0.74 0.05-0.95 0.32-1.29 0.13-1.7
Factor V (%) 50-150 75-95 72-96 60-88
Factor VII (%) 50-150 100-146 95-153 149-211
Factor VIII (%) 50-150 90-210 97-312 143-353
Factor IX (%) 50-150 103-172 154-217 164-235
Factor XI (%) 50-150 80-127 82-144 65-123
Factor XII (%) 50-150 78-124 90-151 129-194
Fibrinogen (mg/dL) 211-496 244-510 291-538 301-696
Homocysteine (mmol/L) 4.4-10.8 3.34-11 2.0-26.9 3.2-21.4
International Normalized Ratio 0.9-1.04◊ 0.86-1.08 0.83-1.02 0.80-1.09
Partial thromboplastin time, activated (second) 26.3-39.4 23.0-38.9 22.9-38.1 22.6-35.0
Plasminogen activator inhibitor-1 (PAI-1) antigen (pg/mL) 17.3 +/– 5.7 17.7 +/– 1.9 Not reported 66.4 +/– 4.9
Plasminogen activator inhibitor-1 (PAI-1) activity (arbitrary units) 9.3 +/– 1.9 9.0 +/– 0.8 Not reported 31.4 +/– 3.0
Prothrombin time (second) 12.7-15.4 9.7-13.5 9.5-13.4 9.6-12.9
Protein C, functional (%) 70-130 78-121 83-133 67-135
Protein S, total (%) 70-140 39-105 27-101 33-101
Protein S, free (%) 70-140 34-133 19-113 20-65
Protein S, functional activity (%) 65-140 57-95 42-68 16-42
Tissue plasminogen activator (ng/mL) 1.6-13 1.8-6.0 2.36-6.6 3.34-9.20
Tissue plasminogen activator inhibitor-1 (ng/mL) 4-43 16-33 36-55 67-92
von Willebrand factor antigen (%) 75-125 62-318 90-247 84-422
ADAMTS-13, von Willebrand cleaving protease 40-170 40-160 22-135 38-105
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pregnancy as compared to baseline levels.  

 

During pregnancy, thrombin cleavage products are enhanced. Indeed, an investigation from 

Francalanci et al. [132] revealed a progressive upregulation of plasmatic concentration of 

fibrin degradation products during normal pregnancy. 

During the postpartum period, the hematological and coagulation parameters return to the 

normal range. The normalization might vary depending on the factor, but all return to the 

baseline level by 6 to 8 weeks after delivery [130]. 

1.3.5.2 Thrombophilia and pregnancy 

Thrombophilia is a disorder that predisposes to develop venous thrombosis and increases the 

risk for VTE. Two distinct categories are known:  acquired thrombophilia and inherited 

thrombophilia.  

Antiphospholipid antibody syndrome is the most common cause of acquired thrombophilia 

provoking VTE in pregnancy. Moreover, recurrent fetal loss is one of the clinical criteria 

included in the definition of the antiphospholipid (aPL) syndrome [133]. aPL antibodies are a 

group of autoantibodies that display a wide range of target specificities and affinities, all 

recognizing various combinations of phospholipids, phospholipid-binding proteins, or both. 

The term aPL syndrome was first used to describe the clinical association between aPL 

antibodies and a syndrome of hypercoagulability. The commonly known aPL are lupus 

anticoagulants, anticardiolipin antibodies and anti-ß2-glycoprotein 1 antibodies [134]. A 

metaanalysis from Opatrny et al. [135] concluded a strong association between aPL and 

recurrent pregnancy loss. 

Deficiencies or mutations of anticoagulant proteins are the main cause of inherited 

thrombophilia. The most frequent abnormalities are factor V Leiden (FV Leiden) mutation 

and the prothrombin gene mutation. In this regard, an analysis from Gerhardt et al. [136] 

indicates that the relative risk of pregnancy associated VTE was as high as 43.7% due to FV 
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Leiden mutation. Besides, G20210A prothrombin gene mutation was associated to 16.9% of 

VTE during pregnancy. Furthermore, Benedetto et al. [137] reported in their review that in 

pregnancy, predictive rates of VTE in women with inherited thrombophilias were: 1:500 for 

patients carrying heterozygous mutation for FV Leiden, 1:200 for those with heterozygous 

mutation for prothrombin G20210A. The accumulation of more than a single mutation seems 

to increase the VTE incidence. Therefore, predictive rates of VTE in women with double 

heterozygocity were 4.6:100 (Table 2). 

As explained in paragraph 1.3.6.1, the coagulation balance is shifted to a hypercoagulable 

state as a physiological symptom of pregnancy and PS, protein C and antithrombin levels 

reduction are all concomitant with thrombophilia during pregnancy. According to Benedetto 

et al. [137], a pregnant woman carrying protein C deficiency displays a VTE risk of 1:113, 

1:42 when antithrombin deficiency type 2, and 1:3 for antithrombin deficiency type 1 (Table 

2). 

 

Table 3: Venous thromboembolism (VTE) risk during pregnancy with inherited thrombophilia. 

Adapted from Battinelli et al. [138]. 

1.3.5.3 Inherited thrombophilia: protein S deficiency 

As mentioned in the previous paragraph, PS deficiency is an inherited thrombophilia factor 

leading to VTE during pregnancy. A report from Seligsohn et al. [86] revealed that pregnant 

women with PS inherited deficiency have also an elevated risk of late fetal loss. The efficacy 

of anticoagulation therapy in improving pregnancy’s outcome in women with inherited PS 

was investigated by Brenner et al. [139]. They found that 75% of pregnant patients with 

different inherited thrombophilias including inherited PS treated by low molecular weight 

heparin (LMWH) enoxaparin gave birth as compared to only 20% of the untreated 

Thrombophilia Odds ratio general population Annual incidence of first VTE (%) Odds ratio in pregnancy (95% onfidence interval) 
Antithrombin deficiency  28.2 1.77 4.69 (1.30–16.96) 
Protein C deficiency 24.1 1.52 4.76 (2.15–10.57) 
Protein S deficiency 30.6 1.9 3.19 (1.48–6.86) 

Homozygous 34.4 (9.86–120.0)
 Heterozygous 8.32 (5.44–12.70)
 Homozygous 26.36 (1.24–559.2)
 Heterozygous 6.80 (2.46–19.77) 

Factor V Leiden 7.5 0.49

Prothrombin gene mutation 5.2 0.34
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pregnancies. Another study from Kupferminc et al. [140] investigated the beneficial effect of 

enoxaparin and low aspirin dose prophylaxis in 33 women with either fetal loss, pre-

eclampsia, abruption placentae or intrauterine growth retardation, and a thrombophilic defect 

including PS deficiency. They found that with this prophylaxis, only 9% of the pregnancies 

exhibit thrombotic events. Three years later, a report from Gris et al. [141] indicated a more 

beneficial effect using enoxaparin from the 8th week (77% live births) than using a low dose 

aspirin treatment (14% live births). Folkeringa et al. also showed in a prospective study that 

anticoagulant treatment during pregnancy lowers the high fetal loss rate in women with 

hereditary deficiency of PS [142]. Indeed, fetal loss rates were 0% in deficient women with 

thromboprophylaxis versus 45% in deficient women without, further pointing to a very 

beneficial role of thromboprophylaxis to improve pregnancy outcome in women with 

inherited thrombophilia including PS deficiency. Differently, a randomized clinical trial 

performed by Kaandrop et al. [143] using three treatments: aspirin and heparin, aspirin alone 

or placebo revealed that among 299 pregnant women with a history of previous unexplained 

miscarriage, the live-birth rates were 69.1% in aspirin and heparin treated group, 61.6% in the 

aspirin treated group and 67.0% in the placebo group. These results pointed that neither 

aspirin combined with heparin nor aspirin alone improved pregnancies outcome. An answer 

to the question whether the use or heparin alone or combined with aspirin could be beneficial 

is still awaited.  

In this regards, Rodger et al. [144] published recently a protocol for a systematic review and 

individual patient data meta-analysis in order to investigate the risk/benefit ratio of LMWH in 

preventing placenta-mediated pregnancy complications. This ambitious study named 

AFFIRM (an individual patient data meta-analysis of LMWH for prevention of placenta-

mediated pregnancy complications) will integrate individual patient data from recent 

randomized controlled trials of LMWH for the prevention of recurrent placenta-mediated 

pregnancy complications. The overall objective of this meta-analysis will be to inform 

clinical practice and develop clinical practice guidelines.  
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A very recent review from Professor Middeldrop during the annual meeting of the American 

society of hematology in 2016 summarized the recent finding in the field of pregnancy and 

inherited thrombophilia [145]. Indeed, It was highlighted that numerous studies have 

investigated the association between inherited thrombophilia and various pregnancy 

complications, ranging from a single miscarriage to intrauterine fetal death, preeclampsia, 

HELLP (hemolysis, elevated liver enzymes, and low platelets), and placental abruption. 

However, no evidence-based solution on subsequent therapeutic consequences was 

established. Interestingly, a multicenter, investigator initiated randomized clinical trial, named 

anticoagulants for living fetus (ALIFE) assembling about 15 years of various clinical trials 

piloted around the world, revealed that LMWH does not increase the chance of live birth in 

women with unexplained recurrent miscarriage. However, it is still unclear whether this is 

also the case for women with inherited thrombophilia. Remarkably in this study, the subgroup 

of women with inherited thrombophilia (n=547) showed a trend toward a benefit of LMWH 

and aspirin (relative risk for live birth, 1.31 [95% CI, 0.74- 2.33] for the LMWH and aspirin 

vs placebo; relative risk for live birth, 1.22 [95% CI, 0.69-2.16] for aspirin, with 

corresponding absolute difference in live birth rates of 16.3% [95% CI, 218.2% to 50.8%] and 

11.8% [95% CI, 221.1% to 44.6%], respectively). According to these encouraging results, the 

ALIFE2 trial was initiated, and is recruiting patients since 2013 in the Netherlands, United 

Kingdom, and Belgium, and hopefully soon in the United States and Slovenia. 

     1.3.6 Role of Gas6 and Protein S in phagocytosis and inflammation 

1.3.6.1 Phagocytosis 

Phagocytosis was described for the first time by Metchnikoff in 1908 as an important immune 

defence mechanism by which specialized cells engulf and kill pathogens. Analogously, 

efferocytosis is the clearance of unwanted cells comprising excess cells generated during 

development, transformed or malignant cells capable of tumorigenesis, apoptotic cells, cell 

debris and cells irreparably damaged by cytotoxic agents. Both phagocytosis and 
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efferocytosis are necessary for maintenance of overall health and homeostasis, and prevention 

of autoimmunity, pathogen burden or cancer.  

Following an inflammatory stimulus, neutrophils are the first cells to enter to the injured site, 

where they can ingest microbial invaders and cellular debris. Hallmarks of inflammation 

eradication and tissue repair include the inhibition of the neutrophils influx and clearance of 

apoptotic neutrophils [146]. In this context, Bosurgi et al. investigated the role of Axl and 

Mer in the efferocytosis of apoptotic neutrophils generated consequently to azoxymethane 

and dextran sulfate sodium induced inflammation in mice colon cancer. Interestingly, they 

found that the percentages of Ly6G+ neutrophils and F4/80+ CD11b+ macrophages were not 

altered in WT and Axl−/−Mer−/− mice in resting condition. Differently, immunohistochemical 

and FACS analyses showed a higher number of TUNEL+/Ly6G+ apoptotic neutrophils in the 

lamina propria of Axl−/−Mer−/− mice as compared to WT mice. Moreover, apoptotic 

neutrophils labelled with CellTracker dye and cocultured with Axl−/−Mer−/− BM derived 

macrophages demonstrated a significant reduction in phagocytic activity of apoptotic 

neutrophils as compared to WT macrophages. Thus, Axl and Mer modulate inflammation in 

the intestinal lamina propria by phagocyting apoptotic neutrophils. Since macrophages 

express the TAM agonists PS and Gas6, TAM might signal in an autocrine manner in 

macrophages [147]. The role of Mer in clearance of apoptotic cells was also investigated by 

Scott et al. [148] by treating adult mice with dexamethasone to induce apoptosis of cortical 

thymocytes. Indeed, they observed that the thymi of Mer−/− mice exhibit seven fold more 

remnant apoptotic thymocytes as compared to WT mice thymi. The authors further examined 

the role of macrophages in the clearance of apoptotic cells. Irradiated Mer−/− mice 

reconstituted with WT BM showed clearance of dexamethasone induced apoptotic thymocytes 

almost at normal levels. Intriguingly, the converse experiment in which Mer−/− BM was 

transferred into irradiated WT mice showed normal removal of apoptotic cells. It was 

suggested that this compensation was due to radioresistant WT macrophages. However, in 

vitro setting confirmed that both Mer−/− and WT macrophages bound equally to apoptotic 
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thymocytes but Mer−/− macrophages had a dramatic deficit in phagocytosis of apoptotic 

thymocytes but not of Listeria, latex beads, or opsonized particles. Another report from 

Cohen et al. [149] further confirmed the role of Mer in phagocytosis. Since autoimmune 

diseases, for example, systemic lupus erythematous (SLE), are associated with diminished 

phagocytosis of apoptotic cells and debris, and consistent with a role for Mer in the clearance 

of apoptotic cells, Cohen et al. demonstrated that mice lacking the intracellular kinase domain 

of Mer had delayed clearance of exogenously administered apoptotic cells and spontaneous 

progress of additional serological manifestations of SLE.  

The downstream signaling upon Mer phosphorylation is involved in distinct cellular 

activities. Indeed, Tibrewal et al. [150] identified a MERTK mutation, Y867F, in which Mer 

failed to stimulate actin cytoskeleton reorganization and lost its phagocytic activity.  

In addition to Mer, Axl and Tyro3 have phagocytic activity. Seitz et al. [151] proved that 

Axl−/−, Tyro3−/−, and Axl−/−Mer−/− macrophages phagocyted 40 to 50% less apoptotic 

thymocytes as compared to WT. It was also highlighted in this report that depending on the 

phagocyte type, involvement of the Tyro3, Axl and Mer in the removal of apoptotic cells may 

be different. Therefore, Mer−/− BM derived dendritic cells (DCs) phagocyted normal level of 

apoptotic thymocytes whereas Axl−/−, Tyro3−/−, and Axl−/−Mer−/− mice all had severe deficits 

in this process. 

During apoptosis, PtdSer is exposed on the outer leaflet of the plasma membrane. As 

described in paragraph 1.2.2, Gas6 binds to its receptors via the C-terminal globular domain. 

It was reported by Nakano et al. [152] that Gas6 binds to PtdSer via the N-terminal GLA 

domain and that Axl presence facilitated this interaction by decreasing the Kd value by 

approximately 30%. Furthermore, a study from Anderson et al. [153] evaluating the role of 

PS in phagocytosis revealed that PS binds PtdSer expressed on the apoptotic cell surface in a 

Ca2+-dependent manner. Indeed, it was demonstrated that either serum or purified PS addition 

to cultured macrophage enhances phagocytosis of apoptotic cells and that serum 

immunodepletion of PS inhibited this prophagocytic activity.  
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Inherited blindness is classically studied with the royal college of surgeons rat (RCS) model 

in which retinal pigment epithelial (RPE) cells fail to phagocytose shed outer segments 

resulting in photoreceptor cells death and retinal dystrophy. Interestingly, D’Cruz et al. [154] 

mapped the locus responsible for inherited retinal dystrophy in these rats to Mertk by 

positional cloning approach. It was found that RCS displayed a small DNA deletion in the 

Mertk gene. Consequently, Mertk was described as a probable responsible of RPE 

phagocytosis defect causing retinal dystrophy.  Shortly after and in line with these results, Gal 

et al. [155] screened the human orthologue, MERTK, in 328 DNA samples from individuals 

with various retinal dystrophies. Remarkably, three MERTK mutations in three individuals 

with retinitis pigmentosa were described further confirming the role of Mertk in RPE 

phagocytosis and retinal degeneration.  

Although in vitro experiments have implicated Gas6 as the critical TAM ligand for this 

process, Prasad et al. [34] demonstrated that Gas6-/- mice have a histologically intact retina 

with no photoreceptor degeneration. It has been shown that in addition to Mertk, RPE cells 

express Tyro3 and that PS, also expressed by RPE cells, activates both of these receptors 

suggesting that their biologically appropriate ligand in these cells is PS. 

Spermatogenesis is the development of the sperm cells within the male reproductive organs, 

the testes. During this process, the apoptotic spermatogenic cells and residual bodies are 

phagocytosed and degraded by Sertoli cells (SCs) via a not well know mechanism. A report 

from Xiong et al. [156] revealed that Gas6 addition to cultured SCs rises five fold their 

phagocytic activity. Furthermore, SCs lacking the TAM receptors exhibited 7.6 fold less 

phagocytic activity as compared to WT. Besides, Mertk-/- SCs had 35% reduction in 

phagocytosis of apoptotic spermatogenic cells as compared to WT cells. This phagocytic 

defect was attributed to a compromised binding of the SCs to apoptotic germ cells. 

Mammalian nervous system undergoes extensive activity in order to accomplish its precise 

neural connectivity. Although microglial cells are responsible for a portion of synapses 
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uptake, the remaining phagocytic mechanisms are still poorly understood. In this regards, 

Chung et al. [157] reported a novel role for astrocytes in engulfing central nervous system 

synapses. Interestingly, in an in vitro engulfment assay, astrocytes cultured in the presence of 

synaptosomes and 5% serum or PS significantly augmented the amount of synaptosomes 

engulfed by astrocytes. It was demonstrated that this process involves the MERTK 

phagocytic pathway. Importantly, Mertk-/- astrocytes phagocyted 58% less synaptosomes. The 

same results were demonstrated in vivo where mice deficient in Mertk pathway fail to 

improve their retinogeniculate networks and had excess excitatory and inhibitory functional 

synapses known to be responsible of several neurological diseases.  

As evoked in paragraph 1.3.1.1, the mechanism regarding the clearance of PMPs is not 

completely understood. The work of Happonen et al. [158] fairly demonstrated that vascular 

Gas6 and Axl mediated the uptake of PMPs by ECs. Since circulating PMPs were not 

elevated in Gas6-/- as compare to WT mice, it was suggested that this endothelium specific 

phagocytic activity could serve to eliminate PMPs generated at injured site (see Chapter VII: 

Appendices). 

      1.3.6.2 Inflammation 

Inflammation was described at the basis of a significant number of diseases. Since many 

years, researchers are hardly investigating the effects of inflammation on health and possible 

preventive medical applications. In a recent review of Nature journal [159], Professor 

Buckley declared that acute inflammation is an unstable state that either resolves or become 

chronic. Traditional models of inflammation suggest that inflammation resolves after the 

elimination of the pro-inflammatory mediators that first originated the response. However, 

several anti-inflammatory agents have now been discovered, including steroids, nitric oxide, 

adenosine and interleukin-10 (IL-10), as well as regulatory T (TReg) cells. These mediators 

restrain inflammation. Another step forward was the molecular characterization of numerous 

distinct biochemical pathways that are actively turned on during inflammation, and lead to the 
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production of mediators responsible of reparatory functions. Experiments implicating genetic 

deletion models or pharmacological synthesis compounds provided new insights into 

understanding the inflammatory process. 

Activation of DCs, known as the professional antigen presenting cells (APCs), initiate T cell 

activation. However, the magnitude of DCs activation must be strictly controlled because if 

unrestrained, DCs responses can lead to pathological conditions with overactive immune 

responses, such as allergy, autoimmunity and chronic inflammatory diseases [160, 161].   

Toll-like receptors (TLRs) are known as a set of mediators that activate host defences 

responsible for local inflammation, the recruitment of effector cells, and the secretion of 

cytokines that modulate both the innate and adaptive immune responses [162]. Interestingly, 

TLRs are highly expressed in DCs and macrophages, which drive the innate immune 

response. Subsequently, TLRs activation in DCs provokes secretion of cytokines and 

costimulatory molecules that afterward, coordinate the adaptive immune response [163].  

It was extensively studied that unrestrained DCs activation, sustained by elevated levels of 

type I IFNs, could lead to autoimmune diseases like SLE, Sjögren’s syndrome and psoriasis 

[164]. As illustrated in Fig.7, TLRs activation in DCs is modulated by negative regulators 

responsible of the inhibition of this activation [165]. Indeed, TRIAD3A (a ring finger protein 

that binds to the cytoplasmic tail of several TLRs) promotes degradation of certain TLRs. The 

short form of myeloid differentiation primary response gene 88 (MyD88s) antagonizes 

MyD88 functions. Inhibitory proteins such as suppressor of cytokine signaling 1 (SOCS1), 

interleukin-1 receptor associated kinase M (IRAKM), Toll interacting protein (TOLLIP), 

IRAK2c and IRAK2d suppress IRAK function and targets various stages of the TLRs 

signaling pathways. PI3K negatively regulates some TLRs responses through an unknown 

mechanism. A20 deubiquitylates tumor necrosis factor receptor associated factor 6 (TRAF6) 

and affects both MyD88-dependent and MyD88-independent pathways. Nucleotide-binding 

oligomerization domain 2 (NOD2) might inhibit TLR2 signaling by suppressing nuclear 

factor-κB (NF-κB) activity [165] Fig.7. 
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Fig.7: Overview of intracellular toll-like receptor (TLRs) regulators. TLRs signaling pathways are 

tightly regulated by endogenous regulators at multiple levels. TRIAD3A (a ring finger protein that 

binds to the cytoplasmic tail of several TLRs) promotes ubiquitylation and degradation of certain 

TLRs. The short form of myeloid differentiation primary response gene 88 (MyD88s) antagonizes 

MyD88 functions. Inhibitory proteins such as SOCS1 (suppressor of cytokine signaling 1), IRAKM 

(interleukin 1 receptor associated kinase M), TOLLIP (Toll-interacting protein), IRAK2c and IRAK2d 

suppress IRAK function by targeting various stages of the TLRs signaling pathways. 

Phosphatidylinositol 3-kinase (PI3K) negatively regulates some TLRs responses through an unknown 

mechanism. A20 deubiquitylates TRAF6 (tumor necrosis factor receptor associated factor 6) and 

affects both MyD88-dependent and MyD88-independent pathways. Nucleotide-binding 

oligomerization domain 2 might (NOD2) inhibit TLR2 signaling by suppressing nuclear factor-κB 

(NF-κB) activity. Adapted from Liew et al. [165].  

 

Although the cited mechanisms above demonstrate news insights into TLRs inhibition, the 

pathway regarding their negative regulation remains still unclear. 
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TAM RTKs involvement in inflammation was first described by Lu et al. [33]. It was shown 

that Tyro3, Axl and Mertk play a crucial immunoregulatory role. Indeed, mice lacking these 

three receptors displayed a severe lymphoproliferative disorders illustrated by the aberrant 

growth of peripheral lymphoid organs due to the hyperproliferation of B and T lymphocytes 

and systemic autoimmune diseases characterized by high blood titters of antibodies directed 

against normal cellular antigens, like nucleoproteins and double stranded DNA (ds DNA).  

Since TAM receptors are not expressed by lymphocytes, the immune defects observed in the 

TAM knockout mice were suggested to be cells nonautonomous. Consequently, it was 

proposed that Tyro 3, Axl and Mertk are responsible of downregulating the immune response 

via DCs and macrophages and thereby play a prominent role in returning the immune system 

to baseline after pathogen or toxin clearance.   

Results of previous studies performed by Camenisch et al. [166] were consistent with the 

regulation of this APCs functions by TAM receptors. Indeed, Mertk-/- mice were 

hypersensitive to lipopolysaccharide (LPS) induced endotoxemia with Mertk-/- macrophages 

expressing high levels of NF-κB. It was also found that the excessive release of TNF-alpha 

caused tissue damage and mice death. Remarkably, these phenotypes were significantly more 

pronounced in the TAM triple knockout mice [33]. Few years later, the same authors further 

investigated how TAM receptors function in the DCs subset of APCs. Interestingly, they 

described a new pathway of TAM in mediating negative regulation of both TLRs activation 

and cytokine production in APCs and suggested that this pathway regulates APCs activation. 

Indeed, upon TLRs activation, an initial burst of cytokines is released which is further 

amplified by a feed-forward loop through cytokine receptors. In meanwhile, cytokine 

activation of the type I interferon receptor (IFNAR) and signal transducer and activator of 

transcription 1 (STAT1) triggers Axl activation. Activated TAM subsequently induce the 

transcription of SOCS genes and the pleiotropic inhibition of both cytokine receptors and 

TLRs signaling pathways (red pathways). This final TAM driven inhibitory phase is also 

dependent on the IFNAR/STAT1 signaling cassette, which is physically associated with TAM 

receptors [167] Fig.8.  
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Fig.8: Scheme illustrating the activation of Toll-like receptors (TLRs) and downstream signaling. Upon 

TLRs activation, an initial burst of cytokines is released that is secondly amplified by a feed-forward 

loop through cytokine receptors (blue pathways). In meanwhile, cytokine activation of the type I 

interferon receptor / signal transducer and activator of transcription 1 (IFNAR/STAT1) triggers Axl 

activation. Subsequently, TAM signaling is upregulated and further induces the transcription of 

suppressor of cytokine signaling (SOCS) genes and the pleiotropic inhibition of both cytokine 

receptors and TLRs signaling pathways (red pathways). This final TAM driven inhibitory phase is also 

dependent on the IFNAR/STAT1 signaling cassette, which is physically associated with TAM 

receptors. Adapted from [167]. 

 

IFN-alpha plays an important role in the generation of DCs with high antigen presenting 

competences from peripheral blood monocytes [168]. Besides, it was revealed that Axl 

expression is regulated by IFN-alpha [169]. Rising evidence that DCs differentiate from 

 



 67 

monocytes in SLE, where high levels of IFN-alpha circulates, and in line with 

immunotherapeutic studies highlighting IFN and DCs as promising targets, Scutera et al. 

[170] reported that during their IFN-alpha driven differentiation, human DCs exposed cell 

surface Axl. Additionally, it was shown that Gas6 protects these cells from serum deprivation 

induced apoptosis and stimulates their chemotaxis in an Axl dependent manner. Thus, it was 

proposed that IFN-alpha controls DCs survival and migration via a Gas6/Axl signaling. 

A recent study from Carrera et al. [171] further shed light on the negative feedback 

mechanism by which activated T cells control DCs activation and adjust the extent of the 

immune response. For the first time, it was demonstrated that both human and mice activated 

DCs activate T cells that release PS. Therefore, secreted PS initiates the anti-inflammatory 

TAM signaling pathway in DCs. Thus, by releasing PS, activated T cells regulate DCs 

activity and avoid exacerbated inflammation. 

T cells do not contribute to the physiological plasmatic amounts of PS since mice lacking PS 

in T cells (Pros1flox/flox Cd4-Cre+ mice) exhibited comparable PS levels as compared to WT 

controls. Intriguingly, this study revealed that blood-circulating PS did not balance the lack of 

PS expression by activated T cells needed to control DCs activity. It was then proposed that 

PS acts locally as an immunomodulatory protein at the physical T cell- DCs interface. Thus, 

synchronized PS secretion and the exposure of PtdSer on activated T cells should allow the 

localization and the bioactivity of PS at the T cell membrane surface, engaging TAM 

signaling in DCs following T cell priming in lymphoid organs. 

Sepsis is characterized by an overwhelming systemic inflammation caused by an infection 

and is a leading cause of death in the intensive care unit. There have been no proven 

pharmacological therapies for sepsis 

Based on the reports highlighting the role of TAM receptors and Gas6 in inflammation, 

Burnier al. (manuscript in revision, chapter VII, Appendices) hypothesized that Gas6 and its 

receptors might be involved in protection against systemic inflammatory response to infection 

and/or in the development of immune dysfunction observed in severe sepsis. In order to test 

this hypothesis, they performed experimental studies using Gas6+/+ and Gas6-/- mice. First, it 
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was observed that Gas6-/- mice displayed the same vulnerability to endotoxin challenge as 

described in Mertk-/- mice [166], characterized by a reduced survival associated with an 

overproduction of TNF-α. Survival curves after endotoxin challenge in Axl-/- and Tyro3-/- 

were comparable to those of Mertk-/- and Gas6-/- mice. Second, Gas6-/- mice were also more 

susceptible to death in the CLP model. Gas6 plasma concentrations were enhanced in models 

of endotoxemia and microbial peritonitis (inoculation of E. coli in the peritoneum and cecal 

ligation puncture). Therefore, it was suggested that endogenous Gas6 plays a key role in the 

regulation of the death/over-inflammatory process, which acts through Gas6 receptors as a 

negative feedback. Besides, it had been shown that TLR4 stimulation by endotoxin activated 

monocytic cells, which secrete TNF-α and other cytokines. Gas6 then binds to its cognate 

receptors and thereby prevents an over-stimulation of monocytic cells as it was postulated 

previously. Consequently, in severe sepsis, a protective role was attributed to Gas6 for its 

effect in dampening the inflammation state of macrophages. 

Data in mice are corroborated by observations in humans. Indeed, it was found that in healthy 

volunteers, Gas6 levels raised in plasma in response to endotoxin, reaching its maximal 

concentration at 90 min and sustained for the next 4.5 h. 

A study of Gibot et al [172] confirmed the correlation between Gas6 levels and septic related 

mortality. Patients requiring renal support exhibited higher Gas6 concentration than those 

without need for hemofiltration (76.5 versus 10.5pg/ml respectively). Although there was a 

progressive decline in Gas6 concentration in survivors, nonsurvivors had persistently elevated 

Gas6 levels. It was concluded that plasmatic Gas6 levels correlate with disease severity, 

particularly with renal and hepatic dysfunction in septic shock. 

Another report from Ekman et al. [173] revealed that patients with severe sepsis, sepsis, 

infection or SIRS displayed double Gas6 levels as compared to the controls. sAxl was also 

upregulated in the patient groups compared to the controls. Additionally, Gas6 and sAxl 

correlated with some other inflammatory markers implying a role in systemic inflammation. 
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A recent report of Stalder et al. [174] studied a cohort of 129 septic patients. Gas6 level was 

238% in non-survivors versus 167% in survivors. Furthermore, sAxl was found increased in 

non-survivors. It was concluded that Gas6 plasma level might predict mortality of septic 

patients. 
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1.4 Aims of the thesis 
 

Hemostasis is guaranteed by the equilibrium between procoagulant and anticoagulant forces 

which are tightly balanced. Deficiency of any of the coagulation factors could lead to 

disequilibrium provoking bleeding or thrombosis. Protein S (PS) is a natural anticoagulant 

regulating thrombin generation. It acts as a cofactor for activated protein C (APC) and tissue 

factor pathway inhibitor (TFPI), and also has a direct anticoagulant activity. Besides its role 

as an anticoagulant, the downstream signaling of PS binding to the TAM receptors exerts 

multiple cellular effects like phagocytosis, inflammation and angiogenesis. Purpura fulminans 

(PF) is characterized by disseminated intravascular coagulation and hemorrhagic infarction 

of the skin that could rapidly progress to multi organ failure and death. PF may result from 

severe sepsis, an autoimmune response or benign childhood infections. PS complete 

deficiency also causes PF and DIC and leads to death if untreated. Early recognition and 

treatment of PF is essential to reduce mortality and to prevent major long-term health 

sequelae. Current knowledge on the molecular basis of PF is uncertain although the 

imbalance between pro- and anticoagulant factors is thought to be the etiological factor.  

This thesis will be divided in three part: 

 
1. New insights into purpura fulminans induced by protein S deficiency  

 
PS deficiency induced PF will be investigated using several strategies. The first strategy 

will be to mimic severe acquired PS deficiency using Pros1 gene silencing by poly I: C-

inducible Mx1-Cre+ in mice. The resulted null or low level of PS in Pros1lox/-Mx1Cre+ 

adult mice will probably trigger PF and allow the monitoring of PF lesions development. 

The second strategy will be to treat Pros1+/- mice with warfarin, a vitamin K antagonist, 

to further drop plasmatic PS and reproduce PF. The monitoring and investigations of 

developed PF lesions will provide more insights into the molecular basis of PF.  

Gas6, a protein sharing 44% similarity with PS is however described to display 

prothrombotic effects by its function in thrombus stabilization and as TF activity 

inducer. Like PS, Gas6 is also a ligand for TAM receptors and exerts various cellular 
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effects like phagocytosis, inflammation and angiogenesis. Since PF etiology is supposed 

to result from imbalance between pro- and anticoagulant factors, our third strategy will 

be to combine Gas6 and PS deficiencies to investigate if the Gas6-/- antithrombotic 

phenotype could rebalance hemostasis in Pros1-/- mice and rescue them from fatal PF. 

We hypothesize that the results obtained using these three strategies will bring new 

insights into PF development mechanisms. 

 

2. Targeting anticoagulant protein S to achieve hemostasis in hemophilia 

Bleeding diathesis caused by the loss of F8 (hemophilia A :HA) or F9 (hemophilia B : 

HB) activity results from  impaired thrombin generation and imbalanced hemostasis. 

Patients with severe hemophilia frequently suffer from spontaneous recurrent muscle and 

joint bleeding, such as hemarthrosis, which leads to severe and progressive 

musculoskeletal damage. The main treatment is the administration of the deficient 

coagulation factor. Complication of such therapy is the development of neutralising 

antibodies. The disequilibrium of the hemostatic balance caused by PS complete lack 

allows us to hypothesize that the combined deficiency in F8/ F9 and PS might be suitable 

to achieve hemostasis in HA and HB and rescue Pros1-/- mice from PF. If Pros1-/- mice 

are rescued, F8-/-Pros1-/- and F9-/-Pros1-/- mice will be investigated to evaluate hemostasis 

in complete PS deficiency. 

 

3. Pregnancy and protein S deficiency 

Pregnancy is associated with a shift of the coagulation balance with increased 

concentration of coagulation factors, decreased concentration of some of the natural 

anticoagulants and diminished fibrinolytic activity leading to a hypercoagulable state that 

protects pregnant women from fatal hemorrhage during delivery but predispose them to 

thromboembolism. Pregnant women with partial PS inherited thrombophilia have an 

elevated risk of late fetal loss and whether thromboprophylaxis could ameliorate 

pregnancy outcomes is intensely debated. We will investigate pregnancy in Pros1+/- mice 
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by blood cell count, coagulation tests and histology of pregnant mice and embryos. 

Heparin or aspirin alone or a combination of both will be used for thromboprophylaxis. 

If viable F8-/-Pros1-/- and F9-/-Pros1-/- mice are obtained, the effect of PS complete 

deficiency will be investigated. 
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Abstract 
 
Purpura fulminans (PF) is characterized by disseminated intravascular coagulation and 

hemorrhagic infarction of the skin that could rapidly progress to multi organ failure and 

death. Early recognition and treatment of PF is essential to reduce mortality and to prevent 

major long-term health sequelae. Current knowledge on the molecular basis of PF is uncertain 

although the imbalance between pro- and anticoagulant factors is thought to be the etiological 

factor. PS complete deficiency causes PF. We found that in mice, very low circulating PS 

level (16% of the level found in control mice) is sufficient to protect against PF. Warfarin 

treatment induced PF only in a few Pros1+/- mice. The evaluation of the formed skin lesions 

over time revealed thrombi occurring with vascular wall damage. Pros1-/- embryonic 

vasculature examination displayed dorsal disturbed vasculature with reduced vascular volume 

and less vessels branching.  Furthermore, Pros1-/- embryos vasculature was altered before PF 

starts. Inadequate phagocytosis and erythropoiesis, and more inflammation were observed 

during PF. Gas6 is a procoagulant factor. However, combined deficiency in Gas6 and PS did 

not rescue Pros1-/- from fatal PF, the Pros1-/-Gas6-/- phenotype appearing more dramatic with 

earlier and more frequent embryonic death from PF. Our findings provide evidence that the 

thrombotic process occurring during PS deficiency induced PF should be less central than 

currently admitted. The lack of PS signaling in the endothelium might lead to vascular defects 

that further promote PF. 
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2.1 Introduction 
 
Protein S (PS) is a vitamin K-dependent protein (VKDP) functioning as natural anticoagulant 

in the blood. It acts as a cofactor of activated protein C (APC) and tissue factor pathway 

inhibitor (TFPI), and also displays a direct anticoagulant activity. It is a protein of 70.69 kDa 

and is characterized by post-translational γ-carboxylation of certain glutamic acid residues by 

a carboxylase, using vitamin K as cofactor. PS is mainly synthetized by liver parenchymal 

cells [17], vascular endothelial cells [18], testicular Leydig cells, macrophages [19] and 

megakaryocytes [20]. It circulates in human plasma at a concentration of 350 nanomolar (nM) 

corresponding to 25 µg/mL of which 60% forms a complex with C4b-binding protein 

(C4BP), a protein involved in the complement system.  The remaining 40% circulates in a 

free form [20, 21]. In human, two PS genes were described: PROS1 gene, which expressed 

PS and PROSP as a pseudogene. 

In clinic, patients with hereditary parcial PS deficiency mostly suffer from venous 

thromboembolism (VTE). The thromboembolic events could be caused by transient risk 

factors for VTE. However, half of the thromboembolic events in PS deficient patients are 

unprovoked and these patients become symptomatic around 55 years old. Brouwer et al. [92] 

found a 9-fold higher risk for VTE in patients with PS deficiency as compared to non 

deficient patients. In thrombophilic families, Lejfering et al. [93] indicated  that free PS levels 

could identify young subjects at risk for venous thrombosis, although the cut-off level lies far 

below the normal range in healthy volunteers. Up to now, the raison behind why some PS 

deficient patients develop VTE while others remain unaffected is not completely explained 

[94]. The prevalence is estimated from 0.16% to 0.21% and augments to 2% in patients with 

VTE [85, 86]. The multiple environmental and genetic assessment of risk factor for venous 

thrombosis (MEGA) study highlighted that PS deficiency might be less common than 

previously described. It was found that PS deficiency was not associated with VTE. 

Nonetheless, when lower cut-off values were applied, subjects at risk of VTE could be 

identified with low free PS levels. Paradoxically, very low levels of total PS were not 
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associated with VTE [89].  

 

Homozygous or compound heterozygous PROS1 deficiencies are extremely rare with 

presentation soon after birth with a combination of extensive disseminated intravascular 

coagulation (DIC) and skin necrosis named purpura fulminans (PF). Death occurs within 

hours if untreated. A murine model recapitulating phenotypes of PS deficiency in human was 

described by Saller et al. [95]. Thus, heterozygous mice (Pros1+/-) did not suffer from 

spontaneous thrombosis and displayed reduced PS plasma levels. They also exhibit a 

thrombotic phenotype in vivo when challenged in a tissue factor (TF) induced 

thromboembolism model. As in human, homozygous mice (Pros1-/-) died in utero from 

intracranial hemorrhages and PF. Burstyn et al. [96] confirmed embryonic lethality of Pros1-/- 

mice with macroscopic blood clots and fulminant hemorrhages. Plasma from Pros1+/– 

heterozygous mice exhibited accelerated thrombin generation independent of activated 

protein C (APC). The vascular networks hierarchy and morphology was 40% reduced with 

poorly formed microvessels in Pros1-/- embryos as compared to WT. Since the role of PS in 

vasculature was previously addressed in several studies [112] [113] [114] [116], one question 

remains: is the defective vascular integrity in Pros1-/- embryos secondary to increased 

thrombosis and perturbed blood flow during vascular development or is a direct consequence 

of the loss of PS  signaling in the vasculature or both?  

Growth arrest specific gene 6 (Gas6) is a VKDP of 75 kilodaltons (kDa). Gas6 mRNA was 

found

 

expressed by serum-starved embryonic mouse fibroblast NIH3T3 cells. Gas6 clonage 

and sequencing revealed a high degree of homology and a similar pattern of expression in 

IMR90 human fibroblasts [7]. Important tissues where Gas6 is expressed are neuronal [8], 

hepatic [9] and renal tissue [10]. Gas6 is also expressed in various cell types: endothelial cells 

(ECs) [7], vascular smooth muscle cells [11], bone marrow (BM) [12] and platelet [13]. Gas6 

concentration in human plasma range from 20 to 50 µg/L [14]. 

Gas6 binds to and activates the Tyro3, Axl and Mer (TAM) receptor tyrosine kinases (RTKs) 

with a highest affinity for Axl followed by Tyro3 and Mertk [43]. This binding leads to 
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further intracellular signaling including activation of PI3K and Akt pathways [44, 45] 

resulting in many cellular effects.  

PS has high structural homology (~42%) with Gas6 and the modular composition is the same. 

However, unlike the thrombin sensitive region (TSR) in Gas6, PS TSR is sensitive to the 

cleavage action of serine proteases [7]. PS also binds to and activates the TAM receptors. The 

downstream signaling is involved in phagocytosis, angiogenesis and immunity.  

The generation of a murine model with complete Gas6 deficiency (Gas6-/-) provides great 

insights regarding the role of Gas6 in thrombosis. Gas6-/- mice were viable, fertile, had an 

apparent normal phenotype. Gas6-/- mice did not suffer from spontaneous bleeding or 

thrombosis but interestingly, when challenged with different thrombosis models, they were 

protected against venous and arterial thrombosis [13]. Gas6 also acts in endothelium by 

promoting P-selectin, a ligand for the platelet receptor PSLG-1, to reinforce the thrombus 

adhesion to the vascular wall [49]. Furthermore, it was found that ECs stimulation by 

thrombin leads to tissue factor release via Gas6/Axl/c-Src/Akt signaling and the initiation of 

the coagulation pathway resulting in formation of tight fibrin networks [51]. Platelet-derived 

microparticles (PMPs) are produced upon platelet activation and have a high procoagulant 

effect [52]. Recently, Happonen et al. showed that PMPs are ingested in primary human ECs 

in a Gas6/Axl dependent manner [53]. In human, higher Gas6 levels were found in a cohort of 

patients with VTE as compared to healthy volunteers patients demonstrating an association 

between VTE and Gas6 levels expression and consistent with in vivo murine findings [54]. In 

addition, analysis of single nucleotide polymorphisms (SNPs) from a cohort of stroke patients 

indicates statistically significant differences in the Gas6 allelic distributions as compared to 

healthy patients [55]. 

Gas6 plays a prominent role in erythropoiesis. Upon erythropoietin (EPO) stimuli, 

erythroblasts release Gas6 that bind to its TAM receptors on the cell surface. This binding 

leads to the activation of PI3K/Akt pathway and downstream signaling for cells proliferation 

and differentiation. Besides, Gas6 acts in an autocrine manner by boosting the erythropoietin 

receptor (EPOR) stimulation. The binding of Gas6 to TAM receptors activate the fibronectin 
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receptor VLA4 and increases erythroblasts adhesion and differentiation. Gas6 plays an 

important role in senescent RBC phagocytosis by macrophages [81]. 

PS complete deficiency induced PF is a quite enigmatic pathology. Its development 

mechanism is poorly understood although the imbalance between anticoagulant and 

procoagulant factors is thought to be the etiological factor. Recent findings  suggested that PF 

could result not only from the lack of the PS anticoagulant effect, but may also be due to the 

lack of PS in the endothelium and its role in vascular development [96]. 

In the present report, we used three approaches to investigate the development of PF. Firstly, 

we mimicked severe PS deficiency using Pros1 gene silencing by poly I: C-inducible Mx1-

Cre+ in adult Pros1lox/- mice. Secondly, we treated adult Pros1lox/- mice with warfarin, a 

vitamin K antagonist, to further drop plasmatic PS and reproduce PF. Since Gas6-/-  mice are 

protected against thrombosis, our third strategy was to combine PS and Gas6 deficiency to 

assess if the hemostatic balance could be achieved and Pros1-/- embryos rescued from fatal 

PF. The monitoring and investigations of developed PF lesions provided new insights into the 

PF development mechanism. 

 

2.2 Material and methods 

 
Generation of conditional floxed and knockout mice 

Pros1+/-, Gas6-/-, Pros1lox/lox  and Pros1lox/l- mice were progeny of the original colonies, with a 

genetic background of 50% 129/Sv x 50% C57BL/6J, as described previously [81, 95]. Mx1-

Cre mice with C57BL/6J background were obtained from The Jackson Laboratory. The Swiss 

Federal Veterinary Office approved the experiments. Pros1+/- mice were genotyped by a 

multiplex PCR that amplifies the WT (+), lox and the null (-) alleles of Pros1 gene at the 

same time, using primers previously described [95].  

Pros1lox/lox and Pros1lox/l-  mice were mated with the Mx1-Cre mice to obtain Pros1lox/loxMx1-

Cre+  and Pros1lox/l-Mx1-Cre+  mice. Excision of genomic Pros1 sequences was determined by 

PCR using the following primers P1: 5’-CGCGTCTGGCAGTAAAA-3’ and P2: 5’- 
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CTAGGCCACAGAATTGAAAGATCT-3’ yielding a 100-bp control band and 324-bp 

mutant band.	  	  

Pros1 gene silencing using Mx1- Cre system  

8-10 weeks old Pros1lox/loxMx1-Cre+ and Pros1lox/l-Mx1-Cre+ mice received an intraperiteal 

(i.p) injection of 250 µg of poly I: C (10µg/g) every other day for a total of three doses to 

eliminate Pros1 gene mainly in the liver and hematopoietic cells. Mice were monitored for 2 

months. 

 

Preparation of murine plasma and measurement of PS antigen by ELISA 

Mice were anesthetized with pentobarbital (40 mg/kg) and whole blood was drawn from the 

inferior vena cava into 3.13% citrate (1 vol anticoagulant/9 vol blood). Blood was centrifuged 

at 2400 g for 10 min at room temperature (RT), to obtain platelet-poor plasma (PPP).  

Wells from 96-well plates (Maxisorb, Thermo) were coated with 50 µL per well of 10 µg/mL 

of rabbit polyclonal anti-human PS (DAKO Cytomation) and incubated overnight at 4°C. 

After 3 washes with TBS buffer (0.05 M tris (hydroxymethyl)aminomethane, 0.15 M NaCl, 

pH 7.5, 0.05% Tween 20), the plate was blocked with TBS-BSA 2%. Diluted plasma samples 

(dilution range: 1:300-1:600) were added to the wells and incubated at RT for 2 h. After 3 

washings, 50 µL of 1µg/mL biotinylated chicken polyclonal anti-murine protein S were added 

and incubated for 2 h at RT. Signal was amplified by streptavidin-HRP conjugated 19 

horseradish peroxidase (Thermo) was added and plates incubated for 1 h. The plates were 

washed 3 times and 100 µL TMB substrate (KPL) was added. Reactions were stopped by 

adding 100 µL HCl (1M). Absorbance was measure at 450 nm. Standard curves were set up 

by using serial dilution of pooled normal plasma obtained from 14 healthy mice (8 males and 

6 females, 7–12 weeks old). Results were expressed in percentage relative to the pooled 

normal plasma. 

 

Tissue processing and sectioning, immunohistochemistry and microscopy 

Liver, heart, lung, ear sections (4 µm) and sagittal embryos sections (5 µm) were performed 
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from paraffin embedded tissues. No pre-treatment was applied. Tissues were stained with 

hematoxylin/eosin, Masson Trichrome or Prussian blue. Whole slides were scanned using 3D 

HISTECH Panoramic 250 Flash II, with 20x (NA 0.8), 40x (NA 0.95) air objectives. Images 

processing was done using Panoramic Viewer software. 

 

Warfarin per os treatment  

8 to 10 weeks old mice received daily 0.8 mg warfarin for a total of 5 doses. Warfarin was 

freshly prepared before administration by dissolving 5 mg of warfarin (L1G59, Bristol-Myers 

Squibb) in 15 ml H2O. A stainless steel feeding needle (FTSS-20S-38, Instech) was used. 

Mice were monitored during 12 days.  

 

Timed matings and embryos harvesting 

Pros1+/- timed matings were set to generate E14, E16 and E17.5 embryos. Mating was 

confirmed by detection of a vaginal plug and defined as day 0.5 pc. Embryos were harvested 

by dissecting the female uterus. Viability was assessed under a stereomicroscope (M80, 

Leica) coupled to a camera (MC170 HD, Leica) and photographed. DNA was extracted from 

the tails for genotyping. Embryos were then fixed in 4% paraformaldehyde (PFA) and 

embedded in paraffin. 

 

Whole embryo or embryonic dorsal skin whole mount and immunofluorescence 

Collected E11 embryos or embryonic dorsal skin (E16) were rinsed several times with ice-

cold PBS and fixed in PFA 4% overnight. After 3 washings with ice-cold PBS (15 min each), 

they were incubated overnight in blocking buffer containing 0.5% BSA, 5% donkey serum 

(AbD Serotec), 0.3% Triton X-100,  0.1% Sodium Azide and  PBS. The following antibodies 

(Abs) were used: PE conjugated anti-mouse PECAM1 (561073, BD Biosciences) 1:400 

dilution; PE conjugated anti-mouse Ter119 (12-5921, Ebiosciences) 1:400 dilution; anti-

mouse Lyve1 (MAB2125, R&D Systems) and anti-mouse VE Cadherin (ab33168, Abcam), 

both Abs were diluted 1:200 and Alexa Fluor 488 conjugated goat anti-rabbit (ab150077, 
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Abcam) used as secondary Ab at 1:500 dilution; anti-human fibrin (mAb clone 102-10) [175] 

at  a final concentration of 15.6 µg/mL and secondary Ab Alexa Fluor 488 conjugated goat 

anti-human, (A-11013, ThermoFisher) 1:500 dilution; anti-mouse F4/80 (ab6640, Abcam) 

1:100 dilution and secondary Ab Alexa Fluor 568 conjugated goat anti-rat  (ab175476, 

Abcam) 1:500 dilution. Tissues were incubated in primary Abs overnight then extensively 

washed with washing buffer (0.3% Triton X-100 in PBS) before overnight incubation with 

secondary Abs. Next, stained tissues were washed 10 times (30 minutes each) and fixed in 

PFA 4%, mounted with ProLong Gold Antifade Mountant (P36930, ThermoFisher), dried 

overnight before microscopic observation. Tissues collection, incubation and washing steps 

were performed at 4°C. Staining was examined using the Zeiss LSM710 Laser scanning 

microscope for Z stacks (whole tissue thickness was identified by the top and bottom limits of 

fluorescence signal detection). EC Plan-Neofluar 40x/1.30 Oil DIC M27 /a=0.21mm was 

used as objective.  

Images were acquired and optimized with ZEN system software. Imaris software (Bitplane 

AG, Switzerland) was used for visualisation of 3D confocal data, volume and surface 

rendering. Blood vascular networks, volume and branching, lymphatic vasculature volume 

were quantitatively estimated by unbiased stereological method [176]. Surface-related 

distribution was assessed by STEPanizer software [177]. 

 

Colony forming assay from embryonic liver 

Single-cell suspensions from E14 fetal livers were prepared from finely minced livers using 

scissors. Next, cell aggregates were disrupted by passage through a 26-gauge needle. After a 

washing step with Iscove's MEM (31980048, Lifetechnologies) supplemented with 2% FBS 

(10082147, Lifetechnologies), 2.105 cell were plated with MethoCult™ medium (GF M3434, 

StemCell technologies) in Pre-tested 35 mm culture dishes (#27100, StemCell technologies). 

BFU-E were counted at day 7 and CFU-E at 12 days. 
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Flow cytometry on embryonic liver single-cell suspensions 

Single-cell suspensions from E14 fetal livers were prepared as described above. Cells were 

then washed twice in FACS buffer (PBS with 2% FBS). After a centrifugation step, the 

remaining cell pellet was resuspended and incubated for 5 min at 4 °C in FACS buffer 

containing 1% FC block (anti-CD16/CD32, eBioscience). After an additional centrifugation, 

2.105 cells were incubated for 30 min on ice with FITC conjugated anti-mouse CD71 

(553266, BD Biosciences) diluted 1:200 and anti-mouse Ter119-PE (553673, BD 

Biosciences) diluted 1:200. Cells were then washed in FACS buffer, centrifuged at 1500 g for 

5 min at 4°C and fixed in 2% PFA. Cells were analysed using an LSR II flow cytometer (BD 

Biosciences) and FACS Diva 7.0 software (BD Biosciences). Gating strategy was defined 

according to literature [178]. Cell-surface markers CD71, Ter119 and cell size were used as 

parameters to identify developmental sequence of 5 subsets (S1, S2, S3, S4 and S5) 

corresponding to increasingly mature erythroblasts. 

 

Cytospin on embryonic liver single-cell suspensions 

Single-cell suspensions from E14 fetal livers were prepared as previously described. After 

washing step with Iscove's MEM supplemented with 2% FBS, 2.105 cell were used to attach 

on a cytospin slide (500rpm/ 5min). Cells on cytospin slides were stained with May-

Grunwald-Giemsa (MGG) before observation under optical microscope. 

 

Statistical methods 

Values were expressed as mean plus or minus s.e.m. A Chi-square for non-linked genetic loci 

was used to assess the Mendelian allele segregation. Survival data in the warfarin treatment 

were plotted using the Kaplan-Meier method. A log-rank test was used to statistically 

compare the curves (Prism 6.0d; GraphPad). The other data were analysed by t-test, one-way 

and two-way ANOVA test with GraphPad Prism 6.0d. A P-value of less than 0.05 was 

considered statistically significant. 
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2.3 Results  
 
 
A low plasmatic level of PS was sufficient to protect Pros1lox/-Mx1-Cre+ from PF 

In order to reduce PS and mimic acquired PS deficiency, 8 to 10 weeks old Pros1lox/loxMx1-

Cre+ and Pros1lox/-Mx1-Cre+ mice were injected intraperitoneally 3 times with 250 µg poly I: 

C. After a resting period of 10 days, mice were sacrificed. Immunohistochemical analysis of 

sections indicated spontaneous thrombosis in lung, heart and liver sections from both 

Pros1lox/loxMx1-Cre+ and Pros1lox/loxMx1-Cre+ mice. However, no PF lesions were observed 

within a 2-month observation period (Fig.1, a-c). Plasmatic PS (antigenic) level was 

investigated by ELISA. As expected, Pros1lox/lox (n=16) and Pros1lox/- (n=8) control mice had 

respectively 103.1% ± 3.259% and 39.46% ± 4.576% PS antigenic level (P<0.0001) (Fig.1, 

d). Differently, Pros1lox/loxMx1-Cre+ mice (n=17) had 48.27% ± 2.787% PS antigenic level 

while Pros1lox/-Mx1-Cre+ mice (n=11) displayed further reduced PS level: 16.63% ± 2.039% 

(P<0.0001) (Fig.1, e). The poly I: C-inducible Mx1-Cre recombination stability was 

investigated over time (70 days after the last poly I: C injection) and found stable. These 

results suggest that very low circulating PS level (16.63% ± 2.039%) is sufficient to protect 

mice against PF. 

 

Warfarin treatment reproduced PF only in a few Pros1+/- mice 

To evaluate if a very low PS plasmatic level could be achieved, 8 to 12 old Pros1+/+  (n=13) 

and Pros1+/- mice (n=8) received per os, 5 doses of 0.8mg warfarin per day. As a vitamin K 

antagonist, warfarin should prevent the gamma-carboxylation of PS requiring vitamin K, and 

the production of its active form, resulting in low active PS level in the circulation. We 

monitored mice survival and found that differently to Pros1+/+, most of Pros1+/- mice 

succumbed to the warfarin challenge (12 vs 92%, respectively) (Fig.2, a). Only a few 

surviving Pros1+/- mice developed lesions that are compatible with PF. Interestingly, 

macroscopical analysis of ears skin of these mice revealed highly visible ears skin vessels at 

day one of the warfarin treatment. After 4 days, the hemorrhagic infarction of the skin was 
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more visible. 7 days later, there was a  complete ear skin necrosis. Histological analysis of the 

developed lesions using Masson’s Trichrome staining revealed that at day 1 of the treatment, 

a small number of thrombi were observed together with intradermal edema. 4 days later, a 

prominent vascular engorgement was visualised. After 7 days, there was a massive 

extravasation of red blood cells (RBC) in the surrounding areas of the vessels with several 

intra-epidermal hemorrhagic blisters (Fig.2, b). The evaluation of the formed skin lesions 

over time revealed thrombi occurring together with vascular wall damage. These data suggest 

that the endothelium may play an important role in PF development.  

 

Fibrin deposition and vasculature disruption in whole mounted Pros1-/- embryo’s dorsal 

skin 
To investigate the role of PS in the vasculature, Pros1+/+ and Pros1-/- embryos were generated 

by intercrossing Pros1+/- adults mice. As expected and previously described [95, 96], 

macroscopic observation revealed in utero Pros1-/- dead embryos between E14 and full term 

with large thrombi and massive hemorrhages throughout the body (Fig.3, a,b). These 

anomalies were never observed in Pros1+/+ embryos. Histological examination of Pros1-/- 

embryos sections showed intracranial hemorrhages with brain necrosis. Besides, RBC were 

present in the extra-vascular compartments particularly in the back pointing to a severe 

vascular defect (Fig.3, c,d). The dorsal skin of E16 Pros1+/+ and Pros1-/- embryos was than 

whole mounted and immunostained. Anti-fibrin and anti-PECAM1 antibodies (Ab) 

immunofluorescence (IF) indicated well-formed and branched vascular network in Pros1+/+ 

embryos (Fig.3, e). In contrast, intra- and extra-vasal insoluble fibrin (Fig.3, f) was found 

with destruction of the vascular bad (Fig.3, g) in Pros1-/- embryos. IF with anti-VE-Cadherin 

and anti-Ter119 Ab showed tight vascular endothelial cell junctions with RBC within the 

vessels in Pros1+/+ embryos (Fig.3, h). Differently, massive RBC extravasation, 

underdeveloped and collapsed vascular network were observed in Pros1-/- embryos (Fig.3, i). 

Furthermore, areas with rare and dispersed vascular structures were found in Pros1-/- (Fig.3, 

j). To evaluate the extend of the vasculature defect in Pros1-/-, anti-PECAM1 IF was 
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performed in the dorsal skin of Pros1+/+ and Pros1-/- embryos. Interestingly, very reduced and 

distributed immunostaing was found in poorly formed vascular networks with few vessels 

branch points in Pros1-/- as compare to Pros1+/+ embryos. Pros1-/- and Pros1+/+ vasculature 

density was quantified using an unbiased stereological approach. Although not statistically 

significant, the dorsal skin of Pros1-/- embryos displayed reduced vascular volume as 

compared to Pros1+/+ embryos (18.67 ± 0.8819 vs 22.33 ± 1.856, n=3, respectively) (Fig.3,k). 

Vessels’ branching was also examined. Approximately 2 times more branch points were 

found in Pros1+/+ as compare to Pros1-/- embryos (11.07 ± 0.636 vs 5.7 ± 0.7572, n=3, 

respectively. P<0.005) (Fig.3, l).  

One question arises from the examination of the vasculature: are the observed vascular 

defects secondary to thrombosis and PF or due to the absence of PS role in the vasculature? 

Conflicting data claiming pro- or anti-angiogenic functions of PS were previously published 

[96, 113, 116].  In this study, we aimed to evaluate the vasculature before PF begun.  

PF starts at around E14. In practice, since the embryonic dorsal skin whole mount could not 

be accomplished earlier than E15.5, we then decided to perform anti-PECAM1 IF in whole 

mounted E11 Pros1+/+ and Pros1-/- embryos to evaluate the vasculature before PF starting. 

Surprisingly, the size of vessels was smaller with undeveloped vasculature hierarchy in 

Pros1-/- embryos as compare to Pros1+/+ (Fig.3, m,n). Therefore, in Pros1-/- embryos, the 

vasculature is disturbed before PF starts. These results confirmed that during PF, not only the 

thrombotic process is relevant. The involvement of PS in vasculature development should 

also be considered and PS assuredly plays a prominent role during angiogenesis. 

 

PS complete deficiency promotes inflammation  

To explore the inflammatory process in the context of PS complete deficiency, The dorsal 

skin of E16 Pros1+/+ and Pros1-/- embryos was immunostained with anti-PECAM1 and anti-

Lyve1 ab. Intriguingly, Pros1-/- embryos displayed massively enlarged lymphatic vessels as 

compared to discret ones in Pros1+/+ (Fig.4, a,b). Unbiased stereological analysis revealed 

about 3 times higher lymphatic vasculature volume in Pros1-/-  as compared to Pros1+/+ 
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embryos (11.43 ± 0.6984 vs 2.967 ± 0.393, n=3, respectively, P<0.0005) (Fig.4, c). 

Furthermore, anti-F4/80 IF showed greater macrophages infiltration in Pros1-/-  than in 

Pros1+/+ embryos (Fig.4, d,e). Thus, complete PS deficiency promotes inflammation.  

 

PS complete deficiency causes erythropoietic and phagocytic defects. 

It was previously described that Pros1-/-  embryos exhibit pallor in the feet and the nose that 

could be due to anemia secondary to bleeding [95]. We then further explored the role of PS in 

erythropoiesis. Histology of major blood vessels and liver from Pros1+/+ and Pros1-/-  embryos 

revealed a high number of circulating immature RBC (Fig.5, a,b: arrows head). The 

percentage of circulating nucleated RBC was approximately 2 fold higher in Pros1-/- as 

compared to Pros1+/+  embryos (7.7 ± 0.6658 vs 4.033 ± 0.1453, respectively, n=3 per group, 

P<0.005) (Fig.5, c) compatible with increased erythropoiesis possibly due to severe bleeding 

due to consumption coagulopathy and vascular damage in Pros1-/- embryos. To explore 

whether the anemia could be attributable to a defect in erythroid progenitor cells or 

exclusively secondary to bleeding, liver cell cytology from E14.5 embryos was performed. 

We found higher erythroid islands with a central macrophage surrounded by immature 

erythroblasts (Fig.5, d, e arrows) and less mature RBC (Fig.5, d, e arrows head) in Pros1-/-  as 

compared to Pros1+/+ embryos (Fig.5, d,e). Furthermore,  equal numbers of liver single-cell 

suspension from E14.5 Pros1+/- and Pros1-/-  embryos were plated in vitro for colonies 

forming assay (CFA). After 7 days, BFU-E colonies number was similar in Pros1+/- and 

Pros1-/- (6.833 ± 1.249, n=6  vs 7.75 ± 1.109, n=4, respectively) (Fig.5, f). Differently, fewer 

CFU-E colonies developed in Pros1-/- as compared to Pros1+/- (42.8 ± 4.633 vs 77.8 ± 9.566, 

n=5 per group, P<0.05) (Fig.5, g). To further examine the involvement of PS in the 

erythropoietic process, liver single-cells suspension were also analysed by flow cytometry. 

Cell-surface markers CD71, Ter119 and cell size were used as parameters to identify 

developmental sequence of 6 subsets (S0, S1, S2, S3, S4 and S5) corresponding to 

increasingly mature erythroblasts (Fig.5, h). Pros1-/-  embryos displayed fewer mature RBC as 

compared to Pros1+/- (0.1 ± 0.01 vs 0.276 ± 0.04, n=3 per group, P<0.05) (Fig.5, i). These 
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data confirmed results obtained from cytospin and CFA experiments and suggest a prominent 

role of PS during erythroid cells differentiation. Since PS is a multifunctional protein that also 

has the capacity to stimulate macrophage phagocytosis by binding to and activating TAM 

RTKs [153, 179], we examined whether the lack of PS could affect phagocytosis in Pros1-/-

embryos. Interestingly, inspection of embryonic Pros1-/-  blood vessels showed numerous 

isolated nuclei that were not phagocyted by macrophages as compared to Pros1+/+ embryos 

(Fig.5, b: arrows). Thus, the lack of PS also impaired phagocytosis. 

 

 Gas6-PS combined deficiency did not prevent PF and embryonic lethality observed in 

Pros1-/-  mice 

Gas6-/- adult mice were previously described to be protected against venous and arterial 

thrombosis [13]. Therefore, we hypothesized that combining Gas6 and PS deficiency could 

restore the hemostatic balance and rescue Pros1-/- embryos from PF. In this regard, Pros1+/-

Gas6-/- adult mice were intercrossed in order to obtain viable Pros1-/-Gas6-/-mice. Among 120 

litters genotyped, no viable Pros1-/- Gas6-/- was found indicating, as for Pros1-/- embryos, in 

utero mortality. We then decided to set timed matings Pros1+/-Gas6-/- to investigate the Pros1-

/-Gas6-/- embryonic phenotype. The macroscopical analysis of Pros1-/-Gas6-/-embryos 

harvested at different embryonic stages revealed large blood clots and massive hemorrhages 

throughout the body (Fig.6, a). Interestingly, Pros1-/-Gas6-/-embryos displayed signs of PF 

appearing earlier as compare to Pros1-/- embryos. Indeed, at E14, 80% (8/10) of Pros1-/-Gas6-

/- embryos exhibited widespread hemorrhages versus only 36% (4/11) for Pros1-/-Gas6+/+ 

embryos whereas at E16, 100% embryos (7/7 for Pros1-/-Gas6-/- and 14/14 for Pros1-/- 

Gas6+/+) displayed widespread hemorrhages (Fig.6, c). In addition, embryos mortality rates 

where higher when issued from Pros1+/-Gas6-/- matings. Indeed, at E14, 8% (3/35) dead 

embryos were found from Pros1+/-Gas6-/- matings versus only 2% (1/46) from Pros1+/-

Gas6+/+ matings. Similarly at E16, 25% (8/32) dead embryos were found in Pros1+/-Gas6-/- 

matings versus  only 4% (3/62) in Pros1+/-Gas6+/+ matings (Fig.6, d). 
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Furthermore, Pros1-/-Gas6-/-embryos were under represented. With 25% expected Gas6-/-

Pros1-/- embryos (Mendelian frequency), at E14, E16 and E17.5, only 17%, 18% and 16% 

were respectively observed. Exclusively when issued from Pros1+/-Gas6-/- matings, from E16 

onwards, nearly 10% (7/72) of embryos were found underdeveloped, macerated and necrotic 

indicating their earlier death as compare to Pros1-/- embryos (Fig.6, b). Thus, combined 

deficiency in Gas6 and PS did not rescue Pros1-/- embryos from fatal PF, the Pros1-/-Gas6-/- 

phenotype appearing more dramatic with earlier and more frequent embryonic death.  

 

Pros1-/-Gas6-/-embryos display vascular defects and inflammation.  
 
As for Pros1-/- embryos, Pros1-/-Gas6-/- embryonic dorsal skin was used for immunostaining. 

Anti-fibrin and anti-PECAM1 Ab IF allowed the detection of intra- and extra-vasal insoluble 

fibrin and damaged vasculature in Pros1-/-Gas6-/- but not in Pros1+/+Gas6-/- emrbyos. IF with 

anti-VE-Cadherin and anti-Ter119 Ab showed tight endothelial vascular cell junctions and 

RBC within the vessels in Pros1+/+Gas6-/- emrbyos. In contrary, massive RBC extravasation, 

blood overfilled vessels and underdeveloped vascular network were observed in Pros1-/-Gas6-

/- embryos (Fig.6, e). Anti-PECAM1 and anti-Lyve1 ab IF showed hyperplasic lymphatic 

vessels in Pros1-/-Gas6-/- as compared to Pros1+/+Gas6-/- embryos indicating ongoing 

inflammatory process (Fig.6, f, g). 

 

Combined deficiency in Gas6 and PS is responsible of more severe erythropoitic defects 

Previous reports indicated that Gas6 plays a critical role in the generation of erythroid 

progenitors and erythroblasts [81]. Here we assessed the consequence of combined PS and 

Gas6 deficiency in this process. Histology of major embryonic blood vessels indicated the 

presence of a higher number of immature erythrocytes in Pros1-/-Gas6-/- as compare to 

Pros1+/+Gas6-/- embryos (data not shown). Results of cytospin from fetal liver single-cells 

suspension showed a higher number of erythroid islands (Fig.7, a, b arrows) and less mature 

RBC (Fig.7, a, b arrows head) in Pros1-/-Gas6-/- compared to Pros1+/+Gas6-/- embryos. Equal 

number of liver cells isolated from Pros1+/-Gas6-/- and Pros1-/-Gas6-/- embryos were plated for 
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CFA. Differently to Pros1+/-Gas6-/-, Pros1-/-Gas6-/- contained less BFU-Es (5 ± 1, n=3 vs 8.5 

± 0.866, n=4, respectively, P<0.05) (Fig.7, c) and less CFU-Es (51.25 ± 3.75, n=4 vs 32.67 ± 

6.207, n=3, respectively, P<0.05) (Fig.7, d). Moreover, very high level of hypochromic 

erythrocytes was exclusively found in Pros1-/-Gas6-/- suggesting troubled iron metabolism 

linked to inflammation and iron recycling (Fig.7, e, f arrows). Additionally, specific iron 

staining (Prussian blue) revealed higher iron deposition in Pros1-/-Gas6-/- embryonic tissue 

further confirming disturbed iron metabolism (Fig.7, g, h). Thus, the absence of PS and Gas6 

leads to a more dramatic deficit in embryonic erythroid precursor cells and altered iron 

recycling compared to single PS deficiency.  

Like for PS, several reports highlighted the role of Gas6 in phagocytosis [81, 179]. 

Histological investigation of major blood vessel revealed altered clearance of isolated nuclei 

by macrophages in Pros1-/- Gas6-/- and not in Pros1+/+Gas6-/- (Fig.7, e, f arrows head) 

indicating altered phagocytosis. 

 

 
2.4 Discussion   

PS complete deficiency leads to fatal PF [117] [118]. The pathophysiological mechanism of 

PF remains enigmatic. The results of this study provide new insights into PF lesions 

development. As for human, we confirmed that Pros1-/- mice died in utero from massive 

hemorrhages and DIC. Our first approach to understand PF etiology was to knock down 

Pros1 gene in adult Pros1lox/- mice by using the Mx1-Cre system to achieve null or very low 

PS level in order to subsequently induce PF. With 16% PS in their plasma, polyI:C treated 

Pros1lox/-Mx1cre+ mice did not develop PF demonstrating that a low level of PS could still 

protect mice against PF. Patients with parcial PS deficiency display higher VTE risk [92]. 

Pros1+/- mice displayed accelerated clotting in plasma [96] and increased number of thrombi 

in the lungs after tissue factor-induced thromboembolism challenge [95]. Similarly, the 

investigation of organs (liver, lung and heart) from Pros1lox/loxMx1-Cre+ and Pros1lox/-Mx1-

Cre+ mice treated with polyI:C (48% and 16% plasmatic PS respectively) confirms that PS 
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partial lack induces thrombosis. Like factor II, VII, IX, protein C, and Z, PS needs vitamin K 

as cofactor for post-translational γ-glutamylcarboxylation to achieve full biological activity 

[180]. By interfering with the vitamin K–driven γ-carboxylation process, warfarin is widely 

used as a long-term anticoagulation therapy in humans. In rare cases (0.01%-0.1%), large 

doses of warfarin treatment provoke skin necrosis as an adverse drug reaction [181]. Our 

second strategy was then to administer warfarin to Pros1+/-  mice to further drop PS and 

induce PF. Despite the high mortality rates under this medication, only a few mice developed 

lesions compatible with PF. The analysis of these lesions over time revealed that during PF 

development, the vasculature is disrupted with more permeable and leaky vessels. Previous in 

vitro studies claimed a role of PS in vasculature development and maintenance [113] [114]. In 

vivo, the lack of PS impairs the vascular development [96]. Up to date, the mechanism of PF 

development in the context of PS complete deficiency is controversial [119, 182]. One 

hypothesis is that the lack of PS causes imbalance of the hemostatic balance and provokes 

thrombosis that subsequently damages the vessels. However, this hypothesis did not take into 

consideration that besides its role as an anticoagulant, PS exerts important roles in the 

endothelium, phagocytosis and immunity. Consequently, an answer to the question whether 

PS deficiency induced PF is exclusively secondary to thrombosis or rather due to the lack of 

PS signaling in endothelium or both is still awaited. In order to respond to this question, we 

decide to characterize the vasculature of Pros1-/-  embryos. As expected, the lack of PS leads 

to thrombosis with insoluble fibrin deposition within the vessels. Nevertheless, poor 

vasculature hierarchy, leaky vessels and areas without any vascular structures were 

exclusively observed in E16 Pros1-/- embryos presenting PF. Since PF starts at about E14, we 

supposed that these vascular defects might be secondary to PF. We studied E11 Pros1-/- 

embryos and surprisingly, vascular defects were also evident before PF begins.  Our findings 

suggest that contradictory to what is currently admitted,  PS deficiency induced PF is not 

strictly secondary to the imbalance of pro- and anticoagulant factors, but also to the lack of 

PS signaling in the endothelium. Since PS plays also a role in phagocytosis [153] and 

inflammation [167], we investigated whether this two biological processes were altered in 
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Pros1-/- embryos. Remarkably, numerous isolated nuclei were not efficiently phagocyted by 

macrophages in Pros1-/- embryos. In addition, hyperplastic lymphatic vessels and macrophage 

infiltration highlighted prominent signs of inflammation. Thus, the lack of PS causes 

inadequate phagocytosis and promotes inflammation. The role of PS in erythropoiesis was not 

previously addressed. We know from previous reports that Pros1-/- embryos exhibit pallor that 

could be due to anemia secondary to bleeding [95] and that Axl and Mer might influence 

erythropoiesis [83]. Since PS is a well known ligand for Mer, we investigated if the lack of 

PS could impair erythropoiesis. We found high number of circulating immature RBC and less 

CFU-E in E14 Pros1-/- embryos. These erythropoietic defects might be secondary to bleeding 

and consumptive coagulopathy occurring during PF but this does not rule out that PS might 

play a direct role in erythropoiesis. Further experiments examining the erythropoietic process 

before PF beginning in Pros1-/- will elucidate the implication of PS. 

Our strategy to combine PS and Gas6 deficiencies was motivated by the hypothesis that PF 

derives strictly from the hemostatic imbalance due to lack of PS anticoagulant activity. Since 

Gas6-/- mice are protected against thrombosis, we expected to rebalance the hemostatic 

balance and rescue Pros1-/- from fatal PF. Intriguingly, no viable Pros1-/-Gas6-/- mice were 

observed. The investigation of Pros1-/-Gas6-/- embryos revealed a more severe phenotype and 

a higher mortality as compared to Pros1-/- embryos. Similar to Pros1-/-, vascular defects, 

ongoing inflammation and altered phagocytosis were observed in Pros1-/-Gas6-/- embryos.  

Gas6 plays a prominent role in erythropoiesis and its lack decreases embryonic erythroid 

precursor cells [81]. The examination of  the erythropoietic process in Pros1-/-Gas6-/- indicates  

more extensive erythropoiesis impairment with iron recycling defects. This could be 

explained by an accumulative alteration of the erythropoiesis due to the absence of both PS 

and Gas6. 

In conclusion, our findings provide evidence that the thrombotic process occurring in the 

context of PF induced by PS deficiency might be less central than currently admitted. PS 

possibly plays an important role in vasculature development. The lack of its signalling in the 

endothelium might lead to vascular defects and promotes PF. Further investigations are 
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required to better characterise the mechanism by which PS is involved in vascular 

development and maintenance.  

 

2.5 Figures: 

 
 

 

Figure 1: Partial Pros1 gene silencing using Mx1Cre system  

Pros1lox/loxMx1-Cre+ and Pros1lox/-Mx1-Cre+ mice were injected 3 times i.p. with 250 µg poly 

I: C every other day. Ten days after, mice were sacrificed and the organs were collected. a, b, 

c, microscopic evaluation of liver, heart and lungs stained with Masson’s Trichrome, bar size 

100 µm. d, plasmatic PS (antigenic) level measured by ELISA in Pros1lox/lox (n=16), Pros1lox/- 

(n=8), e, Pros1lox/loxMx1-Cre+ (n=17) and Pros1lox/-Mx1-Cre+ (n=11) mice. Measurements are 

presented as mean±s.e.m. ****, P<0.0001.  
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Figure 2: Warfarin treatment to reduce the level of plasmatic protein S and induce 

purpura fulminans 

a, Kaplan Meier plots of Pros1+/+  (n=13) and Pros1+/- (n=8) mice survival after warfarin per 

os treatment (5 doses of 0.8mg/ day). b, macroscopic images of ears from Pros1+/- mice 1, 4 

and 7 days h after warfarin treatment and corresponding microscopic evaluation (Masson’s 

Trichrome) data were pooled from multiple independents experiments. Bar size 100µm. 
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Figure 3: Complete deficiency in protein S alters vasculature 

a, b, macroscopical observations of E16 Pros1-/- embryo with purpura fulminans and 

corresponding microscopic evaluation of H&E stained sections c, d. e-j: Pros1+/+ and  Pros1-/- 

embryonic whole mounted dorsal skin (E16) immunofluorescence (IF) using anti-fibrin 

antibody (Ab) in green and anti-PECAM1 Ab in red (e-g), anti-VE Cadherin Ab in green and 

anti-Ter119 in red (h-j). Anti- PECAM1 IF of E11 Pros1+/+ and  Pros1-/- whole mounted 

embryos (m, n). Bar size 30µm. k, evaluation of vascular density and (I) vessels branching in 

Pros1+/+ (n=3) and Pros1-/- (n=3) embryonic dorsal skin using stereology and STEPanizer 

software. All data are expressed as mean±s.e.m. ns, not significant **, P<0.005. 

 

Figure 4: Protein S complete deficiency increases inflammation. 

a, b, Pros1+/+ and Pros1-/-embryonic whole mounted dorsal skin (E16) immunofluorescence 

using anti-Lyve1 antibody (Ab) in green and anti-PECAM1 Ab in red (d,e), anti-F4/80 Ab in 

green. Bar size 30µm. c, evaluation of lymphatic vasculature density in Pros1+/+ (n=3) and 

Pros1-/- (n=3) embryonic dorsal skin using stereology and STEPanizer software. All data are 

expressed as mean±s.e.m. **, P<0.005. 
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Figure 5: Protein S complete deficiency provokes erythropoietic defects.  

a, b, microscopic evaluation (H&E) of embryonic (E16) major blood vessels from Pros1+/+ 

and Pros1-/-. c,  quantification of circulating RBC that still contain their nuclei in Pros1+/+ 

(n=3) and Pros1-/- (n=3). d, e, 2.105 liver (E14.5) single-cells suspension cytospin from 

Pros1+/+ and Pros1-/-. f, g,  2.105 liver single-cells suspension (E14) Pros1+/- (n=5) and Pros1-/-  

(n=4) were plated in vitro for colonies forming assay (CFA). BFU-E colonies were scored 

after 7 days and CFU-E colonies after 12 days. h, liver single-cells suspension (E14) were 

used for FACS analysis. Cell-surface markers CD71, Ter119 and cell size were used as 

parameters to identify developmental sequence of four 6 subsets (S0, S1, S2, S3, S4 and S5) 

corresponding to increasingly mature erythroblasts. i, evaluation of cell-surface markers 

CD71, Ter119 and cell size to identify mature RBC percentage (S5) in Pros1+/-  and Pros1-/-  

(n=3 per group). All data are expressed as mean±s.e.m. ns, not significant, *, P<0.05.**, 

P<0.005. 
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Figure 6: Gas6/PS combined deficiency did not prevent PF  

a, macroscopical observations of E16 Pros1-/-Gas6-/-  embryo with purpura fulminans and 

macerated embryos (b). c, evaluation of hemorrhages frequency in Pros1-/-Gas6+/+ (n=11 for 

E14 and n=14 for E16) and Pros1-/-Gas6-/- (n=10 for E14 and n=7 for E16). d, evaluation of 

embryos mortality at E16 in Pros1+/-Gas6+/+ and Pros1+/-Gas6-/- matings. e, embryonic whole 

mounted dorsal skin (E16) immunofluorescence using anti-VE Cadherin Ab in green and 

anti-Ter119 in red, (f,g) anti-Lyve1 antibody (Ab) in green and anti-PECAM1 Ab in red. Bar 

size 30µm. 
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Figure 7: Protein S and Gas6 combined deficiency leads to erythropoietic defects.  

a, b, microscopic evaluation (H&E) of embryonic (E16) major blood vessels from 

Pros1+/+Gas6-/- and Pros1-/-Gas6-/-. c,d, 2.105 liver (E14.5) single-cells suspension cytospin 

from Pros1+/+Gas6-/-  and Pros1-/-Gas6-/- . e, f,  2.105 liver single-cells suspension (E14.5) 

Pros1+/- (n=5) and Pros1-/-  (n=4) were plated in vitro for colonies forming assay (CFA). BFU-

E colonies were scored after 7 days and CFU-E colonies after 12 days. g,h, microscopic 

evaluation (Prussian blue) of iron deposition in embryonic (E16) blood vessels from 

Pros1+/+Gas6-/- and Pros1-/-Gas6-/- liver (E14.5) All data are expressed as mean±s.e.m. *, 

P<0.05. 
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Abstract 
 
Improved treatments are needed for hemophilia A (HA) and B (HB), bleeding disorders 

affecting 400,000 people worldwide. Here we report that targeting protein S (PS), an 

anticoagulant acting as cofactor for activated protein C (APC) and tissue factor pathway 

inhibitor (TFPI), rebalances coagulation in hemophilia. PS gene targeting in hemophilic mice 

protected them against bleeding, especially when intra-articular. Mechanistically, these mice 

displayed increased thrombin generation, APC and TFPI resistance, and improved fibrin 

network. Blocking PS in plasma of hemophilia patients normalized in vitro thrombin 

generation. Both PS and TFPIα were detected in hemophilic mice joints. PS and TFPI 

expression was stronger in joints of HA than HB patients when receiving on demand therapy, 

e.g., during a bleeding episode. In contrast, PS and TFPI were decreased in HA patients 

receiving prophylaxis with coagulation factor concentrates. These results establish PS 

inhibition as both controller of coagulation and potential therapic target in hemophilia.  
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HA and HB are hereditary X-linked disorders [183-185]. They are caused by mutations in 

factor VIII (FVIII) gene (F8) or factor IX (FIX) gene (F9), respectively, leading to the 

deficiency of the encoded protein that is an essential component of the intrinsic pathway of 

blood coagulation (Fig. 1a). One of the major coagulation complexes is the intrinsic tenase 

(X-ase) complex [186] (Fig. 1a). X-ase comprises activated FIX (FIXa) as the protease, 

activated FVIII (FVIIIa) as the cofactor, and factor X (FX) as the substrate. Although the 

generation or exposure of tissue factor (TF) at the site of injury is the primary event in 

initiating coagulation via the extrinsic pathway, the intrinsic pathway X-ase is important 

because of the limited amount of available active TF in vivo and the presence of TFPI which, 

when complexed with activated FX (FXa), inhibits the TF/activated factor VII (FVIIa) 

complex[187] (Fig. 1a). Thus, sustained thrombin generation depends upon the activation of 

both FIX and FVIII[188] (Fig. 1a). This process is amplified because FVIII is activated by 

both FXa and thrombin, and FIX, by both FVIIa and activated factor XI (FXIa), the latter 

factor being previously activated by thrombin. Consequently, a progressive increase in FVIII 

and FIX activation occurs as FXa and thrombin are formed. 

Patients with severe hemophilia often suffer from spontaneous bleeding within the 

musculoskeletal system, such as hemarthrosis, defined as bleeding into joint spaces. This can 

result in disability at a young age if left untreated[189]. 

Current treatment of HA and HB respectively involves FVIII and FIX replacement therapy. 

This therapy improves quality of life (QoL) but some drawbacks remain. Besides the short 

half-life of the replacement factors, the most currently challenging complication of 

hemophilia therapy is the development of inhibitory alloantibodies against FVIII or FIX. 

Inhibitors render replacement therapy ineffective, limit patient access to a safe and effective 

standard of care and predispose them to an increased morbidity and mortality risk.  

 

New therapies focus on the development of products capable of decreasing the frequency of 

prophylactic infusions, thus potentially improving both compliance to therapy and QoL. 
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Besides long-lasting FVIII and FIX, novel approaches comprise the replacement of the gene 

necessary for production of endogenous coagulation factor, the bispecific antibody 

technology to mimic the coagulation function of the missing factor, and the targeting of 

coagulation inhibitors such as TFPI or antithrombin as a strategy to rebalance coagulation in 

patients with hemophilia[190]. Recently, it was shown that an APC-specific serpin rescues 

thrombin generation in vitro and restores hemostasis in hemophilia mouse models[191]. 

 

Here, we investigated whether targeting PS[192] could promote hemostasis in hemophilia by 

re-balancing coagulation (Fig. 1b). PS, encoded by the PROS1 gene, acts as cofactor for APC 

in the inactivation of factor Va (FVa) and FVIIIa[98], and for TFPI in the inhibition of 

FXa[103, 193]. This dual role makes PS a key regulator of thrombin generation. The 

importance of PS as an anticoagulant is illustrated by the dramatic clinical manifestations 

observed in homozygous and compound heterozygous patients with severe PS 

deficiency[117]. Homozygous PS deficiency leads to purpura fulminans and disseminated 

intravascular coagulation (DIC) that are fatal if untreated. Heterozygous PS deficiency has 

variable penetrance, but can be associated with an increased risk of thromboembolic 

events[84, 194].  

 

Previous studies showed that Pros1-/- mice are not viable and die in utero in late gestation 

with a phenotype quite similar to the one observed in human[95, 96]. We therefore consider 

Pros1-/- mice as a good model of the human disease. 
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Results 

Loss of X-ase activity rescues Pros1-/- mice 

In order to generate F8-/-Pros1-/- mice, we first crossed Pros1+/- females with F8-/- males, 

producing 25% F8+/-Pros1+/- progeny. F8+/-Pros1+/- females were then bred with F8-/- males 

resulting in 25% F8-/-Pros1+/- progeny (Extended Data Fig. 1a-c). Similar observations were 

made with F9-/-Pros1+/- mice (Extended Data Fig. 1d-f). Of 295 pups from F8-/-Pros1+/- 

breeding pairs, 72 (24%) were F8-/-Pros1+/+, 164 (56%) were F8-/-Pros1+/- and 59 (20%) were 

F8-/-Pros1-/- (χ2=4.8, P=0.09). Thus, F8-/-Pros1-/- mice were present at the expected Mendelian 

ratio. In contrast, of 219 pups from F9-/-Pros1+/- breeding pairs, 56 (26%) were F9-/-Pros1+/+, 

132 (60%) were F9-/-Pros1+/- and 31 (14%) were F9-/-Pros1-/- (χ2=14.95, P=0.001). This is 

compatible with a transmission ratio distortion for F9-/-Pros1-/-  mice consistent with the 

decreased litter sizes compared to those of matings from the same genetic background 

(5.2±0.7 versus 9.8±1.8, n=4 matings/over 3t generations, P=0.046). To confirm the 

genotyping results of F8-/-Pros1-/- and F9-/-Pros1-/- mice, FVIII and FIX, respectively, and PS 

levels were measured at 6-8 weeks of age (Fig. 1c-d). As expected, F8-/-Pros1-/- and F9-/-

Pros1-/- mice did not have detectable FVIII and FIX plasma activity, respectively and PS was 

not detected in F8-/-Pros1-/- and F9-/-Pros1-/- mice plasma (Fig. 1c-d). PS plasma levels in F8-/-

Pros1+/- and F9-/-Pros1+/-  were about 50-60% less than in F8-/-Pros1+/+ and F9-/-Pros1+/+ mice 

(Fig. 1c-d), as previously reported[95, 96]. 

F8-/-Pros1-/- and F9-/-Pros1-/- mice appeared normal and showed no difference in size, weight 

and behavior. F8-/-Pros1-/- and F9-/-Pros1-/- mice viability was monitored up to 20 (n=4) and 

16 months (n=2), respectively, without showing any difference compared to F8-/-Pros1+/+ and 

F9-/-Pros1+/+ mice, respectively. 

As a complete Pros1 deficiency in mice leads to consumptive coagulopathy[95], we assessed 

whether F8-/-Pros1-/- and F9-/-Pros1-/- mice developed signs of DIC. Platelet count, fibrinogen 

concentration, prothrombin time and thrombin-antithrombin  complexes (TAT) were 
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comparable in F8-/-Pros1+/+, F8-/-Pros1+/- and F8-/-Pros1-/- mice (Fig. 1c), and in F9-/-Pros1+/+, 

F9-/-Pros1+/- and F9-/-Pros1-/- mice (Fig. 1d). Activated partial thromboplastin time (aPTT) 

was equally prolonged in F8-/-Pros1+/+ (69±2 sec), F8-/-Pros1+/- (68±3 sec) and F8-/-Pros1-/- 

(63±3 sec) mice (mean±s.e.m., n=6 per group, P=0.3) because of the absence of FVIII. 

Comparable data for aPTT were obtained with F9-/-Pros1+/+, F9-/-Pros1+/- and F9-/-Pros1-/- 

mice (F9-/-Pros1+/+: 68±4, F9-/-Pros1+/-: 73±4, F9-/-Pros1-/-: 67±2 sec, mean±s.e.m., n=7 per 

group, P=0.5). Thus, F8-/-Pros1-/- and F9-/-Pros1-/- mice do not present overt DIC. Moreover, 

histology of brain, lungs, liver and kidney of F8-/-Pros1-/- mice did not reveal thrombosis. This 

was confirmed by the absence of insoluble fibrin by immunohistochemistry (Extended Data 

Fig. 2). Similar data were obtained with F9-/-Pros1+/+ and F9-/-Pros1-/- mice (Extended Data 

Fig. 2). 

Therefore, the loss of FVIII or FIX activity rescues the embryonic lethality of complete Pros1 

deficiency. However, the rescue was only partial with the loss of FIX activity. A possible 

explanation is the fact that severe HB appears to be a less serious condition compared to 

severe HA[195-199]. Consequently, F9 disruption in Pros1-/- mice was less efficient in 

rebalancing coagulation than F8 disruption. 

To explore whether restoring intrinsic X-ase activity by FVIII infusion induces DIC, 

thrombosis and purpura fulminans in F8-/-Pros1-/- mice, we administered intravenously either 

single or multiple normal doses or overdoses of recombinant FVIII (rFVIII). During the 1 h-

period following rFVIII injection at any time-point and with both normal doses and 

overdoses, mice were found to be lethargic with hunched posture and ruffled hair coat. 

However, none of them died within 72 h after rFVIII injection. Macroscopic anatomical 

examination of F8-/-Pros1-/- mice 24 h after a single injection of an overdose of rFVIII 

revealed a combination of thrombi in numerous blood vessels and bleeding particularly in the 

lungs (Fig. 1e). Immunohistochemical analysis of corresponding lung sections allowed the 

detection of fibrin clots compatible with multiple thrombi in the lung vasculature (Fig. 1f). 

Nevertheless, these mice did not develop purpura fulminans. 
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Twenty-four h after repeated administration of a normal dose of rFVIII in F8-/-Pros1-/- mice, 

blood coagulation analyses showed incoagulable prothrombin time (PT) (not shown), low 

fibrinogen and high TAT levels, compatible with an overt DIC (Fig. 1g). In contrast, after a 

single injection of a normal dose of rFVIII in F8-/-Pros1-/- mice, fibrinogen and TAT levels 

were comparable to those of untreated  F8-/-Pros1-/- mice (Fig. 1g). However, numerous 

thrombi were visible in lung and liver (Fig. 1h-i), but not kidney sections (data not shown), 24 

h after one single infusion of rFVIII or multiple rFVIII administration at normal dosage in F8-

/-Pros1-/- mice (Fig. 1j-k). None of these mice developed purpura fulminans. 

Thus, rFVIII administration in F8-/-Pros1-/- mice restored the imbalance of the coagulation 

promoting DIC and thrombosis but not purpura fulminans or death even after an overdose of 

rFVIII. 

 

Loss of X-ase activity does not prevent lethality caused by TF-induced 

thromboembolism in Pros1-/- mice 

We previously applied a TF-induced thromboembolism model[200] to Pros1+/- and Pros1+/+ 

mice and demonstrated that although 88% of Pros1+/+ mice survived to the challenge, only 

25% of Pros1+/- mice were still alive 20 min after a low TF dose injection (~1.1 nM TF)[95]. 

When using a higher TF dosage (~4.3 nM TF), both Pros1+/+ and Pros1+/- mice died within 

20 min. However, Pros1+/- died earlier than Pros1+/+. HA and WT mice, both with normal PS 

plasma levels were equally sensitive to this high TF-dose with more than 85% of them 

succumbing within 15 min (Fig. 2a). In contrast, >75% WT mice under thromboprophylaxis 

with a low molecular weight heparin (LMWH) survived (Fig. 2a). These data indicate that, in 

contrast with LMWH, HA does not protect mice against TF-induced thromboembolism. We 

then investigated F8-/-Pros1+/+, F8-/-Pros1+/- and F8-/-Pros1-/- mice in the same model. After 

the infusion of TF (~2.1 nM TF), 40-60% of the mice died (P>0.05), independently of their 

Pros1 genotype (Fig. 2b). However, there was a trend for F8-/-Pros1-/- and F8-/-Pros1+/- 
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succumbing earlier to the thromboembolic challenge than F8-/-Pros1+/+ mice, and for F8-/-

Pros1+/- dying earlier than F8-/-Pros1+/+ mice (mean time to death: 12±4 min for F8-/-

Pros1+/+, 7±2 min for F8-/-Pros1+/-, 8±3 min for F8-/-Pros1-/- mice, n=4-6/group, P=0.43). 

Similar data were obtained with F9-/-Pros1+/+, F9-/-Pros1+/- and F9-/-Pros1-/- mice (data not 

shown). 

Immunohistochemical analysis of lung sections allowed the detection of fibrin clots in lung 

arteries of F8-/-Pros1+/+ and F8-/-Pros1-/- mice that died during the TF-induced 

thromboembolic challenge (Fig. 2c). Importantly, there were more thrombi in lungs from F8-/-

Pros1-/- than from F8-/-Pros1+/+mice (n=48 versus 26, respectively). In addition, most arteries 

in F8-/-Pros1-/- lungs were completely occluded while they were  only partially occluded in 

F8-/-Pros1+/+ lungs. 

None of the F8-/-Pros1-/- mice that succumbed during the TF-induced thromboembolic-

challenge developed purpura fulminans. Similar data were obtained with F9-/-Pros1+/+, F9-/-

Pros1+/- and F9-/-Pros1-/- mice (not shown). 

Thus, loss of intrinsic X-ase activity does not prevent lethality caused by TF-induced 

thromboembolism in Pros1-/- mice.  

 

Loss of FVIII partially protects Pros1-/- mice against thrombosis in mesenteric arterioles 

We then recorded thrombus formation in mesenteric arterioles by intravital microscopy, a 

model sensitive to defects in the intrinsic pathway of coagulation[201]. In F8+/+Pros1+/+ 

mice, thrombi grew to occlusive size in 20 min, and all injured arterioles were occluded 

(Extended Data Fig. 3). As expected, none of the arterioles of F8-/-Pros1+/+ displayed 

thrombosis at the end of the experiment, whereas F8-/-Pros1-/- mice showed partial thrombi 

(Extended Data Fig. 3). 
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Emboli were generated during thrombus formation in F8+/+Pros1+/+ mice, but not in F8-/-

Pros1+/+ mice. In F8-/-Pros1-/- mice, multiple micro-emboli detached during partial thrombus 

growth, preventing the formation of occlusive thrombi. 

 

Pros1 targeting limits but does not abrogate tail bleeding in mice with HA  

The bleeding phenotype was assessed by tail transection at two different distal portions to 

mimic either mild (venous bleeding only) or severe (venous and arterial bleeding) bleeding.  

In both mild and severe models, blood loss was reduced in F8-/-Pros1-/- compared to F8-/-

Pros1+/+ mice (Fig. 2d-e). When F8-/-Pros1+/- mice were challenged by the mild tail 

transection model, they bled less than F8-/-Pros1+/+ mice (Fig. 2d). In contrast, when exposed 

to the severe tail transection model, both F8-/-Pros1-/- and F8-/-Pros1+/- mice displayed 

comparable blood loss (Fig. 2e). However, F8-/-Pros1-/- mice bled significantly more than 

F8+/-Pros1+/+ and F8+/+Pros1+/+ mice in both models (Fig. 2d-e), indicating that the loss of 

Pros1 in F8-/- mice did only partially correct the bleeding phenotype of F8-/- mice. 

Then, intravenous infusion of an anti-human PS antibody known to effectively block murine 

PS activity[95] was used to investigate how inhibition of PS activity altered tail bleeding 

(severe model) in F8-/-Pros1+/-  mice. The PS-neutralizing antibody limited blood loss in F8-/-

Pros1+/- mice to the same degree (PS-neutralizing antibody: 196±10 versus IgG isotype: 

308±30 µL, n=5, P=0.005) as complete genetic loss of Pros1 (173.3±14.8 versus 274.3±36.9 

µL, n=6, P=0.02 ) (Fig. 2e). 

Taken together, these data demonstrate that genetic loss of Pros1 or inhibition of PS activity 

partially and indistinguishably mitigates bleeding in HA.  
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Pros1 targeting or PS inhibition fully protects HA or HB mice from acute hemarthrosis 

(AH) 

Although bleeding may appear anywhere in patients with hemophilia, most of hemorrhages 

occur in the joints, spontaneously or in response to mechanical stress or trauma[202, 203]. To 

determine whether Pros1 loss prevents hemarthrosis in hemophilic mice, we applied an AH 

model to F8-/-Pros1+/+, F8-/-Pros1+/-, F8-/-Pros1-/- and F8+/+Pros1+/+ mice. Knee swelling after 

injury was reduced in both F8-/-Pros1-/- and F8+/+Pros1+/+ mice compared to F8-/-Pros1+/+ and 

F8-/-Pros1+/- mice (Fig. 2f). There was also no significant difference in knee swelling between 

F8-/-Pros1-/- and F8+/+Pros1+/+ mice (Fig. 2f). AH was also assessed by histology (Fig. 2g). 

Bleeding was observed in the joint space and synovium of F8-/-Pros1+/+ (intra-articular 

bleeding score, IBS=2, n=5) but not of F8-/-Pros1-/- (IBS=0, n=5) and F8+/+Pros1+/+ mice 

(IBS=0, n=5) (Fig. 2g). There was much more insoluble fibrin consistent with clots in joint 

space and synovium from F8-/-Pros1+/+ than from F8-/-Pros1-/- and F8+/+Pros1+/+ mice (Fig. 

2g). Similar data were obtained with F9-/-Pros1+/+ and F9-/-Pros1-/- mice (IBS=0, n=3 and 

IBS=2, n=3, respectively) (Extended Data Fig. 4a-b). Thus, loss of Pros1 in hemophilia 

confers full protection against AH. 

These results were confirmed by the continuous subcutaneous infusion during 4 days of a PS-

neutralizing antibody or an IgG isotype control antibody in F8-/-Pros1+/- mice (starting 1 day 

before the induction of hemarthrosis) (knee swelling in PS-neutralizing antibody group was 

0.43±0.07 versus 0.69±0.09 mm in IgG isotype group, (n=9,  P=0.04). The plasma PS level in 

PS-neutralizing antibody group was 26±6% versus 45±3% in the controls  (n=5,  P=0.017). In 

addition, PS inhibition was alternatively achieved by intravenous injection of a murine PS 

(mPS) siRNA 2.5 days prior to the AH challenge in F8-/-Pros1+/- and F8-/-Pros1+/+ mice (Fig. 

2h-i). The assessment of the IBS confirmed the lack of intra-articular bleeding in F8-/-

Pros1+/+ mice treated with mPS siRNA (IBS=0.5, n=3) when compared to those treated with 

control siRNA (IBS=2, n=3), (Fig. 2h). Importantly, PS expression was reduced by mPS 
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siRNA both in plasma (26±3%)  84±11% in controls, n=3,  P=0.006) and in the synovium 

(Fig. 3a). 

 

Both PS and TFPI are expressed in the synovium of mice  

To understand the prominent intra-articular hemostatic effect of the genetic loss of Pros1 and 

PS inhibition in hemophilic mice, knee sections were immunostained for PS and TFPI. PS 

staining was mainly present at the lining layer of the synovial tissue of F8-/-Pros1+/+ mice 

with AH treated with control siRNA, whereas synovial staining for PS was remarkably 

reduced in F8-/-Pros1+/+ mice with AH that received mPS siRNA infusion (Fig. 3a). In 

contrast, TFPI staining was more prominent in synovial tissue from hemophilic mice that 

have received the mPS siRNA than in those that were treated by the control siRNA (Fig. 3a). 

However, TFPI expression was comparable in synovial lining layer of both F8-/-Pros1+/+ and 

F8-/-Pros1-/- mice (Fig. 3b). 

To demonstrate further that PS is expressed by fibroblast-like synoviocytes (FLS), we 

performed western blots on conditioned media collected from F8+/+Pros1+/+, F8-/-Pros1+/+ 

and F8-/-Pros1-/- murine primary FLS. As shown in Fig. 3c, media of F8+/+Pros1+/+ and F8-/-

Pros1+/+ FLS displayed a band at a molecular weight ~75 kDa comparable to recombinant 

murine PS and similar to the one observed in mouse plasma and platelets. As expected, no 

staining was detected in media obtained from F8+/+Pros1-/- FLS (Fig. 3c).  

We also studied TFPI expression in F8-/-Pros1+/+ and F8-/-Pros1-/-  FLS conditioned media by 

western blotting (Fig. 3d). All media displayed a band at a molecular weight of ~50 kDa 

similar to the one observed with murine placenta lysates. TFPI isoform expression was 

investigated using western blot analysis following protein deglycosylation because fully 

glycosylated TFPIα and TFPIβ migrate at the same molecular weight[204]. Deglycosylated 

TFPI from FLS media migrated as a single band at the molecular weight of TFPIα similar to 

murine placenta TFPI (positive control for TFPIα) (Fig. 3d). Thus, our data indicate that FLS 

express TFPIα but not TFPIβ. 



 111 

Moreover, PS expression increased in F8-/-Pros1+/+ FLS 24h after stimulation with thrombin 

(Fig. 3f). TFPI expression was also prominent in F8-/-Pros1+/+ FLS 24h after stimulation with 

thrombin (Fig. 3e).  

 

These data suggest that, within the intra-articular space, the synovium is an environment in 

which two key anticoagulants, PS and TFPI, are expressed and that their expression is 

increased by thrombin. 

 

Both PS and TFPI are expressed in the synovium of patients with HA or HB 

Human HA, HB and osteoarthritis knee synovial tissues were then analyzed for both PS and 

TFPI (Fig. 4a). A strong signal was found for TFPI and PS in the synovial lining and 

sublining layers of HA patients on demand (n=7). By contrast, immunostaining for both PS 

and TFPI was remarkably decreased in HA patients under prophylaxis (n=5). HB patients on 

demand displayed less signal for both PS and TFPI in the synovial lining and sublining layers 

(n=4) than HA patients on demand. Joint sections from osteoarthritis patients (n=7) did not 

show an intense staining for TFPI and PS similarly to hemophilic patients under prophylaxis. 

To evaluate which isoform of TFPI is expressed by human FLS, western blotting on 

conditioned media of human primary FLS isolated from healthy subjects and patients with 

osteoarthritis was performed. Similarly to murine FLS, human FLS express TFPI. After 

deglycosylation, the presence of a single band with a slightly reduced molecular weight as the 

one displayed by human platelet lysate indicates that FLS express TFPIα but not TFPIβ (Fig. 

4b). 

 

Monocytes in HA mice with or without PS deficiency 

Induction of hemarthrosis results in a transient shift of blood monocytes towards a M1 or 

“inflammatory” type and an increase in M1 synovial macrophages. In the joint lavage, a 

temporary increase in M1 monocytes and a more sustained increase in M2  “patrolling” 

monocytes is observed[205]. M1 cells produce high levels of proinflammatory cytokines such 
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a IL-1β and TNF-α, and have limited iron internalization and release capacities, restricting 

thereby the elimination of catalytic iron from the joint[206, 207]. 

In resting condition, F8-/-Pros1-/- mice had almost 3 times more M1 and 3 times less M2 

monocytes in peripheral blood than F8-/-Pros1+/+ mice (Fig. 5a-b). However, 72 h after the 

induction of AH, F8-/-Pros1-/- and F8-/-Pros1+/+ mice had comparable circulating monocytes 

(Fig. 5a-b). In addition, in the joint lavage, the number of M1 and M2 monocytes was 

comparable in F8-/-Pros1-/- and F8-/-Pros1+/+ mice both in resting condition and 72 h after the 

induction of AH (Fig. 5c-d). Thus, in the context of AH, monocyte populations were 

comparable in F8-/-Pros1-/- and F8-/-Pros1+/+ mice, indicating that, in this condition, 

monocytes polarization was preserved both in peripheral blood and in the joint. However, F8-

/-Pros1-/- mice, contrary to F8-/-Pros1+/+ mice, were fully protected against AH and thereby 

were expected to display less M1 and more M2 cells in knee lavage than F8-/-Pros1+/+ which 

presented AH. 

The amount of monocyte chemotactic protein 1 (MCP-1) and IL-6, cytokines secreted by the 

inflamed synovium[208], was less abundant in joint lavage of F8-/-Pros1-/- compared to F8-/-

Pros1+/+ mice 72 h after the induction of AH. Similarly, we observed a trend for less IL-1β 

and keratinocytes-derived chemokine (KC), proinflammatory cytokines produced by synovial 

tissue and joint macrophages, in joint lavage from F8-/-Pros1-/- mice than from F8-/-Pros1+/+ 

mice (Fig. 5e). This is consistent with the fact that F8-/-Pros1-/- mice, contrary to F8-/-Pros1+/+ 

mice, did not develop AH. 

Loss of Pros1 is responsible for the lack of TFPI-dependent PS activity and resistance to 

APC in HA mice 

The full protection against AH in HA or HB mice lacking Pros1 in which PS was inhibited 

could be explained at least partly by the lack of PS cofactor activity for APC and TFPI in the 

joint. However, the reason for a partial hemostatic effect of the lack of Pros1 or PS inhibition 

in HA mice challenged in the tail bleeding models needs to be further investigated. 
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Ex vivo TF-initiated thrombin generation testing has shown a correlation between the capacity 

of plasma to generate thrombin and the clinical severity of hemophilia[209-211]. Therefore, 

we investigated the impact of Pros1 loss on thrombin generation in plasma of HA mice. 

TFPI-dependent PS activity was not assessed in platelet-free plasma (PFP) but in platelet-rich 

plasma (PRP) because previous work revealed that TFPI-cofactor activity of PS cannot be 

demonstrated in mouse plasma using thrombin generation tests[95]. This is explained by the 

lack of TFPIα in mouse plasma and its presence in mouse platelets[212].   

Both thrombin peak and endogenous thrombin potential (ETP, the area under the thrombin 

generation curve), were significantly higher in F8-/-Pros1-/- than in F8-/-Pros1+/+ PRP in 

response to 1 pM TF (1072±160 vs 590±10 nmol/L.min, n=3/group, P=0.04), suggesting the 

lack of PS TFPI-cofactor activity in F8-/-Pros1-/- PRP (Fig. 6a). Consistent with previous 

work[95], both thrombin peak and ETP were comparable in PFP of F8-/-Pros1+/+ and F8-/-

Pros1-/- mice in presence of 1, 2.5 or 5 pM TF (data not shown). 

To assess whether F8-/-Pros1-/- mice exhibited defective functional APC-dependent PS 

activity, we used thrombin generation testing in Ca2+ ionophore-activated PRP in the absence 

of APC, in the presence of wild-type (WT) recombinant APC, or in the presence of a mutated 

(L38D) recombinant mouse APC (L38D APC, a variant with ablated PS cofactor 

activity)[213]. In this assay, APC titration showed that the addition of 8 nM WT APC was 

able to reduce ETP by 90% in activated PRP of WT mice whereas the same concentration of 

L38D APC diminished ETP by only 30% (data not shown). Based on these data, thrombin 

generation curves were recorded for activated PRP (3 mice/assay). The calculated APC ratio 

(ETP+ APC WT / ETP+APC L38D) indicated an APC resistance in F8-/-Pros1-/- plasma but not in F8-/-

Pros1+/+ plasma (0.87±0.13 versus 0.23±0.08, respectively, P=0.01) (Fig. 6b).  

APC-dependent PS activity was also tested in PFP from F8-/-Pros1+/+ and F8-/-Pros1-/- mice (2 

mice/assay) in the presence of 2 nM WT APC and L38D APC. Calculated APC ratio showed 

an APC resistance in F8-/-Pros1-/- but not in F8-/-Pros1+/+ mice (1.08±0.04 versus 0.25±0.09, 
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respectively, P=0.0003) (Fig. 6b). 

Clots from HA mice lacking Pros1 display an improved but not completely restored 

fibrin network 

Tail bleeding models have been used to provide a measure of hemostasis in vivo, and tail 

bleeding models in mice are not only sensitive to platelet dysfunction but also to alterations in 

both coagulation[214] and fibrinolysis[215]. In order to better understand the differences 

between studied genotypes regarding tail bleeding, we used scanning electron microscopic 

imaging to investigate fibrin structure (Fig. 6c). Clots from F8+/+Pros1+/+ and F8-/-Pros1-/- 

plasma showed a denser network of highly branched fibrin fibers compared to F8-/-Pros1+/+ 

plasma clots (Extended Data Fig. 6a-b). In contrast, clots from F9+/+Pros1+/+ and F9-/-Pros1-/- 

plasma did not display a denser network than F9-/-Pros1+/+ plasma clots, but a trend for an 

augmented fibers branching  (Extended Data Fig. 6c-d). 

 

Fibrin fibers from F8-/-Pros1-/- and F8-/-Pros1+/+ mice, and from F9-/-Pros1-/- and F9-/-Pros1+/+ 

mice, displayed a larger diameter compared to fibers from F8+/+Pros1+/+ mice or 

F8+/+Pros1+/+ mice, respectively. Nevertheless, the fiber surface of F8-/-Pros1-/- and 

F9+/+Pros1+/+ mice showed less porosity as compared to F8-/-Pros1+/+ or F9-/-Pros1+/+ mice, 

respectively, suggesting that F8-/-Pros1-/- and F9-/-Pros1-/--derived fibers might be less 

permeable and thereby more resistant to fibrinolysis than F8-/-Pros1+/+ or F9-/-Pros1+/+-

derived fibers[216]. These data, in complement to both TFPI and APC cofactor activity 

results (Fig. 6a-b), help to explain why tail bleeding in F8-/-Pros1-/- was improved when 

compared to F8-/-Pros1+/+ mice but not completely corrected as in F8+/+Pros1+/+ mice. 

 

PS inhibition in human plasma completely restores thrombin generation in patients with 

HA 

We then examined the effect of PS inhibition on thrombin generation in human HA plasma.  

Addition of an anti-PS antibody resulted in 2-4-fold increase of the ETP in PFP. Similar 
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results were obtained using an anti-human TFPI antibody  directed against the C-terminal 

domain for efficient FXa inhibition, even in the presence of FVIII inhibitor (Fig. 6d-e). PS 

inhibition had a remarkable effect in PRP samples where it increased ETP more than 10 times 

(1912±37 and 1872±64 nM*min) (Fig. 6f and g, respectively). These data are compatible 

with a complete restoration of  ETP in hemophilic plasma by PS inhibition (for comparison, 

ETP in normal plasma: 1495±2nM*min). Similar results were obtained using the anti-TFPI 

antibody (Fig. 6d-g). Taken together, these data confirm in humans the improvement of 

thrombin generation in HA PFP and PRP driven by PS inhibition that we observed in mice.  

 

Pros1 targeting does not increase mortality induced by endotoxemia or bacterial 

infection in HA mice 

Because PS is involved in the modulation of innate immunity (reviewed in[217]), we 

investigated the response to endotoxemia and bacterial infection of F8-/-Pros1+/+, F8-/-Pros1+/- 

and F8-/-Pros1-/- mice. 

We applied the endotoxemia (LPS) model to mice, and 25 mg/kg caused about 50% - LD50 - 

mortality in F8-/-Pros1+/+ mice. In rodents, LPS promotes hypotension accompanied by the 

release of pro-inflammatory cytokines and nitric oxide (NO), and by the induction of nitric 

oxide synthase expression. These events finally result in the onset of acute pulmonary edema, 

myocardial dysfunction and death[218, 219]. We measured plasma PS at different time points 

(0, 4, 8, 12 and 16 h) and found that PS levels decreased slightly in F8+/+Pros1+/+ mice after a 

short period and remained below baseline for at least 12 h (1 h versus 4 h, P=0.016, Extended 

Data Fig. 7a). However, survival did not differ between F8-/-Pros1+/+, F8-/-Pros1+/- and F8-/-

Pros1-/- mice (Extended Data Fig. 7b). 

 

We then examined the response of F8-/-Pros1+/+, F8-/-Pros1+/-, F8-/-Pros1-/- and F8+/+Pros1+/+ 

mice to microbial sepsis using a model that closely mimics human peritoneal sepsis (cecal 

ligation and puncture, CLP)[220, 221]. We found that F8-/-Pros1+/+, F8-/-Pros1+/-, F8-/-Pros1-/- 
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and F8+/+Pros1+/+ mice were equally sensitive to CLP (Extended Data Fig. 7c). Because 

hemophilia condition has been previously reported as a possible cause of impaired 

phagocytosis[222], we investigated bone marrow-derived macrophages (BMDM) for 

bacterial phagocytosis both under resting conditions and after stimulation with IFNγ and LPS. 

F8+/+Pros1+/+ BMDM phagocytosed more bacteria after stimulation than under resting 

conditions (Extended Data Fig. 7d-e). In contrast, there was no difference between resting and 

stimulated F8-/- BMDM with or without loss of Pros1, but F8-/-Pros1-/- BMDM phagocytosed 

about 30% less bacteria than F8-/-Pros1+/+ BMDM (Extended Data Fig. 7d-e). This 

diminution of phagocytosis had nevertheless no relevant in vivo consequences as 

demonstrated by the results obtained with the CLP model of bacterial infection (Extended 

Data Fig. 7c). 

 

Thus, HA with or without loss of Pros1 in mice did not alter the susceptibility to endotoxemia 

or microbial sepsis, indicating that PS targeting for hemophilia is not expected to carry major 

side effects in the context of life-threatening inflammation and infection.  
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Conclusions 

Extensive studies using genetically modified mice provide proof of concept data supporting a 

central role for PS and another anticoagulant, TFPI, as contributing to bleeding and serious 

damage in joints of hemophilic mice. Targeting Pros1 or inhibiting PS has the ability to 

ameliorate hemophilia in mice as judged by the in vivo improvement of the bleeding 

phenotype in the tail bleeding assays and the full protection against hemarthrosis. Because 

joints display a very weak expression of TF[223] and synovial cells produce a high amount of 

TFPIα and PS, the activity of the extrinsic pathway is greatly reduced intra-articularly, 

predisposing hemophilic joints to bleed. Moreover, both TM and EPCR are expressed by 

FLS[224, 225], suggesting that the TM-thrombin complex activates EPCR bound-PC to 

generate the very potent anticoagulant, APC, in the context of AH. Importantly, the 

expression of TFPIα is upregulated by thrombin (Extended Data Fig. 7). Thus, AH that 

usually results in marked local inflammation and joint symptoms that can last for days to 

weeks also promotes the local generation and secretion of multiple anticoagulants, namely 

APC,  TFPIα, and their mutual cofactor PS, that could help explain the pathophysiology of 

joint damage in hemophilia.  

Observations using clinical samples from hemophilic human subjects are consistent with the 

lessons learned from murine studies. In humans, blocking PS in plasma from patients with 

HA with or without anti-FVIII inhibitors normalizes the ETP. Patients with HB display less 

intra-articular expression of TFPI and PS than patients with HA, consistent with current 

knowledge that patients with HB bleed less than those with HA[195-199, 226, 227].  

Moreover, patients with HA receiving prophylaxis display less TFPI and PS expression in 

their synovia than patients receiving FVIII concentrates only in the context of bleeding, i.e., 

so called “on demand therapy”. Finally, human FLS secrete both TFPIα and PS as observed 

in mice, thus strengthening the extrapolation of murine hemophilia data to humans. 

The extensive findings in this report lead us to propose that targeting PS may potentially be 

translated to therapies useful for hemophilia. Targeting coagulation inhibitors such as TFPI or 

antithrombin as a strategy to rebalance coagulation in patients with hemophilia are currently 
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being investigated in clinical trials[190], and  an APC-specific serpin rescues thrombin 

generation in vitro and restores hemostasis in hemophilia mouse models[191]. PS in human 

and murine joints is a novel pathophysiological contributor to hemarthrosis and constitutes an 

attractive potential therapeutic target especially because of its dual cofactor activity for both 

APC and TFPIα within the joints. In the presence of PS, hemarthrosis provokes the release of 

proinflammatory cytokines and increases TFPIα expression in the synovia. Targeting PS in 

mice protects them from hemarthrosis and the release of intra-articular cytokines (Extended 

Data Fig. 7). Thus, we propose that TFPIα and its cofactor PS, both produced by FLS, 

together with the TM-EPCR-PC pathway, comprise a potent intra-articular anticoagulant 

system that has an important pathologic impact on hemarthrosis. Future studies are needed to 

assess the merits of this new concept for targeting simultaneously the multiple anticoagulant 

cofactor activities of PS which involve both APC and TFPI. 

 

 

  



 119 

Methods 

 

Mice 

F8-/- mice (B6;129S4-F8tm1Kaz/J) and F9-/- mice (B6.129P2-F9tm1Dws/J) with C57BL/6J 

background were obtained from The Jackson Laboratory. Pros1+/- mice were progeny of the 

original colony, with a genetic background of 50% 129/Sv x 50% C57BL/6J, as described 

previously[95]. The Swiss Federal Veterinary Office approved the experiments. Mice were 

genotyped by a multiplex PCR that amplifies the WT (+) and the null (-) alleles of Pros1 gene 

at the same time, using primers previously described[95]. Genotyping of F8 and F9 genes 

were performed accordingly to the literature[228, 229]. 

 

Preparation of murine plasma 

Mice were anesthetized with pentobarbital (40 mg/kg), and whole blood was drawn from the 

inferior vena cava into 3.13% citrate (1 vol anticoagulant/9 vol blood). Blood was centrifuged 

at 1031 g for 10 min with the centrifuge pre-warmed to 26°C to obtain platelet rich plasma 

(PRP). Alternatively blood was centrifuged at 2400 g for 10 min at room temperature (RT), to 

obtain platelet-poor plasma (PPP). To obtain platelet-free plasma (PFP), an additional 

centrifugation at 10000 g for 10 min was performed. 

 

Platelet count and measurement of coagulation parameters 

Platelet counts were carried out with an automated cell counter (Procyte Dx Hematology 

Analyzer, IDEXX). Fibrinogen, FVIII and FIX activity were measured on an automated 

Sysmex CA-7000 coagulation analyzer (Sysmex Digitana). Prothrombin time (PT) and 

activated partial thromboplastin time (APTT) were measured on a coagulometer (MC4plus, 

Merlin Medical). 
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Measurement of murine PS antigen and TAT complexes by ELISA 

Wells from 96-well plates (Maxisorb, Thermo) were coated with 50 µL per well of 10 µg/mL 

of rabbit polyclonal anti-human PS (DAKO Cytomation) and incubated overnight at 4°C. 

After 3 washes with TBS buffer (0.05 M tris(hydroxymethyl)aminomethane, 0.15 M NaCl, 

pH 7.5, 0.05% Tween 20), the plate was blocked with TBS-BSA 2%. Diluted plasma samples 

(dilution range: 1:300-1:600) were added to the wells and incubated at RT for 2 h. After 3 

washed, 50 µL of 1µg/mL biotinylated chicken polyclonal anti-murine protein S were added 

and incubated for 2 h at RT. Signal was amplified by streptavidin-HRP conjugated 

horseradish peroxidase (Thermo) was added and plates incubated for 1 h. The plates were 

washed 3 times and 100 µLTMB substrate (KPL) was added. Reactions were stopped by 

adding 100 µL HCl (1M). Absorbance was measure at 450 nm. Standard curves were set up 

by using serial dilution of pooled normal plasma obtained from 14 healthy mice (8 males and 

6 females, 7–12 weeks old). Results were expressed in percentage relative to the pooled 

normal plasma.  

TAT level was measured in duplicate for each plasma sample using a commercially available 

ELISA (Enzygnost TAT micro, Siemens), according to the manufacturer’s instructions. 

 

Mouse tissue processing and sectioning, immunohistochemistry and microscopy 

Tissue sections (4 µm) with no pre-treatment were stained with hematoxylin/eosin or  Masson 

Trichrome or immunostained for insoluble fibrin, PS or TFPI. The following antibodies were 

used: fibrin (mAb clone 102-10)[175] final concentration 15.6 µg/mL, incubation for 30 min 

at RT, secondary antibody rabbit anti-human, (ab7155 Abcam, Cambridge, UK) 1:200 

dilution, incubation for 30 min at RT; PS (MAB 4976, R&D, dilution 1:50) incubation for 30 

min at RT, secondary antibody rabbit anti-rat, (ab7155 Abcam) 1:200 dilution, incubation for 

30 min at RT; TFPI (PAHTFPI-S, Hematological Technologies) final concentration 18.6 

µg/mL, incubation for 30 min at RT, secondary antibody rabbit anti-sheep IgG (ab7106, 

Abcam) 1:200 dilution, incubation for 30 min at RT. All the stainings were performed with 

the immunostainer BOND RX (Leica Biosystems, Muttenz, Switzerland) following 
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manufacturer’s instructions. Whole slides were scanned using 3D HISTECH Panoramic 250 

Flash II, with 20x (NA 0.8), 40x (NA 0.95) air objectives. Images processing was done using 

Panoramic Viewer software. 

 

In vivo administration of FVIII to mice with complete genetic loss of F8 

Mice, aged 6-9 week, were anesthetized with ketamine (80 mg/kg body weight) and xylazine 

(16 mg/kg body weight). We administered intravenously either 0.3 U/kg of recombinant 

FVIII (Advate®, Baxalta) to reach a FVIII level of 100% at 1 h (adequate dose) or an 

overdose of recombinant FVIII (2 U/kg) to reach >200% at 1 h. Either the adequate dose or 

the overdose was injected 1 h before and 1 h after the introduction of a jugular vein catheter 

(Mouse JVC 2Fr PU 10 cm, Instech) and then 4 h, 8 h and 16 h after the placement of the 

central line. Mice were sacrificed 24 h after the first injection. Blood was drawn and organs 

were harvested. FVIII, fibrinogen and TAT were measured as described above. Lungs were 

isolated, fixed in 4% paraformaldehyde (PFA) and embedded in paraffin.  

 

TF-induced pulmonary embolism 

A model of venous thromboembolism was adapted from Weiss et al [200]  with minor 

modifications [95]. Mice, aged 6-9 weeks, were anesthetized with ketamine and xylazine as 

described above and human recombinant TF (hrTF, Dade Innovin, Siemens) was injected 

intravenously (2 µL/g body weight) at 4.25 nM  (1:2 dilution in 0.9% NaCl) and 2.1 nM (1:4 

dilution in 0.9% NaCl) were used. TF concentration in the Innovin is 400 ng·mL−1 (8.5 nM) 

according to T. M. Hackeng (Cardiovascular Research Institute, Maastricht, The Netherlands, 

personal communication). The time to the onset of respiratory arrest that lasted at least 2 min 

was recorded and chosen as the time to death. Experiments were terminated at 20 min. Two 

minutes after the onset of respiratory arrest or at the completion of the 20-min observation 

period, lungs were harvested and fixed in 4% PFA for  2 h at RT. Lung sections (5 µm) were 

stained with hematoxylin and eosin (H&E) as well as for insoluble fibrin and examined. The 

extent of fibrin clots in the lungs was assessed as number of intravascular thrombi in 10 
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randomly chosen nonoverlapping fields (×10 magnification) of lung tissue.  

FeCl3 injury thrombosis model in mesenteric arteries 

A model of thrombosis in mesenteric arteries using intravital microscopy was performed 

according to ref[230] with minor modifications. Mice were anesthetized by intraperitoneal 

injection of a mixture of ketamine (80 mg/kg) and xylazine (16 mg/kg). Platelets were 

directly labeled in vivo by the injection of 100µL  rhodamine 6G (1.0 mM). After selection of 

the studied field, vessel wall injury was generated by a filter paper (1 mm diameter patch of 

1M Whatmann paper) saturated with 10% FeCl3 applied topically for 1 minute. Thrombus 

formation was monitored in real time under a fluorescent microscope (IV-500, Micron 

instruments, San Diego, CA) with an FITC filter set, equiped with an affinity corrected  

water-immesion optics (Zeiss, Germany). The bright fluorescent labelled platelets and 

leucoytes allowed the observation of 1355µm X 965µm field of view through video triggered 

stroboscopic epi-illumination (Chadwick Helmuth, El Monte, CA). A 10X objective Zeiss 

Plan-Neofluar with NA0.3. was used. All scenes were recorded on video-tape using a 

customized low-lag silicon-intensified target camera (Dage MTI, Michigan city, IN), a time 

base generator and a Hi-8 VCR (EV, C-100, Sony, Japan). Time to vessel wall occlusion was 

measured, as determined by cessation of the blood cell flow. 

 

Tail clipping model in HA mice 

Two different tail clipping models to evaluate bleeding phenotype were assessed using an 

adapted protocol previously described by Ivanciu, et al6. Briefly, the distal tail of 8-10 week 

old mice was transected with a sharp razor at 2 mm (mild injury) and the bleeding was venous 

or at 4 mm (severe injury) and the bleeding was both arterial and venous[231]. Bleeding was 

quantified as blood lost after 30 or 10 min, respectively. In the severe injury model some F8-/-

Pros1+/- mice received a rabbit anti-human PS-IgG (Dako) or isotype rabbit IgG (R&D 

Systems) intravenously at a dose of 2.1 mg/kg 2 min before tail transection. 
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Acute hemarthrosis model 

9-12 week old mice were anesthetized with ketamine (80 mg/kg) and xylazine (16 mg/kg). 

Induction of joint bleeding, knee diameter measurements and analgesic coverage were 

performed according to Øvlisen et al[232]. Joint diameter measurements were performed at 0 

and 72 h with a digital caliper (Mitutoyo 547-301, Kanagawa). At 72 h, mice were sacrificed, 

both knees were isolated, fixed in 4% PFA, decalcified and embedded in paraffin. The intra-

articular bleeding score (IBS) was assessed according to Hakobyan N et al[233] scoring 

system. Briefly, a 3-point scoring system based on examination of histological sections using 

light microscopy was used: score 0 represented a knee joint with the absence of bleeding and 

an IBS of 1 or 2 indicated a joint filled with blood with increased severity. 

 

In vivo PS inhibition  

10 week old mice received a continuous dose of rabbit anti-human PS-IgG (Dako Basel, 

Switzerland) or isotype rabbit IgG (R&D Systems) at 1 mg/kg/day through subcutaneous 

osmotic minipumps (model2001, Alzet). 

Alternatively, a second group of 10 week old mice was treated with a single dose of mouse 

specific siRNA (s72206, Life Technologies) or control siRNA (4459405, In vivo Negative 

Control #1 Ambion, Life Technologies) at 1 mg/kg using a transfection agent 

(Invivofectamine 3.0, Invitrogen Life Technologies) following the manufacturer’s , 

instructions. 2.5 days after PS inhibition, acute hemarthrosis model was performed as 

previously described. 

 

Fibroblast-like synoviocytes (FLS) isolation, culture and flow cytometry 

Murine FLS from 8-10 weeks old mice were isolated and cultured according to[234] . After 

three passages, phase contrast images of cells were taken, and cells were incubated with 

FITC-conjugated rat anti-mouse CD11b antibody (M1/70, Pharmingen, BD Biosciences), PE-

conjugated rat anti-mouse CD90.2 antibody (30-H12, Pharmingen, BD Biosciences), FITC-
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conjugated rat anti-mouse CD106 antibody (429 MVCAM.A, Pharmingen, BD Biosciences), 

PE-conjugated hamster anti-mouse CD54 antibody (3E2, Pharmingen, BD Biosciences), and 

fluorochrome-conjugated isotype control antibodies for 30 minutes at 4 °C in the dark. After a 

final washing and centrifugation step, all incubated cells were analyzed on an LSR II flow 

cytometer (BD Biosciences) and FACS Diva 7.0 software (BD Biosciences). Human FLS 

from healthy individual and OA patient were purchased from Asterand, Bioscience and 

cultured according to manufacture instructions. 

 

Western blotting 

 PS and TFPI were detected in human and mouse samples by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (12% gradient SDS-PAGE, Bio-Rad) under reducing 

conditions. The proteins were transferred to nitrocellulose membranes (Bio-Rad), and then 

visualized using: 2ug/mL monoclonal MAB-4976 (R&D system) for murine PS, 1ug/mL 

polyclonal AF2975 for murine TFPI (R&D system). Recombinant murine PS[235] (30 ng), 

recombinant human TFPI full length (provided by T. Hamuro, Kaketsuken, Japan), lysate of 

washed platelets, PFP from F8-/-Pros1+/+ mice and placenta lysates from F8+/+Pros1+/+ mice 

were used as PS, TFPIα controls. Samples from confluent murine and human FLS 

conditioned media were collected after 24 h-incubation in a serum-free media (OptiMem) and 

concentrated 40 times using Amicon filter devices (Millipore, 10 kDa cut-off). For TFPI 

western blotting, samples were treated with a mixture of five protein deglycosidases (PNGase 

F, O-Glycosidase, Neuraminidase, β1-4 Galactosidase, β-N-Acetylglucosaminidase, 

Deglycosylation kit, V4931, Promega) for 12 h at 37°C before being loaded on the gel. Final 

detection was completed by using a horseradish peroxidase–conjugated secondary antibody 

(Dako) and the Supersignal West Dura Extended Duration Chemiluminescence Substrate 

(Pierce), monitored with a Fuji LAS 3000IR CCD camera. 
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Immunohistochemistry on human knee synovium 

Paraffin-embedded specimens of synovial tissue from twelve HA patients and four HB 

patients who underwent arthroplasty for severe knee arthropathy were collected at the 

archives of the Section of Anatomy and Histology, Department of Experimental and Clinical 

Medicine, University of Florence, as described elsewhere[196, 226]. Seven HA patients were 

treated on demand and five with secondary prophylaxis. All four HB patients were treated on 

demand. Synovial samples from seven osteoarthritis (OA) patients were used as controls[196, 

226]. For immunohistochemistry analysis, synovial tissue sections (5 µm thick) were 

deparaffinized, rehydrated, boiled for 10 minutes in sodium citrate buffer (10 mM, pH 6.0) 

for antigen retrieval and subsequently treated with 3% H2O2 in methanol for 15 minutes at 

room temperature to block endogenous peroxidase activity. Sections were then washed in 

PBS and incubated with Ultra V block (UltraVision Large Volume Detection System Anti-

Polyvalent, HRP, catalog number TP-125-HL, LabVision) for 10 min at RT according to the 

manufacturer’s protocol. After blocking non-specific site binding, slides were incubated 

overnight at 4°C with rabbit polyclonal anti-human Protein S/PROS1 antibody (1:50 dilution, 

catalog number NBP1-87218, Novus Biologicals) or sheep polyclonal anti-human Tissue 

Factor Pathway Inhibitor (TFPI) antibody (1:500 dilution, catalog number PAHTFPI-S, 

Haematologic Technologies) diluted in PBS. For Protein S immunostaining, tissue sections 

were then incubated with biotinylated secondary antibodies followed by streptavidin 

peroxidase (UltraVision Large Volume Detection System Anti-Polyvalent, HRP; LabVision) 

according to the manufacturer’s protocol. For TFPI immunostaining, tissue sections were 

instead incubated with HRP-conjugated donkey anti-sheep IgG (1:1000 dilution; catalog 

number ab97125; Abcam) for 30 min. Immunoreactivity was developed using 3-amino-9-

ethylcarbazole (AEC kit, catalog number TA-125-SA; LabVision) as chromogen. Synovial 

sections were finally counterstained with Mayer’s hematoxylin (Bio-Optica), washed, 

mounted in an aqueous mounting medium and observed under a Leica DM4000 B 

microscope (Leica Microsystems). Sections not exposed to primary antibodies or incubated 

with isotype-matched and concentration-matched non-immune IgG (Sigma-Aldrich) were 
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included as negative controls for antibody specificity. Light microscopy images were 

captured with a Leica DFC310 FX 1.4-megapixel digital colour camera equipped with the 

Leica software application suite LAS V3.8 (Leica Microsystems).  

 

Flow cytometry on mouse blood monocytes 

Blood circulating monocytes were obtained from mice before or after performing 

hemarthrosis as described previously[205]. Red blood cells (RBC) were lysed and discharged 

after centrifugation. The remaining cell pellet was resuspended and incubated for 5 minutes at 

4 °C in FACS buffer containing 1% FC block (anti-CD16/CD32, eBioscience). After an 

additional centrifugation, cells were incubated with: PE-conjugated anti-mouse Ly-6C 

(HK1.4, Ebiosciences), PE-Cyanine7 conjugated anti-mouse CD3e (145-2C11, Ebiosciences), 

e-fluor 450 conjugated anti-mouse, CD11b (M1/70, Ebiosciences), FITC- conjugated anti-

mouse CD19 (eBio1D3 Ebiosciences), and APC conjugated anti-mouse CD115 (AFS98, 

Ebiosciences). Cells were then washed in FACS buffer, centrifuged at 1500 g for 5 minutes at 

4°C and fixed in 2% PFA. Cells were analyzed using an LSR II flow cytometer (BD 

Biosciences) and FACS Diva 7.0 software (BD Biosciences). Inflammatory monocytes (M1) 

and patrolling monocytes (M2) were identified according to the literature[205]. 

 

Flow cytometry on mouse knee lavages 

Shortly after mouse sacrifice, the knee joints were punctured with a 30 G syringe (Hamilton) 

and joint lavage was performed 10 times with 10 µL FACS buffer. The lavage was mixed 

with 250 µL FACS buffer and centrifuged at 1500 g for 5 min at 4 °C. Next, supernatants 

were discharged and the remaining cell pellet was resuspended and incubated for 5 min at 4 

°C in FACS buffer containing 1% FC block (anti-CD16/CD32, eBioscience). After an 

additional centrifugation, cells were incubated with: PE-conjugated anti-mouse Ly-6C 

(HK1.4, Ebiosciences), e-fluor 450 conjugated anti-mouse, CD11b (M1/70, Ebiosciences), 

PE-conjugated rat anti-mouse Ly-6C,6C (HK1.4, Ebiosciences) and APC-conjugated anti-

mouse CD115 (AFS98, Ebiosciences). Cells were then washed in FACS buffer, centrifuged at 



 127 

1500 g for 5 minutes at 4°C, fixed in 2% PFA and  analyzed using the FACSCanto (BD 

Bioscences) and FACS Diva 7.0 software (BD Biosciences). Inflammatory monocytes (M1) 

and patrolling monocytes (M2) were identified according to the literature[205]. 

 

Plasma and knee lavages cytokines analysis 

Plasma and knee lavages were analyzed using a multiplex cytokines assay (Bio-Plex Pro 

Mouse Cytokine 1, Bio-Rad) following the manufacturer’s instruction. Briefly, F8-/-Pros1+/+ 

and F8-/-Pros1-/- knee lavages (n=3-5 mice) were collected as previously described after AH. 

Data were analyzed using Bio-Plex manager software. 

 

Calibrated automated thrombography assays in murine samples 

Thrombin generation in PFP and PRP was determined using the calibrated automated 

thrombogram (CAT) method.  

TFPI dependent PS activity was assessed in PRP (150 G/L), as follows. Briefly, 10 µL mouse 

PRP (150 G/L) was mixed with 10 µL PRP reagent (Diagnostica Stago), and 30 µL of buffer 

A (25 mm Hepes, 175 mm NaCl, pH 7.4, 5 mg/mL BSA). Thrombin generation was initiated 

at 37°C with 10 µL of a fluorogenic substrate/CaCl2 mixture. Final concentrations were as 

follows: 16.6% mouse plasma, 1 pM hrTF, 4 µM phospholipids, 16 mM CaCl2, and 0.42 mM 

fluorogenic substrate. 

APC dependent PS activity was assessed in a CAT-based APC resistance test in mouse PFP 

and PRP in accordance to Dargaud Y et al[236]. PRP (150 G/L) was previously activated 

using 40 µM Ca2+ ionophore (A23187) for 5 min at 37C. Final concentrations were as 

follows: 16.6% mouse plasma, 22 µM A23187, 1 pM hrTF, 4 µM phospholipids, 2nM (for 

PFP) or 8 nM (for PRP) wild type recombinant mouse APC (wt-rmAPC)5 or mutated 

recombinant mouse APC (rmAPC L38D),16 mM CaCl2, and 0.42 mM fluorogenic substrate. 

The generation and characterization of rmAPC L38D was performed according to ref 

[237],[213] and the purification according to ref[238],[239]. 
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For TF titration on PFP, the following reagents were used: PPP reagent and MP reagent 

(Diagnostica Stago). 

Fluorescence was measured using a Fluoroscan Ascent® fluorometer, equipped with a 

dispenser. Fluorescence intensity was detected at wavelengths of 390 nm (excitation filter) 

and 460 nm (emission filter). A dedicated software program, Thrombinoscope® version 

3.0.0.29 (Thrombinoscope bv) enabled the calculation of thrombin activity against the 

calibrator (Thrombinoscope bv ) and displayed thrombin activity with the time. All 

experiences were carried out in duplicate at 37 °C and the measurements usually lasted 60 

min. 

 

Fibrin clot ultrastructure investigation 

Fibrin clots were prepared at 37°C from PFP by the addition of ~5 nM TF (Dade Innovin, 

Siemens). They were then fixed in 2% glutaraldehyde, dehydrated, dried and sputter-coated 

with gold palladium for visualization using scanning electron microscopy, accordingly to 

Zubairova et al[240]. Semi quantitative evaluation of network density and fibers branching 

were performed using STEPanizer software (www.stepanizer.com). 

 

CAT assay in human samples 

Written informed consent was obtained from patients. Venous blood was drawn by 

venipuncture in 3.2% sodium citrate (vol/vol) and centrifuged at 2000g for 5 min. Platelet-

poor plasma (PPP) was then centrifuged at 10000g for 10 minutes to obtain PFP. PFP was 

aliquoted, snap-frozen, and stored at −80°C until use. For PRP, blood was centrifuged at 180 

g x 10 min. All subjects gave informed consent to participation. Thrombin generation was 

assessed in human PFP and PRP, according to ref[241] with minor changes. Briefly, 68 µL 

PFP or PRP (150 G/L) was incubated for 15 min at 37 °C with 12 µL of either a polyclonal 

rabbit anti-human PS-IgG antibody (0.42 mg/mL, Dako) or monoclonal antibodies against 

TFPI (0.66 µm, MW1848, Sanquin) or buffer A. Coagulation was initiated with 20 µL of a 

7 : 1 mixture of the PPP low and PPP 5 pm reagents (Diagnostica Stago) for PFP samples or 
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with PRP reagent (Diagnostica stago) for PRP samples. After addition of 20 µL of CaCl2 and 

fluorogenic substrate (I-1140; Bachem), the thrombin generation was followed in a 

Fluoroskan Ascent reader (Thermo Labsystems).  

 

Endotoxemia model in HA mice 

F8-/-Pros1+/+, F8-/-Pros1+/-, F8-/-Pros1-/- mice were injected intraperitoneally (i.p.) with LPS 

from Escherichia coli O55:B5 (Sigma-Aldrich) at 25 mg/kg and continuously monitored for 

LPS-induced lethality for 72 h after LPS injection. 

 

Cecal ligation puncture model in HA mice  

A cecal ligation puncture (CLP) model was applied to 8-10 week old F8-/-Pros1+/+, F8-/-

Pros1+/-, F8-/-Pros1-/-, F8+/+Pros1+/+ mice according to the protocol described by Toscano et 

al13. Briefly, mice were anesthetized by halothane. A midline laparotomy was performed to 

allow exposure of the cecum. The cecum was ligated as near to the ileocecal junction as 

possible and perforated twice with a 19-gauge needle. It was then gently squeezed to extrude 

a small amount of feces from the perforation sites and returned to the peritoneal cavity. The 

incision was closed with wound clips. Sham operated mice were also incised, cecum taken 

outside abdominal cavity, and returned in position without ligation or puncture. After surgery, 

and every 12 h, mice received 0.05 mg/kg of buprenorphine (Temgesic, Essex Chemie AG) 

subcutaneously up to 36 h post-surgery. 

 

Bone marrow-derived macrophage isolation 

Macrophages were derived from bone marrow (femur and tibia) from F8+/+Pros1+/+, F8-/-

Pros1+/+  and F8-/-Pros1-/- mice, and cultured according to the literature[242].  

 

Bacterial phagocytosis assay  

Mouse macrophages (0.5 x 106) were resuspended in 200 µl of DMEM medium, primed with 

IFNγ (Pepro Tech EC) for 2 h and consequently stimulated with 0.3 µg/mL 
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Lipopolysaccharide (LPS, 055:B5; Sigma-Aldrich). GFP-labeled E. coli GFP (M91655; GFP-

E. coli) were opsonized with 2% mouse serum in 1 x Hank’s Balanced Salt Solution (HBSS; 

LuBioScience GmbH) for 15 min (rotating end-over-end, 37°C). 200 µl of opsonized bacteria 

was then added to the cells. The cells were incubated with the bacteria for 15 min (rotating 

end-over-end, 37°C). Phagocytosis was stopped by adding 400 µl of ice-cold PBS with 0.02% 

EDTA to the cells. After one washing step with 400 µl of ice-cold PBS, the cells were 

analyzed by flow cytometry (FACSCalibur; BD Biosciences). In parallel mouse macrophage 

(0.3 x 106) were seeded on glass chamber, primed with IFNγ for 2h and consequently 

stimulated with 0.3 µg/mL LPS. GFP-E. coli (6 x 106) was added and analyzed by live cell 

imaging (LSM 700; Carl Zeiss Micro Imaging) using 63x /1.40 Oil DIC objective and images 

were processed with IMARIS software.  

 

Statistical methods 

Values were expressed as mean plus or minus s.e.m.. A Chi-square for non-linked genetic loci 

was used to assess the Mendelian allele segregation. Survival data in the model of TF-induced 

venous thromboembolism, the CLP model, and the endotoxemia model were plotted using the 

of Kaplan-Meier method. A log-rank test was used to statistically compare the curves (Prism 

6.0d; GraphPad). The other data were analyzed by t-test, one-way and two-way ANOVA test 

with GraphPad Prism 6.0d. A P-value of less than 0.05 was considered statistically 

significant. 
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Figure 1. Loss of X-ase activity rescues Pros1-/- mice. a-b, Schematic model of thrombin 

generation in hemophilic condition (a) and the experimental approach to enhance thrombin 

generation in severe hemophilia A and B by targeting Pros1 (b). c-d, Murine model 

validation and evaluation of DIC hematologic parameters in hemophilic adult mice with and 

without Pros1 deficiency: PS (antigenic), FVIII (coagulant activity) or FIX (coagulant 

activity) plasma levels in F8-/-Pros1+/+, F8-/-Pros1+/- and F8-/-Pros1-/- (c), and F9-/-Pros1+/+, 

F9-/-Pros1+/- and F9-/-Pros1-/- adult mice (d) (n=5/group); platelets (n=7/group), fibrinogen 

(n=8/group), PT (n=6/group) and TAT (n=6/group) in hemophilia A group (c); and platelets 

(n=5/group), fibrinogen (n=4/group), PT (n=4/group) and TAT (n=4/group) in hemophilia B 

group (d). e-f, Macroscopic image of lungs from F8-/-Pros1-/- mice 24 h after a single i.v. 

injection of  2 U/g recombinant FVIII (Advate®) infusion (e) and corresponding microscopic 

evaluation of fibrin clots in lung section (f). g, Recombinant FVIII (Advate®) administration 

in F8-/-Pros1+/+ and F8-/-Pros1-/-: plasma levels of fibrinogen and TAT at 24 h following 5 

injection of 0.3 U/g Advate® i.v. (injection time-points: 1 h before catheter insertion and 1 h, 

4 h, 8 h and 16 h after catheter insertion) (n=3) (g, white and black columns) and 24 h after a 

single i.v. injection in F8-/-Pros1-/- (n=3) (g, dashed column), and representative 

immunohistochemistry allowing the detection of fibrin clots in lungs and liver sections in F8-

/-Pros1-/- 24 h after 0.3 U/g repeated i.v. injections of Advate® (h) and after a single i.v. 

injection of 0.3 U/g Advate® i.v. (i). All data are expressed as mean±s.e.m.; ns, not 

significant; *, P<0.05 **; P<0.005. 
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Figure 2. Murine models of thrombosis and bleeding. a-c, TF-induced venous 

thromboembolism in F8+/+ Pros1+/+, F8-/- Pros1+/+, F8-/- Pros1+/- and F8-/- Pros1-/- mice 

(n=10/genotype). Anesthetized mice were injected intravenously via the inferior vena cava 

with different doses of recombinant TF (Innovin): ½ dilution (~4.3 nM TF) in a and ¼ 

dilution (~2.1 nM TF) in b-c. In (a), one group of F8+/+Pros1+/+ mice received enoxaparin 60 
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µg/g s.c. The time to the onset of respiratory arrest that lasted at least 2 min was recorded. 

Experiments were terminated at 20 min. Kaplan-Meier survival curves (a-b). c, 2 min after 

onset of respiratory arrest or at the completion of the 20-min observation period, lungs were 

excised and investigated for fibrin clots (immunostaining for insoluble fibrin, mAb clone 102-

10). d-e, Tail bleeding model. Blood was collected after 2 mm (d) and 4 mm (e) tail 

transection for 30 min (d) and 10 min (e) in a fresh tube of saline; total blood loss (µl) was 

then measured. F8+/-Pros1+/+ and F8+/+Pros1+/+ mice (white columns) served as controls (n = 

5 for all groups in d, n=6 for all groups in e). f-i, Acute hemarthrosis model. f, Difference 

between the knee diameter 72 h after the injury and before the injury in F8-/-Pros1+/+, F8-/-

Pros1+/-, F8-/-Pros1-/-  and F8+/+Pros1+/+ mice. g, Microscopic evaluation (Masson’s trichrome 

stain and immunostaining for insoluble fibrin) of the knee intra-articular space of a 

representative not injured and injured legs after 72 h in F8+/+Pros1+/+, F8-/-Pros1+/+ and F8-/-

Pros1-/- mice. h, In vivo mPS silencing using specific siRNA: evaluation of the joint diameter 

72 h after injury in F8-/-Pros1+/-  and F8-/-Pros1+/+ mice treated with a single i.p. infusion of 

mPS siRNA or control siRNA. i, Microscopic evaluation (Masson’s trichrome stain) of the 

knee intra-articular space of a representative injured leg after 72 h in F8-/-Pros1+/+ mice 

previously treated with mPS siRNA or Ctrl siRNA. Measurements are presented as 

mean±s.e.m. *, P<0.05; **, P<0.005; ***, P<0.0005; ****, P<0.0001.  
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Figure 3. Both PS and TFPI are expressed in murine synovium. a, Immunostaining for PS 

and TFPI in the knee intra-articular space of injured knees from F8-/-Pros1+/+ mice previously 

treated with Ctrl-siRNA or mPS-siRNA. Arrow heads point to synovial tissue and arrows, to 

vascular structures, all positive for both PS and TFPI. Boxes in the upper figures (Scale bars: 

200 µm) show the area enlarged in the panel below (Scale bars: 50 µm).  b, Immunostaining 

for TFPI in the knee intra-articular space of not injured knees from F8-/-Pros1+/+ and F8-/-

Pros1-/- mice. c-e, Western blot analysis of conditioned media from primary murine 

fibroblast-like synoviocytes (FLS) cultures using anti-PS (c) and anti-TFPI (d) antibodies. 

Platelet-free plasma (PFP), protein lysates from platelets (PLT), murine PS (mPS) were used 

as positive controls (c). TFPI isoform expression determined by comparing molecular weights 

of deglycosylated TFPI and of fully glycosylated TFPI. Murine placenta was used as positive 

control for TFPIα. f-e, Western blot analysis of total protein lysates isolated from FLS after 

24h of culture in presence of thrombin (Thr, +) or of a vehicle (-) using anti-PS (f) and anti-

TFPI (e) antibodies. Human recombinant TFPI full length was used as positive control for 

TFPIα (hrTFPI). Blots are representative of three independent experiments. 
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Figure 4. PS and TFPI in human synovium. a, PS and TFPI are expressed in synovial 

tissue of patients with HA (on demand and on prophylaxis), HB on demand or osteoarthritis 

(OA). Arrowheads point to synovial lining layer and arrows, to vascular structures in the 

sublining layer, all positive for both PS and TFPI. Scale bars: 50 µm. b, Western blot analysis 

of conditioned media of primary human FLS (hFLS) cultures from an healthy individual and 

an OA patient before and after deglycosylation using anti-TFPI antibody. Human platelet 

lysate (hPLT) was used as positive control for TFPIα. Blots are representative of three 

independent experiments. 
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Figure 5. Monocytes/macrophages in HA mice with or without PS deficiency. a-d, Count 

of M1 and M2 monocytes in whole blood (a-b) and macrophages in knee lavage (c-d) as 

assessed by flow cytometry in resting condition and after hemarthrosis. e, Cytokines levels in 

knee-lavage after hemarthrosis in F8-/-Pros1+/+  and F8-/-Pros1-/- mice. *, P<0.05; **, P<0.005; 

***, P<0.0005; ****, P<0.0001. 
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Figure 6. Thrombin generation and fibrin network in hemophilia 

a, TF- (1 pM) induced thrombin generation in PRP from F8-/- Pros1+/+ and F8-/- Pros1-/- mice 

depicting TFPI-dependent PS activity. b, APC-dependent PS activity in PRP and PFP from 

F8-/- Pros1+/+ and F8-/- Pros1-/- mice. c, Representative scanning electron microscopy images 

from F8+/+ Pros1+/+ , F8-/- Pros1+/+  and F8-/- Pros1-/-, and from F9+/+ Pros1+/+ , F9-/- Pros1+/+  

and F9-/- Pros1-/- fibrin structure. d-g, Thrombin generation triggered by low TF concentration 

(1 pM) in PFP (d-e) and PRP (f-g) from severe HA patients (FVIII <1%) without (d, f) and 

with a high titer of inhibitor (e,g). Measurements are presented as mean±s.e.m. **, P<0.005; 

***, P<0.0005. 
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Extended Data Figures 
 

 
Extended Data Figure 1. Genotyping approaches. Genotypes obtained by crossing F8-/-

Pros1+/- (a-c) and F9-/-Pros1+/- (d-f) mice. a, Pros1 alleles were amplified by a multiplex 

PCR. PCR products were then subjected to electrophoresis; the wt band has a lower molecular 

weight (234 bp) compared to the null band (571 bp), in accordance to Saller, 2009. b, Set-up 

of multiplex PCR to amplify the wt band (620 bp) and the null band (420 bp) of F8 alleles 

from genomic DNA. c, PCR products of F8 alleles amplification (null band: 420 bp) on the 

same samples than in (a). d, Pros1 alleles were amplified by a multiplex PCR. PCR products 

were then subjected to electrophoresis; the wt band has a lower molecular weight (234 bp) 

compared to the null band (571 bp), in accordance to Saller, 2009. e, Set-up of multiplex PCR 

to amplify the wt band (320 bp) and the null band (550 bp) of F9 alleles from genomic DNA. 

f, PCR products of F9 alleles amplification (null band: 550 bp) on the same samples than in 

(d).  
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Extended Data Figure 2: Histology in physiologic condition. Immunostaining for insoluble 

fibrin on liver, lung, kidney, brain sections in F8-/-Pros1-/- and in F8-/-Pros1+/+ mice as well as 

in F9-/-Pros1+/+ and F9-/-Pros1-/-. Scale bar: 100 µm.  
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Extended Data Figure 3: Loss of FVIII partially protects Pros1-/- mice against 

thrombosis in mesenteric arterioles. Thrombus formation in FeCl3-injured mesenteric 

arteries recorded by intravital microscopy in F8+/+ Pros1+/+, F8-/- Pros1+/+ and F8-/- Pros1-/- 

mice, representative experiment (n=3/genotype). 
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Extended Data Figure 4: Genetic loss of Pros1 prevents hemarthrosis in mice with 

hemophilia B. a, Difference between the knee diameter 72 h after the injury and before the 

injury in F9-/-Pros1+/+, F9-/-Pros1+/-, F9-/-Pros1-/- and F9+/+Pros1+/+ mice. b, Microscopic 

evaluation (Masson’s trichrome stain and staining for insoluble fibrin, mAb clone 102-10) of 

the knee intra-articular space of a representative not injured and injured legs after 72 h in 

F9+/+Pros1+/+, F9-/-Pros1+/+ and F9-/-Pros1-/- mice. Scale bar: 500 µm. Measurements are 

presented as mean±s.e.m. ***, P<0.0005. 
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Extended Data Figure 5: Quantification of fibrin network density and fibers branching. 

a-b, Fibrin network from F8+/+ Pros1+/+, F8-/- Pros1+/+  and F8-/- Pros1-/- mice. c-d, Fibrin 

network from F9+/+ Pros1+/+, F9-/- Pros1+/+  and F9-/- Pros1-/-. Quantification of fibrin 

network density (a and c). Quantification of fibers branching (b and d). Measurements are 

presented as mean±s.e.m. ***, P<0.0005 
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Extended Data Figure 6. Response of HA mice with or without genetic loss of Pros1 to 

inflammation and infection. a, PS plasma concentration in mice challenged by LPS (25 

mg/kg i.p.). b-c, Kaplan-Meier plots of survival after LPS treatment (25 mg/kg i.p.) (b) and 

after cecal-ligation and punction (c). Data were pooled from multiple independent 

experiments. d, Live confocal analysis of bacterial phagocytosis 15 min after the addition of 

bacteria to mouse macrophages. Bars, 10 mm. e, Flow cytometry analysis of bacterial 

phagocytosis 15 min after the addition of bacteria to mouse macrophages. Measurements are 

presented as mean±s.e.m. *, P<0.05; **, P<0.005; ***, P<0.0005. 
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Extended Data Figure 7: Model of hemarthrosis without X-ase activity in presence 

(upper left) or in absence (upper right) of PS. In hemophilia, hemarthrosis account for 70-

80% of all bleeds[202, 203]. The synovium is a connective tissue lining the inner surface of 

capsules of synovial joints, such as the knee as depicted on this figure. It makes direct contact 

with the synovial fluid, located at the tissue surface and composed from many rounded 

macrophage-like synovial cells (M) and FLS. M insure the maintenance of the synovial fluid 

by removing debris and FLS produce extracellular components of the synovial fluid. Because 

joints display a very weak expression of TF[223] and synovial cells produce a high amount of 

TFPIα, the activity of the extrinsic pathway is massively reduced intra-articularly, 

predisposing hemophilic joints to bleed. In addition, both TM and EPCR are expressed by 

FLS[224, 225], suggesting that the thrombomodulin-thrombin complex activates blood 

protein C to APC in the context of AH, a process strongly accelerated by EPCR that might 
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contribute to the aggravation of the local sustained bleeding process. Importantly, the 

expression of TFPIα is modulated by thrombin. We found that PS is also expressed by FLS 

and constitutes a potential therapeutic target, because of its dual cofactor activity of APC and 

TFPIα, that are both present within the joints. In the presence of PS, hemarthrosis provokes 

the release of proinflammatory cytokines (MCP-1, IL-6, KC, IL-1β)  and increases TFPIα 

expression in the synovium. Thus, we propose that TFPIα and its cofactor PS, both produced 

by FLS, together with the TM-PC pathway constitute a potent intra-articular anticoagulant 

system that has an important impact on hemarthrosis.  

After AH, the blood is cleared from the joint cavity by synovial lining cells, M and other 

inflammatory cells in about one week (reviewed in[243]). Iron derived from red blood cells 

(RBC) accumulates within the joint as hemosiderin which causes synovial inflammation 

([243]). In addition, iron and H2O2 are responsible for the apoptosis of the chondrocytes 

([243]). 

Thus, AH that usually results in marked local inflammation and joint symptoms that can last 

for days to weeks also promotes the local secretion of anticoagulants such as TFPIα and its 

cofactor PS that are responsible for self-perpetuating a vicious circle.  
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4.1 Introduction: 

Pregnancy is associated with various physiological changes, which may affect most of the 

body system. Some of these changes start immediately after conception and continue through 

delivery to the postpartum period in order to accommodate both the maternal and fetal needs 

[244]. Pregnancy is also associated with a shift of the coagulation balance with increased 

concentration of clotting factors, decreased concentration of some of the natural 

anticoagulants and diminished fibrinolytic activity. These changes occur in order to simplify 

healthy pregnancy and maintain placental function in order to meet the delivery’s hemostatic 

challenge. However, it provoke a state of hypercoagulability that in one hand, protects 

pregnant women from fatal hemorrhage during delivery and in the other hand predispose 

them to thromboembolism [131]. 

Thrombophilia is a disorder that predisposes to develop venous thrombosis and increases the 

risk for venous thromboembolism (VTE). Two thrombophilia distinct categories are known:  

acquired thrombophilia like antiphospholipid antibody syndrome (aPL), that is strongly 

associated with recurrent pregnancy loss [133, 135], and inherited thrombophilias due to 

anticoagulant proteins deficiencies or their gene mutations. The most frequent abnormalities 

are factor V Leiden (FV Leiden) mutation and the prothrombin gene mutation. It was 

previously reported that in pregnancy, predictive rates of VTE in women with inherited 

thrombophilias were: 1:500 for patients carrying heterozygous mutation for FV Leiden, 1:200 

for those with heterozygous mutation for prothrombin G20210A. The accumulation of more 

than a single mutation seems to higher the VTE incidence [137]. 

Antithrombin (AT), Protein C (PC) and Protein S (PS) deficiencies are also inherited 

thrombophilia factors that provoke VTE during pregnancy [138].  

PS, a vitamin K-dependent protein (VKDP) functions as natural anticoagulant in the blood. It 

acts as a cofactor of activated protein C (APC) and tissue factor pathway inhibitor (TFPI) and 

also displays a direct anticoagulant activity. PS circulates in human plasma at a concentration 

of 350 nanomolar (nM) corresponding to 25 µg/mL of which 60% forms a complex with C4b-
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binding protein (C4BP). The remaining 40% circulates in free form [20, 21]. The importance 

of PS is illustrated by life threatening skin necrosis and disseminated intravascular 

coagulation (DIC) named purpura fulminans (PF) that if untreated, leads to death. 

In clinic, patients with hereditary partial PS deficiency mostly suffer from recurrent 

thrombosis with 9 fold increased VTE risk as compared to non-deficient patients [92]. 

Pregnant women with partial PS inherited deficiency have an elevated risk of late fetal loss 

[86]. Conflicting data were previously published regarding the beneficial role of 

thromboprophylaxis in ameliorating pregnancy outcome in patients with inherited 

thrombophilia. While several reports approved the benefit of using low molecular weight 

heparin (LMWH) and/or low dose aspirin to improve pregnancy outcome [139] [140] [141] 

[142], a randomized clinical trial  using three treatments: aspirin and heparin, aspirin alone or 

placebo revealed that neither aspirin combined with heparin nor aspirin alone improved 

pregnancies outcome [143]. An answer to the question whether the use or heparin alone or 

combined with aspirin could be beneficial is still awaited.  

Recently, an individual patient data meta-analysis of LMWH for prevention of placenta-

mediated pregnancy complications (AFFIRM) study will integrate individual patient data 

from recent randomized controlled trials of LMWH for the prevention of recurrent placenta-

mediated pregnancy complications. The overall objective of this meta-analysis will be to 

inform clinical practice and develop clinical practice guidelines [144]. 

A randomized clinical trial, named anticoagulants for living foetus (ALIFE) assembling about 

15 years of various clinical trials piloted around the world, revealed that LMWH does not 

increase the chance of live birth in women with unexplained recurrent miscarriage. However, 

the subgroup of women with inherited thrombophilia showed a trend toward a benefit of 

LMWH and aspirin. According to these encouraging results, the ALIFE2 trial was initiated, 

and is recruiting patients since 2013 in the Netherlands, United Kingdom, and Belgium, and 

hopefully soon in the United States and Slovenia [145]. 
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In this study, we used for the first time full Pros1 knockout mice (Pros1-/-) newly described 

by our group (Prince et al. manuscript in review) that are fully rescued from lethality by 

targeting Factor VIII (FVIII) (F8-/-Pros1-/-) and did not display any signs of PF or DIC. We 

did not observed pregnancy loss in Pros1 heterozygous (Pros1+/-) females. We then 

investigated the effect of complete lack of PS on pregnancy outcome in mice. 

4.2 Material and methods: 

Mice and breeding 

F8-/- mice (B6;129S4-F8tm1Kaz/J) with C57BL/6J background were obtained from The Jackson 

Laboratory. Pros1+/- mice were progeny of the original colony, with a genetic background of 

50% 129/Sv x 50% C57BL/6J, as described previously [95]. The Swiss Federal Veterinary 

Office approved the experiments. Mice were genotyped by a multiplex PCR that amplifies the 

WT (+) and the null (-) alleles of Pros1 gene at the same time, using primers previously 

described [95]. Genotyping of F8 gene was performed accordingly to the literature[228]. 

In order to generate F8-/-Pros1-/- mice, we first crossed Pros1+/- females with F8-/- males, 

producing 25% F8+/-Pros1+/- progeny. F8+/-Pros1+/-  females were then bred with F8-/- males 

resulting in 25% F8-/-Pros1+/- progeny. F8-/-Pros1-/- matings were set to evaluated pregnancy 

outcome when PS complete deficiency. 

Timed matings and embryos harvesting 

F8-/-Pros1+/+, F8-/-Pros1-/- and F8+/+Pros1+/+ females were used to set timed matings in order 

to generate embryos at different gestational stages: E9.5, E10.5, E11.5, E12.5 E13.5, E14.5, 

E15.5, E16.5 and E17.5. Mating was confirmed by detection of a vaginal plug and defined as 

day 0.5 p.c. Embryos were harvested by dissecting the female uterus. Viability was assessed 

under stereomicroscope (M80, Leica) coupled to a camera (MC170 HD, Leica) and 

photographed. DNA was extracted from embryos tail, alternatively yolk sac, for genotyping. 

Embryos were then fixed in 4% paraformaldehyde (PFA) and embedded in paraffin. 
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Preparation of murine plasma 

Pregnant F8-/-Pros1+/+, F8-/-Pros1-/- and F8+/+Pros1+/+ females at different gestational stages 

were anesthetized with pentobarbital (40 mg/kg), and whole blood was drawn from the 

inferior vena cava into 3.13% citrate (1 vol anticoagulant/9 vol blood). Blood was centrifuged 

at 2400 g for 10 min at room temperature (RT), to obtain platelet-poor plasma (PPP). To 

obtain platelet-free plasma (PFP), an additional centrifugation at 10000 g for 10 min was 

performed. 

 
Platelet count and measurement of coagulation parameters 
 
Platelet counts were carried out with an automated cell counter (Procyte Dx Hematology 

Analyzer, IDEXX). Fibrinogen, prothrombin time (PT) and FVIII activity were measured on 

an automated Sysmex CA-7000 coagulation analyzer (Sysmex Digitana). TAT level was 

measured in duplicate for each plasma sample using a commercially available ELISA 

(Enzygnost TAT micro, Siemens), according to the manufacturer’s instructions. 

 

Tissue processing and sectioning, immunohistochemistry and microscopy 
 
Sections (4 µm) of pregnant females tissues (liver, lung, kidney and spleen) and embryos 

(whole embryos and placenta) with no pre-treatment were stained with hematoxylin/eosin, 

Masson Trichrome or immunostained for insoluble fibrin: anti-human fibrin (mAb clone 102-

10) [175] final concentration 15.6 µg/mL, incubation for 30 min at RT, secondary antibody 

rabbit anti-human, (ab7155 Abcam, Cambridge, UK) 1:200 dilution, incubation for 30 min at 

RT. The staining was performed with the immunostainer BOND RX (Leica Biosystems, 

Muttenz, Switzerland) following manufacturer’s instructions. Whole slides were scanned 

using 3D HISTECH Panoramic 250 Flash II, with 20x (NA 0.8), 40x (NA 0.95) air 

objectives. Images processing was done using Panoramic Viewer software. 

 

Aspirin or LMWH treatment in F8-/-Pros1-/- pregnant females 

From 7 p.c (E7) until the pregnancy end (≈E20), F8-/-Pros1-/- pregnant females received daily 
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freshly prepared aspirin in drinking water (Aspegic, 30µg/mL Lysine acetylsalicylate, Sanofi) 

According to literature [245], this low quantity was administered to obtain an amount similar 

to that prescribed in clinical practice, that is around 200 mg/day. Alternatively, F8-/-Pros1-/- 

pregnant females were anesthetized with ketamine (80 mg/kg body weight) and xylazine (16 

mg/kg body weight) and an osmotic minipump (model #1003D, Alzet, CA) delivering at a 

rate of 0.25 µL/hour was inserted subcutaneously in the subscapular region. The osmotic 

pumps contained LMWH (Clexane, 100µg/mL, Sanofi). Females were monitored during for 

the rest of the pregnancy. Pups were weaned after 21 days and ears tag used for genotyping 

Statistical methods 

Values were expressed as mean plus or minus s.e.m. A Chi-square for non-linked genetic loci 

was used to assess the Mendelian allele segregation. Survival data on embryos were plotted 

using the Kaplan-Meier method. A log-rank test was used to statistically compare the curves 

(Prism 6.0d; GraphPad). The other data were analysed by t-test, one-way and two-way 

ANOVA test with GraphPad Prism 6.0d. A P-value of less than 0.05 was considered 

statistically significant. 

 

4.3 Results 

 

PS deficiency and pregnancy  

From F8-/-Pros1+/- breeding pairs, 295 pups were obtained. 72 (24%) were F8-/-Pros1+/+, 164 

(56%) were F8-/-Pros1+/- and 59 (20%) were F8-/-Pros1-/- (χ2=4.8, P=0.09). F8-/-Pros1-/- mice 

were present at the expected Mendelian ratio. Thus the partial lack of PS in F8-/-Pros1+/- 

females did not causes pregnancy loss. We next studied the effect of complete PS deficiency 

on pregnancy outcome using F8-/-Pros1-/-  breedings. Intriguingly, we did not observe any 

litters from 4 F8-/-Pros1-/- matings monitored during 4 months. F8-/-Pros1-/- males fertility was 

checked in more than 15 different matings with F8-/-Pros1+/- females and litters size was 

found normal. We then hypothesized that F8-/-Pros1-/- females might be sterile or experience 
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pregnancy loss.  

F8-/-Pros1-/- females are not sterile and exhibit high abortion rates 

To rule out if the complete lack of PS causes infertility or rather pregnancy loss, we set time 

plugged F8-/-Pros1-/- females. F8-/-Pros1+/+, F8+/+Pros1+/+  were used as control females. 

Vaginal plugs were observed  in all females. They were than sacrificed at different gestational 

stages and embryos collected. Uterus from F8-/-Pros1+/+ control females at E16 contained 

several embryos showing normal devlopment (Fig.1,a). Contrarily, F8-/-Pros1-/- females 

uterus, at the same pregnany stage, showed several macerated embryos with few ones with 

normal size or exclusively macerated and necrotic embryos (Fig.1,b). Macroscopical 

examination of the embryos revealed that in contrast to embryos coming from F8-/-Pros1+/+ 

females (Fig.1,c), some embryos coming from F8-/-Pros1-/- females exhibit hemorrhages 

(Fig.1,d). Staining for fibrin clots did not reveal any evidence of increased thrombosis in 

placentas of F8-/-Pros1-/- pregnancies as compared to F8-/-Pros1+/+ and F8+/+Pros1+/+ 

pregnancies. Almost no dead embryos was found in F8-/-Pros1+/+ and F8+/+Pros1+/+ control 

females. Differently, very high embryonic mortality was found in F8-/-Pros1-/- females: 57% 

(41/71) at E11-E12,  66% (36/54) at E14-E15 and 59% (16/27) at E16-E17. No viable 

embryos were present after E18 (Fig.1,e). Besides, litter size decreases along with the 

pregnancy progression (Fig.1,f). Among embryos collected between E9.5 and E10.5, only 

33% carryed the F8-/-Pros1-/- genotype versus 50% expected, and no F8-/-Pros1-/- live embryos 

were collected after E12.5 (Fig.1,g). Differently, all embryos collected from F8-/-Pros1+/+ and 

F8+/+Pros1+/+ females were alive and present at the expected Mendelian frequency. Recurrent 

pregnancy loss never affected F8-/-Pros1-/- females survival. Thus, PS complete deficiency is 

a severe inherited thrombophilia incompatible with pregnancy positive outcome. 

Hemostatic imbalance with no overt DIC in pregnant F8-/-Pros1-/- females  

We recently described that combined deficiency of PS and F8 rescued Pros1-/- lethal 

phenotype. The hemostatic balance is perfectly restored in F8-/-Pros1-/- mice. Taking into 
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account that pregnancy provokes a shif in the hemostatic equilibrium and leads to a state of 

hypercoagulability [131], we decided to examine hemostasis in F8-/-Pros1-/- pregnant females. 

Hematological blood parameters, fibrinogen concentration, prothrombin time (PT) and TAT 

were investigated. Interestingly, as compared to control females (F8-/-Pros1+/+ and 

F8+/+Pros1+/+), at E12-E16, we observed an overall trend of low fibrinogen levels in F8-/-

Pros1-/- with 1.1±0.1 g/L, 2.0±0.2 g/L for F8-/-Pros1+/+ and 2.1±0.2 for F8+/+Pros1+/+, 

(P<0.005) (Fig.2, a). TAT complexes were found increased in F8-/-Pros1-/- with 24.3±2.6 

ng/L, 16.3±1.2 ng/L for F8-/-Pros1+/+ and 13.1±1.8 for F8+/+Pros1+/+ (P<0.05), (Fig.2, b), 

whereas PT was normal in all genotypes. Platelet count was reduced in F8-/-Pros1-/- as 

compared to F8-/-Pros1+/+ pregnant females. Indeed, we found 881±78G/L in F8-/-Pros1+/+ 

(n=3) vs 434±129G/L in F8-/-Pros1-/- (n=2) at E12, 635±114G/L in F8-/-Pros1+/+ vs 

429±142G/L in F8-/-Pros1-/- (n=2 per group) at E14, 930±78G/L, (n=2) vs 636±66G/L, (n=3) 

at E15. Differently, platelets count was comparable beween both genotypes at E16 

(842±142G/L vs 936±183G/L, (n=3 per group) (Fig.2, c). Especially, during the whole 

pregnancy period, F8-/-Pros1-/- showed more activated platelet as compared to F8-/-Pros1+/+ 

and F8+/+Pros1+/+ (Fig.2,d). Thus, during pregnancy, the achieved hemostatic balance in F8-/-

Pros1-/- is disturbed. 

Thromboprophylaxis protects F8-/-Pros1-/-  females from poor pregnancy outcome 

Since the antithrombotic prophylaxis is extremely debated in ameliorating pregnancy 

outcome in inherited thrombophilia, we treated  F8-/-Pros1-/- with LMWH or low dose aspirin. 

Attractively, LMWH almost prevented pregnancy loss. Pregnancy outcome was also positive 

with low dose aspirin. From both treatements, newborns appeared morphologically normal  

(Fig.3, a). However, the litter size was slightly reduced in the LMWH group (6±1) as 

compared to F8-/-Pros1+/- females (8±1). The litters of the aspirin treated group were more 

reduced (3±1). (P<0.05) (Fig.3, b). Thus, aspirin or better LMWH treatment prevented 

pregnancy loss, indicating that thromboprophylaxis might apply to pregnancy in very severe 

inherited thrombophilias. 
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4.4 Discussion 

The beneficial role of thromboprophylaxis in pregnant women with inherited thrombophilia is 

intensely debated. Conflicting data were previously published. While several reports 

approved the profit of using LMWH and/or low dose aspirin to improve pregnancy outcome 

[139] [140] [141] [142], other studies revealed the opposite [143]. Here, we reported that 

LMWH greatly reduces abortion rates in severe inherited thrombophilia setting but did not 

completely rescue abortion. Less efficiently, low dose aspirin leads to positive pregnancy 

outcome too.  

The murine experimental model system shares similarities with humans regarding the 

chorioallantoic placentation that occurs approximately at the end of first trimester in humans 

and corresponds to E9 in mice. Both species form a hemochorial placenta where maternal 

cells are eroded and zygote-derived trophoblast cells become directly exposed to maternal 

blood [246]. Pregnant women with partial PS exhibit high risk of late fetal loss [86]. The 

pathophysiology of this poor pregnancy outcome is not well understood. We used F8-/-

Pros1+/- mice to examine the effect of partial PS deficiency in pregnancy. Intriguingly, F8-/-

Pros1+/- females displayed no fetal loss and normal litter size. This might be explained by fact 

that 50% circulating PS in F8-/-Pros1+/- pregnant mice is sufficient to prevent abortion.  

Differently, the complete lack of PS in F8-/-Pros1-/-  females provokes pregnancy loss. In this 

severe inherited thrombophilia condition, high embryos mortality rates were observed with no 

F8-/-Pros1-/- live embryos collected after E12. The early death of F8-/-Pros1-/-  embryos starting 

from E11 might be caused by the lack of PS in both mother and foetus since F8-/-Pros1+/- 

embryos survive as long as PS expression is maintained in the uteroplacental unit. In 

multifetal human pregnancies, retention of a dead foetus is coupled with amplified platelet 

activation, thrombin generation, and a higher risk of DIC in the mother and in morbidity of 

the surviving foetus [247]. Similarly to humans, dead and macerated embryos present within 

mice uterus produce toxic factors that damage surviving foetus [248]. The assessment of DIC 

parameters in F8-/-Pros1-/- pregnant mice revealed low fibrinogen concentration, decreased 

platelet count and increased TAT levels. The complete lack of PS leads to a severe 
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prothrombotic phenotype that is equilibrated in F8-/-Pros1-/-. We presume that the pregnancy 

associated hypercoagulable state imbalances hemostasis in F8-/-Pros1-/- and promotes DIC. 

However, histological investigations of liver, kidney and lung sections from pregnant F8-/-

Pros1-/- mice at different gestational stages revealed no evidence of augmented fibrin 

deposition. In addition, increased platelets activation is typical in female suffering from 

abortion. Therefore, it is not clear whether the observed DIC is due to the hemostatic 

imbalance in F8-/-Pros1-/- during pregnancy or to the effect of intrauterine retained dead 

foetus. In humans, LMWH is being tested to prevent placental dysfunction and the related 

sequelae in a subset of women with heritable thrombophilia. The risk-to-benefit balance of 

such prophylaxis is questioned [145]. In this study, we treated F8-/-Pros1-/-  pregnant mice 

with enoxaparin. This was efficient in reducing fetal death. However, litter size were slightly 

reduced as compared to control females (F8-/-Pros1+/-).  

Our findings allow us to propose two scenarios: the first one is that abortion in F8-/-Pros1-/- 

mice is strictly due to hemostatic imbalance which might provoke thrombosis, disturb the 

uteroplacental circulation, and causes placental failure. This scenario seems improbable 

because of 2 reasons: i) there was no increased fibrin deposition in F8-/-Pros1-/- pregnant 

females and embryos placentas, ii) the rescue with enoxaparin treatment was not total with 

reduced litter size and even worse with aspirin. The second scenario is that observed abortion 

in F8-/-Pros1-/- mice is due to lack of PS anticoagulation effect, that is reverted partially by 

enoxaparin, but is also due to the lack of PS role in uteroplacental vasculature to support the 

establishment of the trophoblast invasion of the spiral arteries of the uterus. The latter 

scenario arises from the  know role of PS in vasculature development and maintainace [113] 

[114].  

The treatment of F8-/-Pros1-/-  pregnant mice with low dose aspirin showed less efficient 

protection from abortion as compared to enoxaparin. These findings are in line with previous 

clinical observation [141]. It is known that aspirin mainly prevents the initiation of thrombus 

formation and that new nonanticoagulant roles of LMWH have emerged, some of which are 
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directly related to trophoblast function [249].  Thus, any beneficial effects of LMWH 

prophylaxis might not necessarily reflect a causal thrombotic link between thrombophilia 

mutations and pregnancy loss. Last but not least, platelets play a role into gestational 

requirements. Any roles for platelets are likely to result from their activation in the 

circulation. Nevertheless, the molecular mechanisms of platelet activation in pregnancy 

remain largely unknown. Characterisation of platelets activation and role in the placental beds 

in complete PS deficient will provide great insights into the physiopathology of  inherited 

thrombophilia associated fetal loss. 

In humans, the setting of ongoing clinical trials evaluating the role of LMWH in preventing 

placental dysfunction in PS deficiency may need to be adjusted. The role of PS in placental 

vasculature should also be assessed. 
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4.5 Figures 

 

Figure 1: Pregnancy outcome in F8-/-Pros1-/- females. 

a, macroscopy of uterus from F8-/-Pros1+/+ control females at E16 with several embryos 

showing normal develepement. b, F8-/-Pros1-/- females macroscopy of uterus at E16 with 

several macerated embryos and few ones with normal size or exclusively macerated and 

necrotic embryos. c, macroscopical examination of embryos from F8-/-Pros1+/+ female. d, 

macroscopical examination of embryos with hemorrhages coming from F8-/-Pros1-/-  female. 

e, evaluation of embryos mortality in F8-/-Pros1-/- females at: E9-E10 (n=4),  E11-E12 (n=4),  

E14-E15 (n=5), E16-E17 (n=4).    F8-/-Pros1+/+ females at: E11-E12 (n=2),  E14-E15 (n=5), 

E16-E17 (n=4). F8+/+Pros1+/+ females at: E11-E12 (n=2),  E14-E15 (n=3), E16-E17 (n=4). f, 

g, evaluation of litter size and genotype frequency in alive embryos from F8-/-Pros1-/- females 

at: E9-E10 (n=4),  E11-E12 (n=4),  E14-E15 (n=5), E16-E17 (n=4). All data are expressed as 

mean±s.e.m. ns, not significant, ***P<0.0005 * P<0.05. 
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Figure 2: Evaluation of DIC parameters and platelets during pregnancy 

a, Evaluation of platelet count in F8-/-Pros1-/-, F8-/-Pros1+/+, F8+/+Pros1+/+ pregnant mice 

from E12 until E17, b-c, fibrinogen concentration and thrombin anti-thrombin complexes in 

F8-/-Pros1-/-, F8-/-Pros1+/+, F8+/+Pros1+/+ pregnant mice from E12 until E16. All data are 

expressed as mean±s.e.m. 

Figure 3: Pregnancy rescue in F8-/-Pros1-/-   

a, Macroscopical image of pups produced by F8-/-Pros1-/- female treated with enoxaparin 

(100µg/mL) from E7 until birth. b, evaluation of pups litter size of F8-/-Pros1-/- female 

without thromboprophylaxis, with aspirin (30µg/mL) or LMWH (100µg/mL) and F8-/-

Pros1+/- crossed with F8-/-Pros1-/-. All data are expressed as mean±s.e.m. ns, not significant, 

**P<0.005 * P<0.05. 
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Chapter V. Discussion and perspectives 

Hemostasis maintains blood in a fluid state and prevents its loss after vessel damage. Upon 

injury, the coagulation system activation leads to the formation of a thrombus. The 

equilibrium between pro- and anticoagulant forces is tightly balanced and the deficiency of 

any of the coagulation factors or of the anticoagulants could conduct to a disequilibrium 

provoking bleeding or thrombosis. 

PS is a natural anticoagulant. Its role in hemostatsis and thrombosis has been extensively 

studied. In clinic, patients with hereditary PS deficiency mostly suffer from VTE. 

[92]. In case of complete PS deficiency, newborns present a combination of an extensive skin 

necrosis and DIC named PF and died within hours if untreated [117, 118]. It has been 

considered for a long time that PF essentially results from the imbalance between pro- and 

anticoagulant factors due to the absence of PS anticoagulant effect. Recent reports [95, 96] 

demonstrated that PS deficiency in mice recapitulates the aspects of PS deficiency in human. 

It was proposed that PF might not be exclusively a consequence of the lack on PS 

anticoagulant effect but could also result from the absence of PS signaling in endothelium and 

subsequent vascular disturbance [95, 96]. 

 

Murine model with PS deficiency: a valuable tool to better understand PF 

Our results showed in Chapter II confirmed that as for human, Pros1-/- mice died in utero 

from the consequences of purpura fulminans and DIC. We hypothesized that silencing Pros1 

gene in adult mice to achieve null or very low PS level could reproduce PF. To this end, we 

knocked out Pros1 in adult Pros1lox/- mice by using the Mx1-Cre system. Pros1lox/-Mx1-Cre+ 

mice displayed 16% circulating PS and thrombosis in the liver, heart and lung. However, they 

did not develop PF demonstrating that very low level of PS could still protect against PF. PS 

needs vitamin K as cofactor for post-translational γ-glutamylcarboxylation to achieve full 

biological activity. By interfering with the vitamin K–driven γ-carboxylation process, 

warfarin is widely used as a long-term anticoagulation therapy in humans. Our second 
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hypothesis was to administer warfarin to Pros1+/-  mice to further decrease PS and induce PF. 

Despite high mortality rates, only a few Pros1+/- mice developed under warfarin lesions 

compatible with PF. Analysing these lesions over time revealed that thrombosis occurred 

together with vasculature disruption. Previous studies [113] [114] [96] claimed the 

involvement of PS in the vasculature development and maintenance. However, the hypothesis 

that vascular damages occurring during PF are exclusively due to thrombosis resulting from 

the imbalance between pro- and anticoagulant factors did not take into consideration that 

besides its role as an anticoagulant, PS exerts important roles in endothelium, phagocytosis 

[34] [157] and inflammation [167]. Clarification whether PS deficiency induced PF is 

exclusively secondary to thrombosis or is also due to the lack of PS signaling in endothelium 

or both is awaited. In order to elucidate this issue, we decided to characterize Pros1-/- 

embryonic vasculature. As expected, the lack of PS leads to vascular thrombosis. 

Nevertheless, poor vasculature hierarchy, leaky vessels and areas without any vascular 

structures were exclusively observed in Pros1-/- embryos. Higher inflammation, altered 

phagocytosis and erythropoiesis were concomitant with PF. Furthermore, vascular defects 

were also present before PF begins.  Our findings suggest that contradictory to what is 

currently admitted, PS deficiency induced PF is not strictly secondary to the imbalance of 

pro- and anticoagulant factors, but also to lack of PS signaling in endothelium.  

 

Targeting Gas6 gene to rebalance hemostasis in Pros1-/- 

Strongly motivated by our conclusion that in PS complete deficiency, PF is not uniquely 

caused by the imbalance of pro- and anticoagulant factors, we attempted to rebalance 

hemostasis in Pros1-/- by intercrossing Pros1+/-Gas6-/- mice. Gas6-/- mice exhibit a well-

known antithrombotic phenotype [13]. We hypothesized that combining PS and Gas6 

deficiencies might restore the hemostatic balance and rescue Pros1-/- from fatal PF. 

Intriguingly, no viable Pros1-/-Gas6-/- mice were observed. Embryonic investigation revealed a 

more dramatic phenotype with earlier and higher mortality. Similar to Pros1-/-, vascular 

defects, ongoing inflammation, altered phagocytosis and erythropoiesis were observed in 
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Pros1-/-Gas6-/-. This finding further support that PF might not strictly result from the 

hemostatic imbalance due to the lack of PS anticoagulant activity.  

 

In conclusion, the results presented in Chapter II provide evidence that the thrombotic process 

occurring during PS deficiency induced PF should be less central than currently admitted. PS 

possibly plays an important role in vasculature development and maintenance. The lack of its 

anticoagulant effect provokes thrombosis. Besides, the absence of PS signalling in the 

endothelium might lead to vascular defects and further worsen PF. Further investigations are 

required to better characterize the mechanism by which PS is involved in vascular 

development and maintenance.  

 

FVIII or FIX gene silencing rescues Pros1-/- mice from lethality and restores hemostasis 

in hemophilia 

FVIII deficiency (hemophilia A : HA) and FIX deficiency (hemophilia B : HB) are bleeding 

diseases sustained by the loss of FVIII or FIX activity that remarkably impairs the generation 

of thrombin and imbalances hemostasis [250]. Patients with severe hemophilia frequently 

suffer from spontaneous recurrent muscle and joint bleeding, such as hemarthrosis, which 

leads to severe and progressive musculoskeletal damage [251]. This can result in disability at 

a young age if left untreated [189]. The main treatment is replacement therapy: the 

administration of the deficient clotting factor to achieve adequate hemostasis. The main 

complication of such therapy is the development of neutralising antibodies. New therapies 

focus on the development of products capable of decreasing the frequency of prophylactic 

infusions. Besides long-lasting FVIII and FIX, novel approaches comprise the replacement of 

the gene necessary for the production of endogenous coagulation factor, the bispecific 

antibody technology to mimic the coagulation function of the missing factor, and the targeting 

of coagulation inhibitors such as TFPI or antithrombin as strategy to rebalance coagulation in 

patients with hemophilia [252].  
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The disequilibrium of the hemostatic balance caused by PS complete lack allows us to 

hypothesize that FVIII or FIX /PS combined deficiency might be a suitable strategy to 

achieve hemostasis in HA and HB and rescue Pros1-/-  mice from lethal PF. Attractively, HA 

and HB mice completely lacking PS (Pros1-/-F8-/- and Pros1-/-F9-/-) were viable, displayed 

normal hemostatic parameters and did not presented PF. One of the most pertinent findings of 

this study is the complete prevention from acute and chronic hemarthrosis in Pros1-/-F8-/- and 

Pros1-/-F9-/- mice. Recombinant FVIII administration in Pros1-/-F8-/- mice restored the 

imbalance of the coagulation and promoted DIC and thrombosis but not PF or death even 

after an overdose of recombinant FVIII. An important interrogation remains: why FVIII full 

reconstitution in Pros1-/-F8-/- mice did not provoke PF? Further investigations are required to 

better clarify the mechanism of PF development in the context of PS complete deficiency. 

The extensive findings in this chapter of the work lead us to propose that targeting PS may 

potentially be translated to therapies useful for hemophilia. 

 

Pregnancy and PS deficiency: Pros or cons thromboprophylaxis 

Pregnancy is associated with a shift of the coagulation balance leading to a hypercoagulable 

state that protects pregnant women from fatal hemorrhage during delivery but predispose 

them to thromboembolism. Interestingly, pregnant women with PS inherited thrombophilia 

have an elevated risk of late fetal loss [86]. Some clinical studies reported that heparin and/or 

low dose aspirin treatment could ameliorate pregnancy outcomes [139] while others showed 

no benefit from thromboprophylaxis [143]. To develop clinical practice guidelines for this 

controversial situation, the AFFIRM study is assembling individual patient data from recent 

randomized controlled trials where heparin was administered for the prevention of recurrent 

placenta-mediated pregnancy complications [144]. To better understand how the lack of PS 

could affect pregnancy outcome, we assessed pregnancy in F8-/-Pros1+/- mice. Intriguingly, 

we did not observe fetal loss and litter size was normal in these mice. We supposed that 50% 

circulating PS in F8-/-Pros1+/- pregnant mice was sufficient to prevent abortion. We then took 

advantage from females with complete PS deficiency (F8-/-Pros1-/- ) available in our 
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laboratory to investigate pregnancy in this severe thrombophilia condition. We did not 

observed any litter from plugged F8-/-Pros1-/-  females demonstrating that complete deficiency 

in PS during gestation is incompatible with a positive pregnancy outcome. Embryos 

examination at different gestational stages revealed dead and macerated embryos from E11.5 

onwards. Some of them showed hemorrhages and thrombosis but no PF. With 50% expected 

F8-/-Pros1-/- embryos, only 33% were found with no live F8-/-Pros1-/- embryos collected after 

E12.5. We suppose that the early death of F8-/-Pros1-/-  embryos could result from the lack of 

PS in both the mother and the fetus, since F8-/-Pros1+/- embryos survive as long as PS 

expression is maintained in the uteroplacental unit. In multifetal human pregnancies, retention 

of a dead fetus is coupled with amplified platelet activation, thrombin generation, and a 

higher risk of DIC in the mother and in morbidity of the surviving foetus [247]. Similarly to 

humans, dead and macerated embryos present within mice uterus produce toxic factors that 

damage surviving littermates [248]. The evaluation of DIC parameters in F8-/-Pros1-/- 

pregnant mice revealed decreased fibrinogen concentration and platelet count with higher 

thrombin-antithrombin levels. Indeed, the complete lack of PS leads to a severe 

prothrombotic phenotype that is rebalanced in F8-/-Pros1-/-. We postulate that the pregnancy 

associated hypercoagulable state imbalances the achieved hemostasis in F8-/-Pros1-/- and 

promotes DIC. However, histological investigations of liver, kidney and lung sections from 

F8-/-Pros1-/- pregnant mice and placentas at different gestational stages revealed no signs of 

fibrin deposition. In addition, increased platelets activation is typical in female suffering from 

abortion. Therefore, it is not clear whether the observed DIC signs are due to the hemostatic 

reimbalance in F8-/-Pros1-/- during pregnancy or to the effect of intrauterine retained dead 

fetus. In humans, LMWH is being tested to prevent placental dysfunction and the related 

sequelae in a subset of women with heritable thrombophilia. The risk-to-benefit balance of 

such prophylaxis is questioned [145]. In this study, we treated F8-/-Pros1-/-  pregnant mice 

with LMWH (enoxaparin) or low dose aspirin. These treatments were efficient in reducing 

fetal death. However, litter size was reduced as compared to control females.  

In conclusion, the results presented in Chapter III suggest that abortion in F8-/-Pros1-/- mice is 
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due to the hemostatic imbalance that provoke thrombosis and might disturb the uteroplacental 

circulation causing placental failure. This scenario seems questionable since there was no 

increased fibrin deposition in F8-/-Pros1-/- pregnant mice and placentas. Furthermore,  litter 

size was reduced with enoxaparin and even inferior with aspirin. It is tempting to suppose that 

observed abortion in F8-/-Pros1-/- mice is due to lack of PS anticoagulation effect (that is 

reverted by enoxaparin treatment) but also due to the lack of PS role in uteroplacental 

vasculature to support the establishment of the trophoblast invasion of the spiral arteries of 

the uterus. 

Previous clinical observations indicated that low dose aspirin had less efficient protection 

from abortion as compare to LMWH [141]. It is known that aspirin mainly prevents the 

initiation of thrombus formation and that new nonanticoagulant roles of LMWH have 

emerged, some of which are directly related to trophoblast function [249].  Thus, any 

beneficial effects of LMWH prophylaxis might not necessarily reflect a causal thrombotic 

link between thrombophilia mutations and pregnancy loss. Also, platelets play a role into 

gestational requirements. Any roles for platelets are likely to result from their activation in the 

circulation. However, the molecular mechanisms of platelet activation in pregnancy remain 

largely unknown. Characterization of platelet activation and of the role in the placental beds 

in complete PS deficieny will provide great insights into the physiopathology of inherited 

thrombophilia associated fetal loss. 

General conclusion and perspectives 

The equilibrium between pro- and anticoagulant forces is meticulously maintained in 

physiological situations. This thesis confirmed that complete PS deficiency causes DIC and 

PF. The etiological factor of PF is debated, although mainly considered to result from the lack 

of PS anticoagulant effect. Previous reports revealed vascular defects in Pros1-/- mice 

embryos. Our findings support these data. Indeed, warfarin treatment reproduces PF and 

indicates vascular wall damage. Examination of our Pros1-/- embryos revealed leaky and 

underdeveloped vasculature. The obtained results from PS and Gas6 combined deficiency 
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further suggest that during PF, PS might play other roles than anticoagulation.  

 

Our findings suppose that PS plays a prominent role in vasculature. The next step of this work 

will be to examine the role of PS in vascular development and maintenance. An 

immunostaining of the vascular wall and the endothelial cell junctions will be performed in 

order to determine the mechanism of vascular leakage in absence of PS. Furthermore, we will 

take advantage of the unique viable murine model with complete lack of PS (F9-/-Pros1-/-). 

F9-/-Pros1-/- mice will be used to perform in vivo angiogenesis assays : Matrigel plugs, 

investigation and quantification of vasculature in postnatal mouse brain by immunostaining 

and stereology. Taking into account the well know role of VEGF and its receptor VEGFR2 in 

vascular development and maintainance, our future aim is to investigate a possible pathway 

involving VEGF/VEGFR2 and PS, perhaps via the TAM receptors,  in PF development. 

 

The hemostatic balance was perfectly restored in mice with combined PS and F8/F9 

deficiency and prevented PF in Pros1-/- mice, paradoxically suggesting that PF in Pros1-/- 

mice principally results from the hemostatic imbalance. The hypercoagulable state related to 

pregnancy restored the hemostatic imbalance in F8-/-Pros1-/- females. Thromboprophylaxis 

was beneficial but did not fully prevent pregnancy loss further advocating an additional role 

for PS in pregnancy. This work will be persued by examining the role of PS in vasculature 

during pregnancy. We will investigate the uteroplacental vasculature by whole mounting 

immunostained placentas. Angiogenic factors (VEGF, sflt) will also be measured in plasma. 

Since platelets play a prominent role in pregnancy, their activation will be evaluated.  

Furthermore, the setting of ongoing clinical trials evaluating the role of LMWH in preventing 

placental dysfunction in PS deficiency may need to be adjusted and take into account the role 

of PS in placental vasculature. 

The achieved hemostasis in F8-/-Pros1-/- and F9-/-Pros1-/- provides the first evidence that 

inhibiting PS completely prevents hemarthrosis and ameliorates bleeding. The next step of 

this project is to develop a suitable compound to inhibit PS such as SIRNA or antisense 
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oligonucleotides. Next, we will conduct in vivo experiments in primates and clinical trials in 

hemophilia patients. I will also follow the master of translation and entrepreneurship in 

medicine (sitem-Insel School, University of Bern). This master will allow us to possess the 

necessary combination of scientific and medical knowledge and entrepreneurship skills to 

successfully coordinate the commercialization of biomedical products. 
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Chapter VI: Appendices 

I- Endogenous GAS6 contributes to immune homeostasis in response to endotoxemia and 
infection 
 
II- The Gas6-Axl Protein Interaction Mediates Endothelial Uptake of Platelet Microparticles 
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Sepsis is a severe life-threatening infection with organ dysfunction triggering interplay of host 

pro- and anti-inflammatory processes. There are currently no proven pharmacological 

therapies for sepsis. The product of growth arrest-specific gene 6 (Gas6) plays at the interface 

of coagulation and inflammation, and therefore at the interface between blood and pathogens. 

It contributes to the protection from cellular stress, such as inflammation and apoptosis. Here 

we explored whether endogenous GAS6 is protective in the context of endotoxemia and 

bacterial infection. In mice, Gas6 deficiency enhanced lethality in endotoxemia and bacterial 

sepsis, caused by an overproduction of numerous cytokines provoking a systemic 

inflammatory response and drop in blood pressure. In response to endotoxin, macrophages 

secreted GAS6 that dampened cytokine release in an autocrine manner. Thus, in the absence 

of GAS6 and in the presence of pathogens, macrophages overproduce pro-inflammatory 

cytokines. Indeed, treatment of Gas6-/- macrophages with exogenous GAS6 decreased 

cytokine release, thereby restoring the wild-type phenotype. In humans, GAS6 rose in plasma 

during endotoxemia. These observations in humans corroborate data in mice and point to 

endogenous GAS6 as a major modulator of innate immunity, a potent immuno-modulator and 

protective factor for sepsis. 
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INTRODUCTION 

Sepsis and related complications are the leading causes of death in the intensive care unit. In 

the USA, about 750,000 patients are diagnosed with sepsis annually, resulting in greater than 

200,000 deaths per year [253]. In Europe, the hospital mortality of sepsis ranges from 20% to 

47% [254]. Clinical manifestations result from the interplay between infectious organisms 

and host responses. In the early phases of sepsis, pathogens and microbial products, such as 

endotoxin (lipopolysaccharide, LPS) stimulate the host immune response. Both pro- and anti-

inflammatory responses occur rapidly after sepsis onset with an initial prominent 

hyperinflammatory phase accompanied by fever, hypermetabolism and shock [255]. The 

host's response is complex, prolonged and responsible for both infection clearance and organ 

injury [256]. Its dysregulation could favor secondary infections contributing to mortality 

[257]. To date, no proven pharmacological therapies for sepsis are available [258], and there 

is an urgent need for novel therapeutic targets.  

Based on previous studies that report increased GAS6 plasma levels in severe sepsis [172, 

259], we decided to investigate GAS6, as a likely candidate for sepsis treatment. GAS6 is a 

secreted vitamin K-dependent protein, structurally similar to protein S [7], which interacts 

with activated phospholipid membranes and TAM receptor tyrosine kinases (TYRO3, AXL 

and MERTK) [43, 152, 260, 261]. TAM activation leads to intracellular signaling involving 

PI3K/Akt and interferon (IFN) receptor/signal transducers and activators of transcription 

(STAT)/suppressor of cytokine signaling (SOCS) pathways. In non immune cells, the PI3K 

pathway is a major signaling pathway downstream GAS6 [44, 45, 262], whereas in dendritic 

cells the main pathway operates via IFN/STAT/SOCS [167].  

Previous work indicates that the loss of TAM receptors on macrophages causes a chronically 

high expression of MHC class II levels that is further increase after LPS stimulation. This in 

turn induces an excessive production of pro-inflammatory cytokines, such as. IL-12 and TNF-

α [263]. In line with this results, MERTK activation has been shown to inhibit TNF-α 

expression by monocytes/macrophages thus protecting mice from lethal endotoxic shock 
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[166]. More recently, pharmacological intervention with exogenous GAS6 attenuates 

neutrophil migration and lung injury in sepsis [264].  

The results of the present study support the idea that endogenous GAS6 influences the host 

response to endotoxemia and infection by modulating innate immunity. A rise of plasma 

GAS6 in healthy volunteers during endotoxin challenge corroborates experimental data in 

mice and suggests that endogenous GAS6 is a protective factor for severe sepsis, by 

dampening the inflammation state of macrophages after their initial activation by endotoxin. 

 

 

MATERIAL AND METHODS 

Healthy volunteers 

Eight healthy young men [265] were enrolled after approval by the institutional ethics 

committee (Commission Cantonale (VD) d’Ethique de la Recherche sur l’Etre Humain) and 

written consent. Inclusion criteria were good health and no medication. A complete history, 

physical examination and 12-lead electrocardiography were performed. Blood was collected 

for each participant before and after 2 ng/kg LPS i.v. injection.  

Mice 

Gas6+/+, Gas6+/- and Gas6-/- mice were progeny of the original colony, with a genetic 

background of 50% 129/Sv x 50% Swiss [13]. BALB/cAnNCrl Gas6-/- mice were 

backcrossed for >10 generations on a BALB/cAnNCrl background. Tyro3-/-, Axl-/- and Mertk-/- 

mice were progeny of the original colony on a 50% 129/Sv x 50%C57BL/6 background [33]; 

control WT mice had the same genetic background. Animal experiments were approved by 

the Swiss Federal Veterinary Office and performed according to our institution’s guidelines 

for animal experiments. 

Murine endotoxemia model 

Swiss/129/Sv or 129/Sv/C57BL/6 mice were injected intraperitoneally (i.p.) with LPS from 

Escherichia coli O55:B5 (Sigma-Aldrich) at 2 doses (25 or 50 mg/kg) and continuously 

monitored for LPS-induced lethality for 72 hours after LPS injection.  
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Arterial blood pressure measurements 

Male Gas6+/+ and Gas6-/- mice were i.p. injected with 40 mg/kg E. coli LPS or an equivalent 

volume of isotonic saline. After 6 hours, arterial blood pressure was measured inserting a 1.4 

F micro-tip pressure catheter (Millar Instruments) into the right carotid artery of anesthetized 

mice (ketamine 80 mg/kg and xylazine 10 mg/kg). Signals were recorded with a 

Powerlab/4SP A/D converter (ADInstruments). 

 

Recombinant human Gas6  

Recombinant GAS6 (rGAS6) was expressed and purified from HEK293 cells transfected with 

an epitope-tagged cDNA, as described [266]. 

 

Gas6 and protein S ELISA 
 
Plates were coated overnight at 4°C with goat polyclonal antibody against human and mouse 

GAS6 (AB885 at 10 µg/mL and AF986 at 1 µg/mL, respectively; R&D Systems) in 0.1 M 

NaHCO3 pH 8.2. The plates were blocked with PBS containing 1% BSA, 5% sucrose and 

0.05% NaN3. rGAS6, mouse GAS6 (986-GS, R&D Systems) and samples diluted in PBS and 

1% BSA were incubated overnight at 4°C. After washing, plates were incubated with 

biotinylated goat antibodies directed against human or mouse GAS6 (BAF885 at 2 µg/mL 

and BAF986 at 0.5 µg/mL, respectively; R&D Systems). Signals were revealed using avidin-

HRP (BD Pharmingen) and the OPD substrate (Sigma-Aldrich). The detection limit of the 

ELISA was 0.6 and 0.1 ng/mL for human and mouse GAS6, respectively. Human GAS6 

levels were expressed in percentage relative to the level of Gas6 in a pool of normal plasma in 

order to minimize technical variations and to facilitate the comparison of GAS6 levels 

between clinical samples. 

To measure protein S in murine plasma, plates were coated overnight at 4°C with 10 µg/ml of 

rabbit polyclonal anti human-protein S (DAKO Cytomation). After rinsing with TBS buffer 

(0.05 M tris(hydroxymethyl)aminomethane, 0.15 M NaCl, pH 7.5, 0.05% Tween 20), the 
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plate was blocked with TBS-BSA 2%. Plasma samples were added to the wells and incubated 

at room temperature for 2 hours. Standard curves were established by using dilution of pooled 

plasma obtained from 14 healthy mice (8 males and 6 females, 7–12 weeks old). Plates were 

washed and 1 µg/ml biotinylated chicken polyclonal anti-murine protein S was applied for 2 

hours at room temperature. Signals were revealed using a streptavidin-HRP conjugated 

horseradish peroxidase (Thermo) the TMB substrate (KPL). 

 

Mouse protein cytokine array 

Plasma samples or macrophage supernatants were applied to a mouse protein cytokine array 

(62 cytokines; RayBiotech). The array membranes were processed according to the 

manufacturer’s instructions. Briefly, membranes were blocked with a blocking buffer, and 

then 1 mL of a plasma pool (corresponding to 8 mice) or supernatant was individually added 

and incubated at room temperature for 2 hours. Finally, the results with immuno-reactivity 

were assessed and quantified by using a VerSaDoc Imaging System (Bio-Rad) and graphed. 

 

Measurement of sAXL, sMERTK, sTYRO3 cytokines and NO levels 

Antigenic evaluation of TAM soluble receptors (sAXL, sMERTK, sTYRO3), IFN-γ, TNF-α 

and IL-6 in mouse plasma was performed using commercial antibodies (R&D Systems) and 

ELISA kits (R&D Systems). Nitrate and nitrite were measured by a colorimetric assay 

according to manufacturer's instructions (Cayman Chemical).  

 

Western blotting for signal transduction and quantification of phosphorylated IκBα  

For Western blotting, MBDMs were washed with cold PBS and lysed directly on plates at 

4°C with Cell Lysis Buffer (Cell Signaling Technology) supplemented with Complete Mini 

protease inhibitors cocktail (Roche Diagnostics) and 1 mM NaF. Lysates were centrifuged 10 

minutes at 17’000 x g, 4°C and then supernatants were kept at -80°C until use. Proteins were 

quantified using BCA Protein Assay Kit (Pierce Biotechnology) separated by SDS-PAGE and 

transferred onto nitrocellulose (Amersham). Phosphorylation of Akt (at Ser473), ERK1/2 
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(Thr202/Tyr204), p38 (Thr180, Tyr182) and JNK (Thr183/185) was determined using 1:1000 

dilutions of rabbit antibodies (Cell Signaling Technologies) incubated overnight at 4°C. For 

total protein control, membranes were stripped in 62.5 mM Tris-HCl pH=6.8, 2% SDS, 100 

µM β-mercaptoethanol for 30 minutes at 50°C, and reprobed with antibodies (Cell Signaling 

Technologies) directed against the total form of the protein (dilution 1:1000). All primary 

antibodies were detected by HRP-conjugated swine anti-rabbit antibodies (dilution 1:3000, 

DakoCytomation). Membranes were incubated with ECL (Amersham) and exposed to 

Hyperfilm (Amersham). Phosphorylated and total IκBα were quantified in macrophages by 

an ELISA kit (PathScan ELISA kits, Cell Signaling Technology) according to manufacturer's 

instructions. 

 

SOCS1 and SOCS3 quantification by qPCR 

Gene expression of SOCS1 and SOCS3 was quantified by real-time qPCR, relative to the 

expression of GAPDH, using an ABI PRISM 7000 (Applied Biosystems) real-time cycler and 

the following primers: GAPDH forward, 5′-CAACGGGAAGCCCATCAC-3′; reverse, 5′-

CGGCCTCACCCCATTTG-3′; SOCS1 forward, 5′-CCGTGGGTCGCGAGAAC-3′; reverse, 

5′-AACTCAGGTAGTCACGGAGTACCG-3′; SOCS3 forward, 5′-

TCCCATGCCGCTCACAG-3′; reverse, 5′-ACAGGACCAGTTCCAGGTAATTG-3′. Each 

reaction contained 4 µl SYBR Green PCR Master Mix (Applied Biosystems), 50 nM primer 

pair, 5 µl diluted cDNA (obtained with SuperScript II Reverse Transcriptase (Invitrogen) 

according to manufacturer instructions) and water to a final volume of 20 µl. PCR parameters 

were as follows: initial denaturation at 95°C for 10 min followed by 40 cycles of 15 s at 60°C. 

The relative gene expression levels in each sample were determined using the comparative 

deltadeltaCt method, and the GAPDH gene as the endogenous control.  

 

Bacterial sepsis models 

In a first model, E. coli O18 strain, a gift of A.S. Cross [267], was cultured in BHI medium 

(Brain Heat Infusion, Becton Dickinson) for 3-4 hours at 37° until OD620nm = 0.4 (about 3*108 
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CFU/ml). BALB/cAnNCrl Gas6+/+ and Gas6-/- mice were injected i.p. with 1.5*104 to 

2.5*105 CFU. The inoculum was plated immediately after inoculation on blood agar plates to 

determine viable counts.  

In a second model, cecal ligation and puncture, mice were anesthetized by halothane. A 

midline laparotomy was performed to allow exposure of the cecum. The cecum was ligated as 

near to the ileocecal junction as possible and perforated twice with a 19-gauge needle. It was 

then gently squeezed to extrude a small amount of feces from the perforation sites and 

returned to the peritoneal cavity. The incision was closed with wound clips. Sham operated 

mice were also incised, cecum taken outside abdominal cavity, and returned in position 

without ligation or puncture. After surgery, and every 12 hours, mice received 0.05 mg/kg of 

buprenorphine (Temgesic, Essex Chemie) subcutaneously.   

 

Murine bone marrow-derived macrophages 

Bone marrow-derived macrophages (BMDMs) were obtained by culturing bone marrow cells 

for 7 days in IMDM containing Glutamax (Invitrogen) supplemented with 10% FBS 

(Invitrogen), 100 IU/mL penicillin, 100 µg/mL streptomycin (Amimed, BioConcept), 50 µM 

β-mercaptoethanol and 30% L929 conditioned medium as a source of M-CSF. 

Statistical analyses 

Values were expressed as mean ± SEM. All the data were plotted and analyzed by ANOVA 

(one-way or two-way, and Bonferroni post-test) or Student’s t-test using GraphPad Prism 

(Prism 5.0f). Survival data were plotted using the Kaplan-Meier method and compared using 

Log-rank test .P < .05 was considered statistically significant. 
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RESULTS 

Plasma GAS6 levels rose following LPS challenge in healthy volunteers and mice 

Previous studies have shown that plasma GAS6 levels rise in patients with severe sepsis [172, 

259]. To corroborate this observation, a small group of healthy volunteers were subjected to 

intravenous (i.v.) LPS injection in order to mimic acute generalized inflammatory response, a 

key component in sepsis. GAS6 levels were monitored in plasma participants before and 

every 30 minutes after LPS injection [265]. GAS6 increased sharply after LPS reaching its 

maximal concentration after 90 minutes (about two-fold from baseline levels, P<0.001, Figure 

1A). Sustained high GAS6 levels were maintained over the whole observation period (360 

minutes). These results suggest that LPS directly promoted a rapid and stable GAS6 release in 

plasma. 

We applied the LPS model to mice, at 25 or 50 mg/kg, causing about 25% - LD25 - or 75% - 

LD75 - mortality in Gas6+/+ mice, respectively. In steady state, circulating GAS6 in Gas6+/+ 

mice was 24 ± 2 ng/mL (Figure 1B), and peaked to 55 ± 10 and 66 ± 6 ng/mL 1 hour after a 

LPS challenge of 25 and 50 mg/kg, respectively (P < .001 between 0 and 1 hour for both LPS 

doses). GAS6 was still elevated up to 4 hours (P < .001 versus baseline) following LPS 

injection but with a downward trend to baseline levels. Moreover, GAS6 was higher after 

LPS 50 than 25 mg/kg (P < .01, Figure 1B). Since protein S shares sequence/structure 

homology with GAS6 and has preferential binding to TAM receptors, we also measured 

plasma protein S in parallel of GAS6. Whereas GAS6 level increased immediately after the 

injection of LPS, protein S decreased slightly after a short period and remained below 

baseline for at least 12 hours (1 hour vs. 4 hours, P = 0.016, Figure 1C). Thus, in plasma, 

bacterial product triggers an immediate rise of GAS6, but not of protein S. 

 

Genetic loss of TAM or Gas6 receptors enhanced vulnerability to endotoxemia 

To investigate the role of GAS6 in the host response to endotoxemia, we challenged mice 

deficient in any of the TAM receptors with LPS (Figure 2A). We established that Axl-/- Tyro3-

/-, or Mertk-/- mice were more vulnerable to LPS than WT (n = 7-11, Axl-/- versus WT: P = 
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.0002; Tyro3-/- versus WT: P = .0002; Mertk-/- versus WT: P = .0002). Axl-/-, Tyro3-/-, or 

Mertk-/- mice were comparably sensitive to LPS challenge (P > .05). Our data on Mertk-/- are 

in line with those reported by Camenisch et al. [166].  

Since only GAS6, and not protein S, was increased in sepsis, we examined whether 

endogenous GAS6 is an active player in the endotoxic response in Gas6+/+, Gas6+/- and Gas6-

/- mice. After LPS injection, Gas6-/- mice showed an increased vulnerability compared to 

Gas6+/+ and Gas6+/- mice (Figure 2B-C). In particular, whereas most of the Gas6-/- mice 

succumbed in the first 48 hours after 25 mg/kg LPS treatment, 73% of the Gas6+/+ mice 

survived (Figure 2B). Using higher LPS dosage (50 mg/kg), all Gas6-/- mice died within 48 

hours (Figure 2C) whereas 25% of Gas6+/+ mice were still alive; the median survival was 34 

hours for Gas6+/+ versus 14.5 hours for Gas6-/- mice. Survival after LPS challenge in Gas6+/- 

mice, whose circulating GAS6 was about 50% of the WT level (Supporting Figure S1A) did 

not differ from Gas6+/+. Thus, the loss of Gas6 or any TAM receptors enhanced vulnerability 

of mice to endotoxemia. 

In rodents, LPS promotes hypotension accompanied by the release of pro-inflammatory 

cytokines and nitric oxide (NO), and by the induction of nitric oxide synthase expression. 

These events finally result in the onset of acute pulmonary edema, myocardial dysfunction 

and death [218, 219]. To investigate whether Gas6-/- mice were more susceptible to 

hypotension during endotoxemia, arterial blood pressure was measured. Gas6-/- and Gas6+/+ 

mice did not differ at steady state; however, 6 hours after LPS injection, mean blood pressure 

was significantly reduced in Gas6-/- mice (Figures 2D-E).  

 

Soluble receptor AXL (sAXL) rose in murine plasma in response to LPS 

During inflammation, TAM receptors can be cleaved and released in the bloodstream. Gas6-/- 

mice presented at baseline soluble sAXL levels higher than Gas6+/+ mice (21.3 ± 1.3 vs 6.7 ± 

0.3 ng/mL, Figure 3A). Although 25 mg/kg LPS treatment increased sAXL in both genotypes 

during the first 7 hours, Gas6-/- mice showed a 2-fold increased sAXL compared to Gas6+/+ 

mice, as further confirmed by cytokines antibody array (cytokine # 1, Figure 3B). We were 
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unable to detect the soluble forms of TYRO3 and MERTK in murine plasma by ELISA both 

in Gas6-/- and Gas6+/+ mice. 

 

Circulating cytokines were elevated in Gas6-/- mice during endotoxemia 

Sixty-two pro-inflammatory and immunomodulatory cytokines were quantified in plasma in a 

relative scale manner at different time points after LPS injection (50 mg/kg i.p.) using an 

antibody array. Cytokines levels were generally higher in Gas6-/- mice 1 hour after LPS 

challenge (Figure 3B), several cytokines being at least 50% higher in Gas6-/- than Gas6+/+ 

plasma after LPS injection (after 1 hour: 46/62 cytokines, 4 hours: 6/62, 7 hours: 29/62, 

Supporting Table S1) but also at steady-state (52/62) [242]. Indeed, 1 hour after LPS 

injection, IFN-γ, IL-10, IL-12p40/p70, IL-12 p70, IL-1β, IL-6, KC were at least 50% higher 

in Gas6-/- than Gas6+/+ plasma. After 4 hours, IL-1β and TNF-α, and after 7 hours, IL-10, 

MCP1 and TARC were at least 50% higher. Antigenic assays for TNF-α and IFN-γ further 

confirmed the increased concentration of both cytokines in Gas6-/- 1 hour after LPS injection 

(Figure 3C-D). In addition, we measured TNF-α levels also in Axl-/-, Tyro3-/-, and Mertk-/- 

mice plasma after LPS challenge (25 mg/kg). Both Axl-/- mice (14 ± 1 ng/mL) and Mertk-/- 

mice (50 ± 13 ng/mL) mice showed 3-10 fold increase of TNF-α levels compared to WT (5 ± 

1 ng/mL) (P = .0002 and P = .009 respectively, n = 7-9), whereas for Tyro3-/-, TNF-α levels 

were comparable to WT (8 ± 2 ng/mL, P = .14, n = 7).  

Although NO enhances bacterial destruction, it is also well known to promote the 

vasodilation. We therefore evaluated the total amount of NO by measuring nitrate and nitrite 

concentrations in plasma. In WT mice, NO increased drastically after LPS injection (1 and 7 

hours, depending of the murine background, Supporting Figure S1B-C). In comparison, NO 

level increased only slightly in Gas6-/- mice and did not differ significantly from baseline in 

Axl-/- and Tyro3-/- mice (Supporting Figure S1B-C).   

Since steroids inhibit inflammatory cytokines, we assessed whether dexamethasone (DXM) 

affects GAS6 concentration in murine plasma (Figure 3E) or whether the lack of GAS6 would 
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impair the immunomodulatory effect of the glucocorticoid (Figure 3F). Intraperitoneal DXM 

injection in the presence or absence of LPS did not modify plasma GAS6 in comparison to 

vehicle controls. Moreover, in the absence of GAS6, DXM was still a potent inflammatory 

cytokines inhibitor (Figure 3F). 

Thus, during endotoxemia, numerous circulating pro- and anti-inflammatory cytokines were 

higher in Gas6-/- than Gas6+/+ mice. In addition, TNF-α was higher in the absence of Axl or 

Mertk, although the absence of Tyro3 appeared to have less significance on TNF-α levels. 

However, NO levels were higher in Gas6+/+ than Gas6-/- mice. DXM treatment, however, did 

not modify the release of GAS6 in plasma upon LPS challenge. 

 

Macrophages lacking Gas6 overproduced cytokines 

GAS6 and TAM receptors are expressed by macrophages, platelets and endothelial cells but 

not by circulating lymphocytes and neutrophils [15, 171]. Therefore, we focused on 

macrophages as they may constitute the main source of circulating GAS6 and cytokines 

during sepsis [259, 268]. 

We observed that BMDMs released GAS6 when stimulated by LPS (Figure 4A). Next, we 

assessed the role of Gas6 by measuring the release of TNF-α in Gas6+/+ and Gas6-/- BMDMs 

stimulated with LPS. Gas6-/- BMDMs released significantly more TNF-α than Gas6+/+ 

BMDMs in a dose-dependent manner (Figure 4B). Moreover rGAS6 (400 ng/mL) reduced 

TNF-α release from Gas6-/- BMDMs, thereby restoring a Gas6+/+ phenotype (Figure 4B). We 

observed a comparable restoration of the WT phenotype in a time-course experiment 

(Supporting Figure S1D). Similarly, IL-6 secretion was enhanced in Gas6-/- BMDMs (Figure 

4C) compared to Gas6+/+ BMDMs and its level rose progressively with LPS dose. Increased 

IL-6 levels in Gas6-/- BMDMs were dampened by adding rGAS6 (400 ng/mL) to the cell 

culture medium (Figure 4C). 



 188 

These results indicate that after LPS stimulation macrophages released GAS6 that in turn 

prevented exaggerated cytokine release. However, co-treatment of Gas6-/- BMDMs with 

rGAS6 partially restored the Gas6+/+ phenotype for all the examined cytokines. 

 

GAS6 immunomodulatory function acted through SOCS1/3 pathway in BMDMs 

Signal transduction mediated by GAS6 in other cell types than dendritic cells is known to 

involve the activation of PI3K and its downstream target, Akt [260]. In addition, MERTK 

regulates PI3K and NF-κB activation in dendritic cells [269]. Since it has been shown that the 

PI3K/Akt signaling pathway negatively regulates LPS-induced acute inflammation [270], we 

assessed whether the absence of Gas6 affects Akt activation in BMDMs. Moreover, 

downstream targets of the PI3K/Akt pathway and the TLR4 pathway include the MAPK 

pathways (p38, ERK1/2, JNK) [263]. Thus, we stimulated BMDMs with LPS (40 ng/mL) and 

assessed the phosphorylation of Akt, p38, ERK1/2 and JNK, as well as the total form of each 

protein. Western blotting and densitometry quantification (data not shown) of three 

independent experiments did not highlight a difference of target protein phosphorylation 

between Gas6+/+ and Gas6-/- BMDMs (Supporting Figure S1E). Consequently, we did not 

notice a modification of the phosphorylation state of IκB-α between Gas6+/+ and Gas6-/- 

BMDMs (Figure 5A). 

GAS6 induces the cytokine and TLR suppressors SOCS1 and SOCS3 in dendritic cells, as 

shown by an increased mRNA expression of SOCS1/3 in cell lysates [167] and in the synovia 

of mice in a collagen-Induced arthritis model [271]. Quantitative RT-PCR of BMDMs 

stimulated with LPS at different time points was performed. In absence of GAS6, mRNA 

expression of SOCS1 was reduced (Figure 5B). A similar pattern was also observed for 

SOCS3 although only as a trend (Supporting Figure S1F). The same pattern has been 

described in [271]. Thus, the lack of GAS6 weakened the regulation of the TLR signaling 

pathway in BMDMs by dampening at least SOCS1 activation.  
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Gas6 deficiency conferred susceptibility to microbial sepsis with exaggerated 

inflammation  

 We examined the response of Gas6+/+ and Gas6-/- mice to microbial sepsis using two models 

of peritonitis. In the first model, Gas6+/+ mice were inoculated i.p. with the E. coli strain O18 

[24]. Plasma GAS6 levels increased by 50% after 4 hours (39 ± 2 at baseline and 59 ± 4 

ng/mL after 4 hours, P < .05, n = 9-10) and remained elevated for at least 24 hours. Higher 

dose of E. coli (2.5*106 CFU) induced much higher levels of IL-6 in Gas6-/- than Gas6+/+ 

mice (143 ± 20 versus 53 ± 14 ng/mL, P = .004, n = 5-6). 

In the second model of peritonitis, which closely mimics human peritoneal sepsis (cecal 

ligation and puncture, CLP) [220, 221], plasma GAS6 levels were higher after 8 and 24 hours 

in mice with peritonitis compared to sham-operated mice (Figure 6A). Gas6-/- mice were 

more sensitive to CLP than Gas6+/+ mice: 83% of Gas6-/- versus 55% of Gas6+/+ mice died 48 

hours after peritonitis-inducing surgery (Figure 6B). All shams survived to 48 hours. Thus, 

Gas6 deficiency in mice conferred susceptibility to microbial sepsis.  

 

 

DISCUSSION 

Here we show that the Gas6 influences host responses to endotoxemia and bacterial infection 

by modulating innate immunity. Endogenous GAS6 exhibits strong anti-inflammatory 

activities both in vivo and in vitro, by attenuating endotoxin-induced activation of 

macrophages and blunting systemic inflammatory response. A first insight came from a report 

showing that MERTK activation inhibits TNF-α production by monocytes/macrophages and 

alleviates endotoxic shock in mice [166]. A second insight was provided by data 

demonstrating that macrophages lacking the three cognate GAS6 receptors 

(TYRO3/AXL/MERTK or TAM) are chronically hyperactivated as indicated by their high 

expression of MHC class II and CD86 in steady-state with further aberrantly increase after 

endotoxin stimulation and excessive production of pro-inflammatory cytokines [33]. Finally, 
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a third study demonstrated that activation of TAM signaling provides a negative feedback of 

TLR- and cytokine-driven immune response in dendritic cells [167]. Based on these reports, 

we hypothesized that endogenous GAS6 might be involved in protection against systemic 

inflammatory response to infection and/or in the development of immune dysfunction 

observed in severe sepsis.  

To test our hypothesis, we performed experimental studies using Gas6+/+, Gas6+/- and Gas6-/- 

mice. First, we observed in Gas6-/- mice the same vulnerability to endotoxin challenge as in 

Mertk-/- mice [166], characterized by a reduced survival associated with an overproduction of 

TNF-α. Moreover, survival curves after endotoxin challenge in Axl-/- and Tyro3-/- were 

comparable to those of Mertk-/- and Gas6-/- mice. Second, Gas6-/- mice mortality was also 

increased in the CLP model. We demonstrated that plasma GAS6 relatively increased both in 

endotoxemia and microbial peritonitis models. We showed that macrophages secrete 

cytokines and GAS6 after endotoxic treatment in order to prevent an over-stimulation, by the 

activation of the IFNR/STAT1/SOCS pathway through TAM signaling as it was postulated 

previously [33, 42]. We describe here that in BMDMs, SOCS1 and although to a less extent 

SOCS3 are decreased in absence of GAS6. Consequently, endogenous GAS6 dampens 

mortality induced by endotoxemia and sepsis, acting through TAM receptors as a negative 

feedback in the inflammation process. 

Besides GAS6, soluble TAM receptors are generated by proteolytic cleavage of their 

ectodomains upon LPS stimulation [39]. These soluble forms might possibly sequester GAS6 

and antagonize the cell-associated TAM receptors [272]. Soluble AXL was higher in steady-

state and after endotoxin challenge in Gas6-/- than Gas6+/+ mice, but we were unable to detect 

circulating sTYRO3 or sMERTK in mice. GAS6 has a higher affinity for AXL than TYRO3 

or MERTK so it is plausible that compensatory regulation is occurring for AXL in the 

absence of GAS6 in Gas6-/- mice. 

The data obtained in mice were corroborated by observations in humans. In healthy 

volunteers, GAS6 rose in plasma in response to endotoxin, reaching its maximal 

concentration at 90 minutes and was then sustained for the next 4.5 hours. In comparison, 
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under the same conditions, TNF-α has been reported to peak in plasma at 120 minutes and to 

progressively return to baseline [265], suggesting that the time course of plasma GAS6 after 

LPS injection in humans differs from that of TNF-α. 

In patients with severe sepsis, high plasma GAS6 levels correlated with the degree of organ 

dysfunction [259]. In our murine endotoxemia model, mild GAS6 deficiency in Gas6+/- mice 

did not affect mortality whereas total absence of GAS6 increased mortality in both 

endotoxemia and microbial sepsis models. Thus, our data argue for a homeostatic role of 

endogenous GAS6, acting on macrophages, and suggest that GAS6 might appear as a 

potential early and reliable marker of infection and sepsis, as has been proposed. Indeed, 

currently, no single clinical or biological marker of sepsis has gained general acceptance 

[273, 274]. In addition to previous observations [172, 259], this work suggests that GAS6 and 

its soluble receptor should be investigated further as early biomarkers of sepsis. This is of 

relevance regarding that GAS6 plays a beneficial role in sepsis. Endogenous GAS6 attenuates 

the systemic inflammatory response in the early phase of sepsis, leading to death if the 

immune reaction is not dampened, but might also participate to hypo-inflammatory response 

in a later phase of sepsis, favoring fatalities due to primary infection or the development of 

secondary infections. Recently, a pharmacological intervention with recombinant GAS6 

showed a rescue of the mortality induced by CLP, reduced both cytokine levels in plasma and 

cellular infiltration in the lungs [264]. 

Both GAS6 and protein S are ligands for TAM receptors but previous publications showed 

that plasma protein S, in contrast to GAS6, may be reduced in the context of sepsis in human, 

most probably because of consumptive coagulopathy. The effect on protein S was, however, 

less prominent than on antithrombin or protein C [275]. In addition, initial and sequential 

differences in plasma protein S between survivors and non survivors were not significant and 

initial protein S levels had no prognostic value for prediction of subsequent death [276]. We 

observed that protein S significantly decreased in mice after LPS, most probably secondary to 

the consumptive coagulopathy occurring in this context. The role of protein S in LPS and 
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sepsis murine models is beyond the scope of the current manuscript and will be further 

investigated.  

In conclusion, our data presented here point to GAS6 as a major modulator of innate 

immunity and thereby provide novel insights into the mechanism of the systemic 

inflammatory response. GAS6 may constitute a protective factor for sepsis and, consequently, 

a potential target for the treatment of sepsis. 
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FIGURES  
 
 
 

 
 
 

FIGURE 1: LPS PROMOTES GAS6 RELEASE IN HUMAN AND MOUSE PLASMA 

(A) GAS6 levels in plasma of healthy volunteers (n=8) at steady-state (t0) and after 2 ng/kg 

LPS i.v. injection (***P < .001 t0 vs any time points ≥ 60 min, repeated measures ANOVA 

and Bonferroni’s multiple comparison test). (B) GAS6 levels in plasma of Gas6+/+ mice at 

steady-state and at different time points after LPS injection (** P < .01, 25 vs. 50 mg/kg). 

Data from two independent experiments. (C) GAS6 and protein S levels in plasma of Gas6+/+ 

mice at different time points after LPS (25 mg/kg) injection. 
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Figure 2: Lack of GAS6 or of its receptors in mice enhances vulnerability to 

endotoxemia 

(A-B) Kaplan-Meier plots of the survival of Gas6+/+, Gas6+/- and Gas6-/- mice treated with 

LPS 25 mg/kg (A) and 50 mg/kg (B) intraperitoneally (i.p.). Data are pooled from multiple 

independent experiments. (C) Mean blood pressure measured in the carotid artery did not 

differ between Gas6+/+ (n = 3) and Gas6-/- mice (n = 3) in steady state (mean ± SEM, P > .05) 

but was lower in Gas6-/- mice (n = 7) compared to Gas6+/+ mice (n = 6) 6 hours after LPS 

injection (40 mg/kg) (*** P < .001). Data from two independent experiments. (D) 

Representative traces of arterial blood pressure measured in mice 6 hours after i.p. injection 

of NaCl 0.9% or 40 mg/kg LPS. Data from two independent experiments. (E) Kaplan-Meier 
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plots of the survival of WT and mice lacking any one of the cognate GAS6 receptors treated 

with 25 mg/kg LPS. Data from two independent experiments 
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FIGURE 3: GAS6 RAISES IN PLASMA DURING ENDOTOXEMIA AND DOWN-REGULATES ITS 

SOLUBLE RECEPTOR AXL AND NUMEROUS CIRCULATING CYTOKINES  
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 (A) Comparison between plasma levels of sAXL in Gas6-/- than in Gas6+/+ mice before and 

after LPS injection (25 mg/kg); ** P < .01, *** P < .001. (B) Cytokines antibody array was 

performed using pool of Gas6-/- and Gas6+/+ plasma (n=8 mice each group) 1 hour after LPS 

injection (50 mg/kg). Cytokines are numbered from 1 to 62 on the x-axis and their relative 

expression is indicated on the y-axis in arbitrary units (AU). Cytokines that are commonly 

significantly increased during endotoxemia are indicated in red. Cytokine listed in Supporting 

Table S2. (C-D) Plasmatic TNF-α (C) and IFN-γ (D) levels in Gas6-/- and Gas6+/+ mice 1 

hour after LPS injection (*** P < .001, P < .05). Data from two independent experiments. (E) 

dexamethasone (DXM) doesn't control plasmatic GAS6. (F) The absence of GAS6 doesn't 

impair the immunomodulatory effect of DXM. 

 

 
FIGURE 4: MACROPHAGES LACKING GAS6 OVERPRODUCE CYTOKINES IN RESPONSE TO 

ENDOTOXIN 
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(A) Secreted GAS6 by bone marrow-derived macrophages (BMDMs) after 24 hours 

stimulation with 40 ng/ml LPS (*** P < .001). (B) TNF-α released by Gas6-/- BMDMs and 

Gas6+/+ BMDMs after 5-40 ng/ml LPS stimulation. Addition of rGAS6 (400 ng/ml) Gas6-/- 

BMDMs conditioned media was able to reduce TNF-α release from Gas6-/- BMDMs (** P < 

.01, *** P < .001). (C) IL-6 secretion by Gas6-/- BMDMs and Gas6+/+ BMDMs after LPS 

treatment (* P < .05); addition of rGAS6 (400 ng/ml) to the cell culture media reduced IL6 

released by Gas6-/- BMDMs.  

 

 

 
 
FIGURE 5: SOCS1 PATHWAY IS DAMPEND IN GAS6-/- MACROPHAGES  
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(A) Kinetics of IκB phosphorylation after LPS (40 ng/ml) stimulation in BMDMs (3 

independent experiments). (B) Relative mRNA expression of suppressor of cytokine 

signaling (SOCS)1 quantified by qPCR using GAPDH as housekeeping gene and normalized 

to nonstimulated cells (0 hour). BMDMs were incubated for 1 to 8 hours with 40 ng/ml of 

lipopolysaccharide (LPS). (* P < .05, ** P < .01). 

  

FIGURE 6: GAS6-/- MICE ARE MORE SUSCEPTIBLE TO MICROBIAL SEPSIS.  

(A) GAS6 plasma levels after 8 and 24 h from CLP compared to sham-operated mice (*** P 

< .001). (B) CLP survival in Gas6-/- and Gas6+/+ mice. Data from three independent 

experiments (P < .05). 
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