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Design of Near Perfect Reconstruction Oversampled

Filter Banks for Subband Adaptive Filters gi)— Jok)
Moritz Harteneck, Stephan Weiss, and Robert W. Stewart x(k) @-:fc(k[

v

: LR :
Abstract—n this brief, a design algorithm for real-valued and complex- h; (k) Sk

valued oversampled filter banks which yield a low level of inband alias

and enable simple subband adaptive structures is presented. The filter rjg 1 General filter bank structure consisting of analysis and synthesis
banks are either based on complex modulation of a real-valued low-pass stages.

prototype or on the direct or modulated setups of real-valued filter banks.
If real-valued filter banks are required, then the different channels will

have different subsampling ratios so that the bandpass sampling theorem P . . .
is not violated. This brief also presents design examples of real-valued thus avoiding problems with bandpass sampling [12]. Since the

and complex-valued filter banks. prototype design is identical to the design for complex modulated
filter banks, it is not discussed further in this paper. Another OSFB
class consists of real-valued nonuniform filter banks [13] which have
different subsampling ratio$; in each channel to satisfy the bandpass
sampling theorem and avoid inband aliasing. In this case, the analysis
I. INTRODUCTION filters posses different bandwidths which might be advantageous in,

Over the last two decades, adaptive filtering has been of consid@@- PSychoacoustic coding [14]. ) o _
able interest for many applications, such as acoustic echo cancelatiolf this paper, we present a fast-converging and efficient design
[1], noise reduction, equalization, and beamforming [2]. Often, trglgorithm for O'SF.B’S Wlth near-perfect reconstructlon property WhICh
adaptive system has to “model” a long-duration impulse response SypPresses aliasing in the subbands, and is thus well suited for
in the case of, e.g., the identification of room acoustics [3], [4]. Henc%‘,‘bba”d adaptive filtering. Therefore, Section Il, WI|! mtrodu_ce two
with the high number of adaptive filter weights required, populd@sses of real- and complex-valued OSFB's. Section Il discusses
adaptive algorithms based on least-mean-squares and least squitdierative least-squares design algorithm, for which examples will
techniques [5] become very computationally complex and exhibit?§ Shown in Section IV. Our notation uses a normalized sampling
slow convergence. frequency fs = 2. Lower-case italic letters denote scalar values,

One possibility to combat these problems is the use of adaptif¥er- and upper-case boldface letters represent vector and matrix
algorithms, together with multirate techniques, to split the fulduantities, respectively, anidis the discrete time index.
band problem into smaller subband problems. If the well-researched
critically sampled perfect reconstruction filter banks are used to
decompose the input signals, the subband signals are contaminated
by aliasing, which requires adaptive filters in between adjacent band$™9- 1 shows the concatenation of an analysis and a synthesis bank.
to compensate for this distortion [6]. Thus, multichannel adaptiven the analysis side, the input signalk) is split into L frequency
algorithms are being used in the subbands which exhibit a hig¥nds by analysis filter, (k) and decimated by a factor df in
computational complexity and a slower convergence for correlattfif /th branch, giving the subband signal(~). On the synthesis
input signals. If the perfect reconstruction condition is droppedide, each corresponding branch, consisting of an upsampler and
critically sampled structures are obtainable, which do not need crodssynthesis filterfi (), restores the original fullband sampling rate
adaptive filters, as spectral gaps ensure that aliasing in the subbaff interpolates the subband signal. Summing over all branches then
does not occur [7], [8]. This spectral loss however prohibits exaf¥ms the output signak(k). Such a filter bank possesses perfect
system identification and can significantly distort signals passif¥ Near perfect reconstruction property, if the output sigrd) is
through the filter bank. Applications in data communications dssentially a copy of the input signalk) delayed byA samples,
high-quality audio can be very sensitive to such errors. i.e.,2(k) = x(k—A). Writing the transfer function of the filter bank

Another possibility to achieve the decomposition of the inputhown in Fig. 1 in the frequency domain gives
signals is to use oversampled filter banks (OSFB'’s), i.e., filter

Index Terms—Adaptive filtering, filter bank design, oversampled near-
perfect reconstruction filter banks.

Il. TYyPES OF FILTER BANKS

banks which generate redundancy in the subbands. One class of . Lozl y ’

OSFB's is obtained via complex modulation from a real-valued X=> > < Fil=)H (:W5) X (=Wg) @)
low-pass prototype filter. If the prototype filter possesses a high =om=02

stopband attenuation, then aliasing in the subbands is sufficiently T1,m ()

suppressed. The subband signals in this class of OSFB’s are all

subsampled by the same subsampling ratidhis filter bank can be where X (), H/(z), Fi(z), and X (z) are thez-transforms ofi(k),
modified to perform a single-sideband (SSB) modulation-like filt%(m, #1(k), andz(k), respectively, andVs is a modulation factor
bank, yielding real-valued subband signals [9]-[11]. The trick is to-s(27/%) The transfer functiong:.,..(=) describe the transfer of the
modulate the bandpass signals into the baseband prior to decimatigfferent aliasing terms» of each channél For the adaptive filters to
Manuscript received May 4, 1998; revised February 10, 1999. This pag¥Pk in the subbands without the need for information from adjacent

was recommended by Associate Editor P. S. R. Diniz. subbands [6], the aliasing terms far > 0 have to be approximately
The authors are with the Signal Processing Division, Department ggro, i.e.,

Electrical and Electronic Engineering, University of Strathclyde, Glasgow G1

1XW, Scotland, U.K.
Publisher Item Identifier S 1057-7130(99)06537-4. Tim(z) =0, VI=0,---,L—-1, m=1,---,5. 2)

1057-7130/99$10.00 1999 IEEE



1082 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1999

e Hie™)
A T A I | g \ |
1/1 1\‘\ 1”1 1\\\ (( | f l:() ’I 1 ' 2 | f
N . '
1/4 12 3/4 1 2 0 13 172 23 1

Fig. 2. Analysis filter setup for a four-channel complex-valued OSFB.

@

Note that if (2) is satisfied, (1) simplifies to

[H(e’™)|

L—1
X(:)= Y g FEH(EX() ©)
=0

i.e., perfect reconstruction and power complementarity become equiv-
alent claims. To minimize the alias levél ,.(z) in the subband
signals, complex- and real-valued setups are possible. These setups (b)

are outlined in Section II-A and II-B, respectively. Fig. 3. Analysis filter setup for real-valued OSFB’s using (a) three channels

and (b) nine channels.
A. Complex—Valued Filter Banks
One way to implement an OSFB where inband aliasing is reducgd .
to the level of the stopband attenuation of the analysis filters ;Es Real-Valued Filter Banks
to use a complex-valued set of analysis (see Fig. 2) and synthesi&nother way to obtain a filter bank satisfying (2) is to use a real-
filters, whereby the filters are derived from a real-valued linear phatalued nonuniform OSFB and choose a setup where the bandpass
prototypep(k) by a generalized discrete Fourier transform (GDFT§ampling theorem is not violated [12], [13]. For a real-valued signal

[10] in the /th channel to be undistorted due to decimation by a factor
o 1 S, an interpretation of the bandpass sampling theorem requires the
hi(k) = p(k) - CXP[JTU + )k + ko)l (4)  undecimated subband signal’s band to lie entirely between any two
i i i=19 ... _
A time offsetky = —(I, — 1)/2 in (4) ensures linear-phase analysisConseCUtIVe frequency points amofig=i-1/.5,i = 1,2, -, Si—1.

o ] . o L Extending this to OSFB’s means that every analysis flli¢k) has
d th filt f th t filtg( & I h t . . . .
and synthesis filters if the prototype filtpt%) is linear phase; its i, be placed in the frequency domain, such that the resulting signal

lengthl, is assumed to be even throughout this paper. Furthermo t violate the band ling th h b led
this choice oft, causes real and imaginary parts of the analysis filtepsoes not violate the bandpass sampling theorém when subsample
a factorS; and that the analysis filters have to be placed such

to separately fulfill linear-phase conditions. With the usual selecti It . db | filter in ord I
as complex-conjugate and time-reversed versions of the analysis fiI{Ef",t all frequencies are covered by at least one filter in order to allow

the synthesis filter take on a particularly simple form reconstruction. _ o _
Fig. 3(a) shows the simplest setup of analysis filters of a nonuni-

filk) = ha(k) = hu(k). () form real-valued OSFB. In this filter bank, the low-pass and high-pass
The offset1/2 on the band index affects the position of the channels, produced b (=) andHx(z), are subsequently decimated
passbands of the7;(z) [10] and assures that the analysis filter®Y tWwo and therefore are alias-free. The bandpass chdiingl) is
are lined up equally in the frequency intervale [0;1], as shown subsampled by a factor of three and also remains undistorted. Hence,
in Fig. 2. For real-valued input:(k), only the frequency bands the OSR for this filter bank equates ¥3;_, -(1/51) = 133%.
from zero to one have to be covered by the analysis bank, sincéAnother possibility to obtain real-valued OSFB's is to start from a
the remaining subbands are complex conjugate copies and therefiftgine-modulated filter bank with, channels, where the bandwidth
redundant. The oversampling ratio (OSR) for this filter bank equatesthe analysis filters is reduced such that no aliasing occurs during
to (2L)/S, whereS is the common subsampling ratio for all channelsdecimation, and to fill the resulting spectral gaps by additional
Note that to avoid aliasing in the subbands, the prototype filt@nalysis filters which are derived from a second prototype to allow
p(k) has to be a real-valued low-pass filter strictly limited to théeconstruction. Filling the gaps with additional channels leads to a
frequency rangé—1/S;1/5]. This type of OSFB approximates anfilter bank with a total ofL. = 2Lo+1 channels. All filters are derived
implementation of Weyl-Heisenberg frames which are studied from the two prototypego (k) andp; (k), as shown in Table I.

detail in [15]. Fig. 3(b) shows, as an example, a nine-channel filter bank which is

Collecting the coefficients of the prototypék) and the analysis modulated according to Table I. Channels 1, 3, 5, and 7 are derived
and synthesis filteré; (k) and f;(k) in vectorsp, h; andf; from the prototypepo(k) and can be subsampled by 4. To avoid
p=[p0) p(1) - p(,—- 1)]1 (6a) aliasing, the prototype filtepy (%) has to have a bandwidth of less

- than1/8, i.e., be limited to the frequency rangee [—1/8;1/8].

by =fi = [0(0) h(1) - hu(lp—1)] (60)  channels 0, 2, 4, 6, and 8, however, are derived from the prototype
where superscrigf’ denotes transpose, and the modulation in (4) can (¥) and are subsampled by 8, 6, 5, 6, and 8, respectively. These
be expressed by a convenient matrix-vector notation decimation ratios are chosen such that the allowed bandwidth of the
prototypep: (k) is as large as possible and results in this example
in the passband of the prototype to be restricted to the region
The matricedMl; are diagonal matrices with modulation factors (c.fl—0.0833;0.0833]. The OSR of this filter bank is 178%.
(4)) on their main diagonal. For further details on this type of filter Analogous to Section II-A, the modulation can be expressed in
bank and efficient polyphase implementations, refer to [10], [16fatrix notation. More information on this type of filter bank can be
[11]. found in [13], [17]-[19].

h, =f, =M, - p. (7
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TABLE | Evaluating the summation of (9), the impulse response of the whole
MODULATION RULES filter bank can be expressed as
band ! analysis filter hy(k) . . . io
1
0 VS0 pi(k) t=[gHo gH o gH ]| | =HE )
1,3,...,2Lg— 11 2/5, - po(k) - cos k%Llo f
2,4,...,2Ly— 2| 2/S,- pi(k) - cos { k- é . Ll’(; To get a measure of the reconstruction error, the Euclidean distance
between the impulse respons@and a prefect delay (represented by

2L, Sarg - p1(k) - cos (k- 7)

the vectorv) is evaluated

Go=lt—vI* =|H-f-v|". (12)
If a filter bank with a higher number of channels is required, the
presented cosine modulation approach can be used, starting with- aStopband Energy
higher Lo, or different setups can be found which satisfy the bandpassAs described in [25], [22], a measure for the energy contained in
sampling theorem. Alternatively, a previously designed filter bank cae stopband of a linear phase analysis filtgik) can be calculated

be iterated which, however, leads in general to suboptimal solutios. using a dense grid of frequency poifts, w1, - - -, wn } covering
the whole stopband and calculating
lll. DESIGN ALGORITHM 1 cos(wo-1) --- cos(wo- (I, — 1)) hi(0) 2

A common choice in the design of filter banks is to choose the 1 cos(wi-1) -+ cos(wi-(lp —1)) hi(1)
synthesis filters to be time-reversed and complex-conjugate versiéns=| . : :

of the analysis filters. This yields a reduction in the free design
parameters. According to the theory of frames [20], this also leads
to very close approximation of signal decompositions with a fixed =P hu|*. (13)

energy transiation between time and subband domain, regardIeSﬁgfe, the matrixP,; describes the required specifications on the

the input_signal. ) . ) ) stopbands of théth analysis filter.
To design OSFB'’s, as presented in Section Il, an iterative least-

squares algorithm [22], [23] is used. The performance criterion E) Minimization Algorithm
be minimized by the algorithm is a combination of the filter bank™ 9 o N _ )
reconstruction erro¢; and the stopband energy of the analysis ~ Using the above definitions and rewriting (8) in a matrix vector

1 cos(wn-1) -+ cos(wn-(Ip—1))] [hu(lp — 1)

filters hi(k) notation for a general-channel filter bank, and assuming analysis
and synthesis filters to be the same, such that a tight frame is achieved
E=8+7 & ®) in very close approximation, the performance criterion can be written
where~ is a positive weighting factor which trades off between th8S )
importance of the reconstruction error and the stopband attenuation. €= H ho |V (14)
In the following, we discuss separately formulations for b§thrand ~+P 0
&, and finally, present the design algorithm in Section IlI-C. In (14), P = diag(Po,P1,---,P1_1) is a matrix describ-
_ ing the frequency specifications on all analysis filters dnd=
A. Reconstruction Error [bl nT ... n¥_,]7 is acollection of the analysis filters. As defined

If inband aliasing is sufficiently suppressed, the impulse responige(11) the matrixH consists of the matriceH; and these matrices
t(k) of the overall filter bank, as given in Fig. 1, is the time-domaiare dependent on the analysis filtdrs Therefore the performance
formulation of (3), and can be written as a convolution of the analysisiterion (14) is to the power of four dependent on the design

and the synthesis filters parameters.
I_1 To enforce linear phase filters in the design algorithm, the axial
t(k) = Z Sil(h[(k) * fi(k)) (9) Symmetry of the filter impulse responses can be exploited. As an

example, the prototype filter(k) is completely characterized by its

here %" d wuti d the f K first half of the impulse response. In matrix notation, this relationship
where *%” denotes convolution and the factays; takes account ... po expressed as

of the power loss in the channels due to decimation. Using matrix

=0

notation, the convolution in théh branch can be calculated by [24] p=L-p (15)
t1(0) whereL is anl, x (I,/2) matrix defined byl = [I;, /2 J,p/z]T, I
ti(1) being an identity and an inverse identity matrix. Incorporating (15)
t = t(2) into the design effectively halves the degrees of freedom.

Thus, for the three-channel real-valued OSFB discussed in

t(21 : 2) Section II-B, the performance criterion can now be written as
Lhi\4tp —

- 2
h(0) 0 - 0 £1(0) SLHOL SiHIL SLHZL i v
hl(l) h[(O) cee 0 .fl(l) = ‘}QPOL ! 0 : 0 }_1? — 0 (16)
_ [m(2) m(y --- 0 f1(2) 0 +P.L 0 By 0
A : 0 0 9P.L 0
L 0 0 e (=1 ] LA, - 1) where the matrice®; describes the stopband requirements to elimi-

=H,;- 1. (10) nate the aliasing caused by the subsampling process.
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TABLE I 20 v - T . T : T : T
ITERATIVE LEAST-SQUARES DESIGN ALGORITHM

Step || Instruction

1: || initialize filters h(3), set ¢ =1

)
2 L
2: || build H;(i — 1) from hy(i — 1) =™
3: || minimize with respect to h(i) g -of
2 o
H(:— 1) ) v N ol
) fyP 0 m,_‘fnl:':‘::l:l:nv. "'f
4: apply relaxation : I i
h(i) = Th(i) + (1 - T)h(i - 1) . °¢ nor?r?alized1freque1:cyf
5: check stop condition

Fig. 4. Four-channel complex-valued OSFB.
if ||h(Z) — h(i — 1)|| < € then stop

6: i =141, goto 2:

20 T T T T T T T T T
0
For the nine channel real-valued OSFB as presented in Section II-
B, which is derived from two prototypgs, andp:, the performance =
criterion simplifies to 0
1 1 2 e
Y cHML ) ~—HML v g
S S Do o
€= | |50 €Sy —]lo 8 g
’*,P[)L I_)l 0
0 "/PlL =100
(17)
120 . : . . . .
- . . 0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1
where the matrice®, and P, describe the frequency requirements normalized frequency f
on the prototypepo andp:, respectively, and the sé denotes the (@)

set of filters derived from the prototype .

The performance criterion for the complex-valued OSFB presented
in Section 1I-A, which is derived from only one real-valued prototype
p, further simplifies to

2

20 T 3 T T
1 L—1
e=||s &M g [ ] 1®)

YPL "
1

i
where S is the common subsampling ratio a®l describes the ‘“mi{l, VAL il |||WH,1 k)
frequency requirements on the prototype. T Hl',"‘l)l'[',” “"|'1”s‘\

i

Hy
i

To perform the minimization of (14), an iterative least squares
technique [22], [26], [23] is used where the matHk which is being
built from the analysis filters, is substituted by the matrix being built ¢ 0 malized requency f .
from an old set of analysis filters. This linearization gives a quadratic (b)
approximation of the performance surface. To ensure convergence, a
relaxation step is added to the algorithm. The design algorithm chi§- 5. Real-valued OSFB's using (a) three channels and (b) nine channels.
now be formulated iteratively as shown in Table Il, wherés the
relaxation parameter which has to be chosen between zero and o
and e quantifies the stop condition. The minimization of Step 2 ¢
be conveniently performed by a QR decomposition [27].

nl‘—e’lg. 5(a) shows the transfer functions of the analysis filters of the
%lter bank used to implement a three channel setup as presented in
Section II-B. To avoid inband aliasing, the stopbands of the analysis
filters h;(k) extend over[0.495---1], [0---0.346] U [0.643--- 1],
IV. DESIGN EXAMPLES and[0 - - - 0.505], which are subsampled by 2, 3, and 2, respectively.

In this section, design examples of OSFB’s targeted for subbaNdte that the stopbands of the prototypes have been enlarged slightly
adaptive filtering are shown. The filter banks have been designeddocreate a guard band. To achieve the required specifications, the
yield a reconstruction error and an inband alias of abeB0 dB, filters need 74 taps and the filter bank generates an OSR of 133%.
giving a resolution of approximately 13 bits. These specificatiothe design algorithm converged after 12 iterations.
are targeted at audio applications, but higher quality designs ard=ig. 5(b) shows the transfer functions of the real-valued filters
easily achievable with the presented algorithms [13]. The parametased in the analysis bank of the nine channel OSFB as presented
settings in the design algorithm are= 0.5 and~ = 10. in Section 1I-B. The stopband of the prototype(%), generating the

Fig. 4 shows the transfer functions of the analysis and synthestsannels 1, 3, 5, and 7, extends from 0.123 to 1, and the stopband
filters of a four-channel OSFB. The filter bank is designed for aliasf the prototypep: (%), generating the other channels, extends from
free decimation bys = 6 [11], giving an OSR of 133%. To achieve 0.083 to 1. Note again that the stopbands have been slightly enlarged.
the specifications, the design algorithm needs 14 iterations to proddceavoid aliasing, the channels are decimated from the left to the
the prototype filter with a required number Bf = 192 taps. right by 8-4-6-4-5-4-6-4-8, giving an OSR of 178%. To meet
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the specifications, the analysis filters required 172 taps. The desig8] G. Wackersreuther, “Some new aspects of filters for filter bariksis.
algorithm needs 11 iterations to achieve the minimization.

(10]

V. CONCLUSION [11]

In this paper, a design algorithm for OSFB’s has been presented,
which is designed for the implementation of subband adaptive filters.
Therefore, two classes of filter banks, a real-valued and a complex-
valued class, have been introduced, which satisfy the requirement[ ]
a low inband aliasing level, such that single-channel adaptive filte[rﬁ;,]
operating in each subband are possible. An algorithm for the design

of these filter banks has been presented which is based on an iterative

Acoust., Speech, Signal Processingl. 34, pp. 1182-1200, Oct. 1986.
R. E. Crochiere and L. R. Rabinévjultirate Digital Signal Processing
Englewood Cliffs, NJ: Prentice-Hall, 1983.

S. Weiss, L. Lampe, and R. W. Stewart, “Efficient implementations
of complex and real valued filter banks for comparative subband
processing with an application to adaptive filtering,”Hroc. Int. Symp.
Communication Systems & Digital Signal ProcessiSfeffield, U.K.,
Apr. 1998, vol. 1, pp. 32-35.

A. J. Coulson, “A generalization of nonuniform bandpass sampling,”
IEEE Trans. Signal Processingol. 43, pp. 694-704, 1995.

M. Harteneck, J. M. Rez-Borallo, and R. W. Stewart, “A filter bank
design for oversampled filter banks without aliasing in the subbands,”
Electron. Lett, vol. 33, no. 18, pp. 1538-1539, Aug. 1997.

least squares technique to minimize the performance criterion. Finay#l E. Zwicker and H. FastlPsychoacoustic, Facts and ModelsNew

design examples for the real-valued case and the complex-valued Gasf

have been given.

Using these filter banks, together with adaptive filters, significafit6]
computational savings are achievable. For example, using least-
squares adaptive filters, the subband approach with real-valued filter
banks reduces the computational requirements to 28.5% and 8. g/y]
compared with a fullband algorithm for the presented three channel
and the nine channel OSFB’s, respectively. Using the presented

complex-valued filter bank, the structure needs about 7.4% of the
computational complexity of a fullband implementation. These sav-

18]

ings can be even more significant if the number of channels and

the associated decimation factors are increased. Note that the gij&9}

percentages refer to the cost of adaptive filtering only. However,

the cost of filter bank computations can be kept low by judiciou
implementation using polyphase factorizations [15], [28].

[21

Simulations using the filter banks, together with adaptive filters,
which are not presented in this paper, have shown that the perfor-
mance in terms of minimum mean-squared error is limited by tHé?!
amount of inband aliasing and reconstruction error, which come from
the used filter bank [29]. For colored-noise input signals, howevepgs)

in general these subband structures have shown an improvement in

terms of convergence speed.

[24]
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