

Strathprints Institutional Repository

Porzelle, Achim and Cooper, Anthony W. J. and Woodrow, Michael D and Tomkinson, Nicholas C.O. (2010) *2-aminophenols containing electron-withdrawing groups from N-aryl hydroxylamines.* Synlett, 2010 (16). pp. 2471-2473. ISSN 0936-5214

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

2-Aminophenols Containing Electron-Withdrawing Groups from N-Aryl **Hydroxylamines**

Achim Porzelle,^a Anthony W. J. Cooper,^b Michael D. Woodrow,^b Nicholas C. O. Tomkinson^{*a}

School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, UK E-mail: tomkinsonnc@cardiff.ac.uk

^b GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire, SG1 2NY, UK Received 19 July 2010

Abstract: Reaction of substituted N-aryl hydroxylamines with methanesulfonyl chloride, p-toluenesulfonyl chloride, or trifluoromethanesulfonic anhydride under basic conditions leads to the rearranged 2-aminophenols (45-94%). The overall reaction sequence can be performed using polymer-supported sulfonyl chloride resin allowing for the effective conversion of N-aryl hydroxylamines to the 2-aminophenols without the need for chromatography.

Key words: rearrangement, hydroxylamine, solid-phase synthesis, 2-aminophenol

2-Aminophenols are valuable precursors in the preparation of heterocycles such as benzoxazoles,¹ benzoxazolones,² indoles,³ benzoxathiazole-2,2-dioxides,⁴ and benzoxazepines⁵ amongst others, highlighting their importance in synthesis. As a consequence, simple and effective methods for their preparation are of great use in the preparation of pharmaceutically relevant compounds.

We recently described methods to prepare 2aminophenols⁶ and 2-aminoanilines⁷ through rearrangement of N-aryl hydroxylamine derivatives which were readily accessible from either aryl halides⁸ or nitroarenes.⁹ Throughout these investigations a specific challenge that emerged was the rearrangement of electron-deficient Naryl hydroxylamines 1, such that we were unable to prepare 2-aminophenols (or their derivatives) through this strategy where the aromatic ring contained an electronwithdrawing group (Figure 1). Within this report we describe a method to overcome these problems and have found suitably protected electron-deficient N-aryl-O-sulfonyl hydroxylamines effectively undergo rearrangement to give protected 2-aminophenol products.

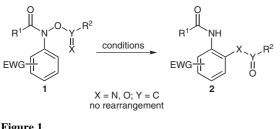


Figure 1

SYNLETT 2010, No. 16, pp 2471-2473 Advanced online publication: 26.08.2010 DOI: 10.1055/s-0030-1258546; Art ID: D19110ST © Georg Thieme Verlag Stuttgart · New York

In previous investigations a specific trend that emerged in the rearrangement of O-functionalised N-aryl hydroxylamines was increasing the electron-withdrawing nature of the oxygen-substituent (i.e., R^2 in compound 1), increased the propensity of rearrangement. Further work showed that for a series of oxygen-substituents, the sulfonyl group allowed for the most facile rearrangement. For example, for the substrates 3, 4, and 5 (Figure 2) rearrangement occurred at 160 °C, 140 °C, and r.t.,^{2,6} respectively. With regards the aromatic portion of the substrate, mechanistic studies by Gassman have shown the dramatic effect of reducing electron density on the aromatic ring on decreasing the rate of rearrangement for a series of hydroxamic acid derivatives.¹⁰ Combination of these two factors suggested that use of the sulfonyl group for the rearrangement of electron-deficient substrates would provide the best opportunity for success in the overall strategy.

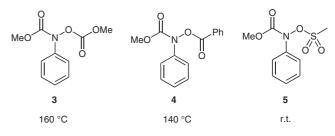


Figure 2 Effect of O-substitution on rearrangement temperature

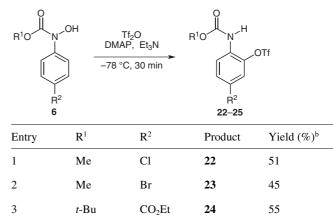
Reassessment of the conditions reported for the rearrangement of *N*-aryl hydroxylamines⁶ showed that, for unsubstituted aromatic rings, coupling/rearrangement occurred at room temperature for both methanesulfonyl and toluenesulfonyl chloride with the N-hydroxy carbamates examined giving the products in high yield (Table 1; entries 1-6; 78-94%). With electron-deficient substrates coupling with the sulfonyl chloride occurred at room temperature but, despite long reaction times, rearrangement did not take place. Pleasingly, warming the reaction mixture to 60 °C for two hours brought about rearrangement allowing the product to be isolated in excellent yield. This protocol was tolerant of a variety of functional groups including nitrile, ester, ketone, chloride, alkyne, and bromide with both Boc and methoxy carbamate nitrogen protecting groups (entries 7-15; 82-94%). This simple and highly effective strategy to access challenging tri- and tetrasubstituted aromatic compounds bearing electronwithdrawing substituents significantly expands the scope of the transformation and suggests the 2-aminophenol of choice can be prepared through this methodology.

Table 1 Treatment of *N*-Aryl Hydroxylamines with Sulfonyl Chlorides^a

R ¹ O	N-OH R ² 6	R ³ SO ₂ Cl, Et ₃ N, CHCl ₃ r.t., 30 min or r.t., 30 min then 60 °C, 2 H for R ² = EWG		0 R ¹ 0 N H R ² 7-21	.0, s, R ³
Entry	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Product	Yield (%) ^b
1°	Me	Н	Me	7	78
2 ^c	Me	Н	Tol	8	86
3°	<i>t</i> -Bu	Н	Me	9	88
4 ^c	<i>t</i> -Bu	Н	Tol	10	81
5°	Bn	Н	Me	11	94
6 ^c	Bn	Н	Tol	12	89
7 ^d	t-Bu	CN	Tol	13	88
8 ^d	<i>t</i> -Bu	CO ₂ Et	Tol	14	85
9 ^d	<i>t</i> -Bu	Ac	Tol	15	82
10 ^d	<i>t</i> -Bu	Cl	Me	16	94
11 ^d	Me	C_2H	Tol	17	91
12 ^d	Me	Cl	Tol	18	85
13 ^d	Me	Br	Tol	19	84
14 ^d	Me	2-Me-4-Cl	Me	20	88
15 ^d	Me	3-Br	Me	21	84 ^e

^a All reactions performed in CHCl₃ (0.25 M).

^b Isolated yield.


^c Reaction conducted at r.t. for 30 min.

 $^{\rm d}$ Reaction conducted at r.t. for 30 min then 60 °C for 2 h.

^e Isolated as an inseparable mixture of isomers in a 30:70 ratio (1,2,6-isomer/1,2,4-isomer).

Along with providing access to N-protected 2-aminophenols as heterocyclic building blocks, the *O*-sulfonyl phenol products (e.g., 7) represent potential partners for transition-metal-catalysed couplings.¹¹ Of the *O*-sulfonyl substrates reported to be effective in these reactions, the *O*-trifluoromethanesulfonate functionality readily undergoes oxidative addition and has the broadest applicability.¹² We therefore examined reaction of *N*-aryl hydroxylamines **6** with trifluoromethanesulfonic anhydride to determine if this would also undergo a similar rearrangement to that described above (Table 1). Reaction at room temperature (as above) or 0 °C proved difficult to control. However, addition of the anhydride to the hydroxylamine precursor **6** at -78 °C then allowing the solution to warm to room temperature gave the rearranged products in 45–74% yield (Table 2). Although isolated yields were lower than those with methanesulfonyl and toluenesulfonyl chloride (Table 1) the products could be isolated by chromatography and several of the challenging electron-deficient precursors were effective substrates within the reaction (entries 1–4).

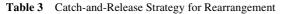
 Table 2
 Formation of O-Trifluoromethane Sulfonate Products^a

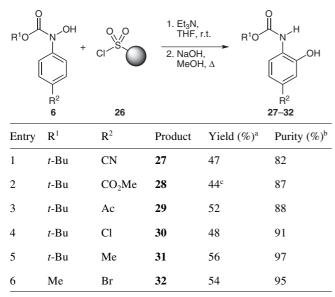
^a All reactions performed in CH₂Cl₂ (0.18 M).

t-Bu

CN

25


74


^b Isolated yield.

4

Having established effective conditions for the preparation of electron-deficient N-protected 2-aminophenols, we sought to develop the work further by the use of a 'catch-and-release' strategy using a polymer-supported sulfonyl chloride resin. Standard conditions are outlined in Table 3. Treatment of N-protected N-aryl hydroxylamine 6 with commercially available sulfonyl chloride resin in THF at room temperature for 30 minutes followed by heating at 60 °C for two hours gave the polymersupported rearranged product which could be thoroughly washed. Suspension of the residue in methanol and treatment with sodium hydroxide solution (2 M) at reflux for two hours gave the products 27-32 (44-56%; >82% purity LC-MS). This simple and standard protocol should have good applicability in the preparation of arrays of 2aminophenols as key heterocyclic building blocks.

In summary, we have described a simple and effective method for the preparation of both electron-rich and electron-deficient 2-aminophenols by reaction of protected *N*-aryl hydroxylamines with sulfonyl chlorides. Use of polymer-supported sulfonyl chloride resin provides the specific advantage of giving the products through a standard protocol without the need for chromatography. Given the mild conditions required for rearrangement and the ready availability of *N*-aryl hydroxylamines we believe this strategy will have application in the preparation of a variety of biologically significant heterocycles in drug discovery campaigns.

^a Isolated yield.

^b Determined by LC-MS.

^c Conducting hydrolysis in EtOH gave the ethyl ester (35%).

Typical Experimental Procedures

Rearrangement of Methanesulfonates and Toluenesulfonates¹³ The N-protected N-phenyl hydroxylamine (1.0 mmol) was dissolved in CHCl₃ (4 mL) and Et₃N (0.28 mL, 2 mmol) was added followed by the addition of the sulfonyl chloride (1.1 mmol) at 0 °C. The ice bath was removed and the reaction mixture allowed to stir at r.t. If rearrangement precursor remained after 30 min the reaction was heated to 60 °C for 2 h. The crude mixture was directly subjected to column chromatography to obtain the rearrangement products.

Rearrangements of Trifluoromethanesulfonates¹³

The N-protected *N*-phenyl hydroxylamine (0.72 mmol) was dissolved in CH₂Cl₂ (4 mL), Et₃N (0.28 mL, 2 mmol), and a catalytic amount of DMAP were added followed by the slow addition of trifluoromethanesulfonic anhydride (0.17 mL, 1.0 mmol) at -78 °C. Stirring was continued at -78 °C for 30 min then the reaction mixture was allowed to warm to r.t. On completion, the mixture was diluted with CH₂Cl₂ (10 mL), washed with NaHCO₃ solution and brine (10 mL each). The solvent was evaporated and the crude product further purified by column chromatography on silica to give the rearrangement product.

Rearrangement Using Supported Sulfonyl Chloride

To a suspension of polymer-bound sulfonyl chloride (1 g, 1.5 mmol, Sigma Aldrich #498211) in THF (6 mL) was added Et_3N (0.23 mL, 2 mmol), followed by hydroxylamine (1 mmol) in THF (2 mL). The mixture was stirred for 30 min at r.t. and 2 h at 60 °C. The mixture was filtered and the residue washed with Et_2O . The residue was suspended in MeOH (8 mL) and NaOH (2 mL, 2 M) was added, and the mixture was heated to reflux for 2 h. The reaction mixture was filtered and washed with Et_2O . The filtrate was analysed by LC-MS. The organic layer was washed with H_2O and evaporated to give the 2-aminophenols in moderate yield.

Acknowledgment

The authors thank the EPSRC and GlaxoSmithKline for financial support and EPSRC Mass Spectrometry Service, Swansea for high-resolution spectra.

References and Notes

- Boyd, G. V. In Science of Synthesis: Methods of Molecular Transformations (Houben-Weyl), Vol. 11; Scheumann, E., Ed.; Thieme: Stuttgart, 2002, 481–492.
- (2) Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Org. Lett. 2010, 12, 812.
- (3) Gelman, D.; Buchwald, S. L. Angew. Chem. Int. Ed. 2003, 42, 5993.
- (4) Andersen, K. K.; Bray, D. D.; Chumpradit, S.; Clark, M. E.; Habgood, G. J.; Hubbard, C. D.; Young, K. M. J. Org. Chem. 1991, 56, 6508.
- (5) Lévai, A. Heterocycles 2008, 75, 2155.
- (6) Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Eur. J. Org. Chem. 2008, 5135.
- (7) Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Org. Lett. 2010, 12, 1492.
- (8) (a) Jones, K. L.; Porzelle, A.; Hall, A.; Woodrow, M. D.; Tomkinson, N. C. O. *Org. Lett.* **2008**, *10*, 797. (b) Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. *Org. Lett.* **2009**, *11*, 233.
- (9) Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Synlett 2009, 798.
- (10) Gassman, P. G.; Granrud, J. E. J. Am. Chem. Soc. 1984, 106, 1498.
- (11) Metal-Catalyzed Cross-Couling Reactions, 2nd ed.; de Meijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
- (12) (a) Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125. (b) Ritter, K. Synthesis 1993, 735.
- (13) All rearrangement products were characterised by ¹H NMR, ¹³C NMR, LRMS, and HRMS.