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Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 2Abstract. EEG/MEG are important tools for non-invasive medical diagnosis and basicstudies of the brain and its functioning, but often applications are limited due to a verylow SNR in the data. Here, we present a discrete wavelet transform (DWT) basedde-noising method for spatio-temporal EEG/MEG measurements collected by a sensorarray. A robust threshold selection can be achieved by incorporating spatial informationand pre-stimulus data to estimate signal and noise energies. Further improvement canbe gained by applying a translation-invariant approach to the derived de-noising scheme.In simulations, the performance of the proposed method is evaluated in comparison tostandard de-noising and low-rank approximation, which o�ers some complementarity toour approach.Keywords: EEG/ MEG, source localization, de-noising, low-rank approximation,discrete wavelet transform.1 IntroductionThe electro- and magnetoencephalogram (EEG/ MEG) are recordings of the scalp po-tential and magnetic �eld outside the head resulting from electrical neural activity inthe brain. The human EEG was �rst recorded back in 1924, and has, together withMEG, acquired an important role as a diagnostic tool in medicine and brain research.Applications include detection of epileptic seizure [1], identi�cation of evoked potentialsin reaction to stimuli, which can be used, for example, for an objective audiogram [2],exploration of sleep states [3], or general analysis to �nd areas of neural activity fromevent related data by solving an inverse problem using the EEG/MEG measurements[4]. Our main interest has been in localizing neural sources in the brain. Transientneural current sources associated with event related EEG/ MEG are generally assumedfocal in nature and can be approximated using equivalent current dipoles. Thereforeusing measurements from a sensor array, the location, orientation, and time series ofa number of equivalent dipoles can be determined by solving an inverse problem [4].However, even after stimulus-locked averaging from multiple trials, usually the datastill possesses a very low SNR due to background brain activity and instrumental andenvironmental noise. This low SNR results in reduced accuracy of the estimated dipoleparameters [5], and also limits the utility of EEG/MEG in other previously mentionedapplications. Here we address the problem of improving the SNR of recorded EEG/MEGdata.



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 3Since the signals of interest are transient in nature, simple bandpass �ltering isnot a suitable technique for separation of signal and noise. When the signals of interestare a linear combination of a small number of linearly independent time series, noisereduction can be achieved in sensor array data by exploiting the spatial structure ofthe underlying signals. This structure can be revealed by applying a singular valuedecomposition (SVD) to the data matrix and performing a low-rank approximation(LRA), thus truncating noisy unstructured contributions. LRA is implicitly performedon the data when using sub-space based source localization algorithms [4].A di�erent approach to improving the SNR of recorded EEG/ MEG data is touse wavelet de-noising, which is a time-frequency method to recover an unknown tran-sient signal from broadband noise [6]. By applying a suitable orthonormal transformto the time-dimension of the data, the noise will remain spread across the transformspace while the signal of interest can be parameterized by few transform coe�cients thatwill stand out from the noise. The localizing properties of the discrete wavelet trans-form (DWT), in both time and frequency, make it suitable for parameterizing transientevoked responses within the EEG, as demonstrated in, for example, [7, 8]. By applyingan inverse transform after appropriately thresholding the transform coe�cients, noisereduction can be achieved. In the following, we introduce a form of de-noising thathas been adapted to our EEG/MEG problem by exploiting the additional informationspeci�c to our model of the data, and present simulation results to demonstrate thebene�t of this approach to noise reduction.The paper is organized as follows. In Section 2 we introduce a signal model forEEG/MEG based on focal neural current sources, and brie
y review low-rank approx-imation and wavelet de-noising. The customization of the de-noising approach for ourproblem is the subject of Section 3. We present comparisons to other methods andresults in Section 4. Our notation uses plain italicized text for scalar values, and boldface lower and upper case for vector and matrix quantities, respectively.2 PreliminariesThis section describes the signal model for array-recorded EEG/MEG measurements,and introduces two basic concepts of noise reduction. The �rst one, low rank approxi-mation, exploits the fact that the signal of interest has some spatial structure while thenoise is weakly structured, if at all. The second approach searches for feature param-eters in the time-frequency plane that stand out from the noise, which is subsequently
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dipoleFigure 1: Modelling focal neural activity in the brain by a current dipole.suppressed by masking or shrinking of the noise-only coe�cients.2.1 Signal ModelWe assume that r dipolar neural sources are activated in the brain in response to a par-ticular stimulus. The signal at anM element sensor array is formed by the superpositionof the �elds from each of the r dipoles with position ri, orientation qi and time seriessi, with instrumental and environmental noise to yield an M -by-L spatio-temporal datamatrix F = r�1Xi=0 G(ri)qisTi +N = X+N; (1)with G(ri)2RM�3 gain matrix,qi2R3�1 dipole orientation,si2RL�1 dipole time series, andN2RM�L additive noise,where L is the number of collected time slices. The vector si,si = �si[0] si[1] � � � si[L�1]�T (2)contains the amplitude (or \strength") of the ith dipole over a time interval of L discretesamples, often also referred to as activation function. This strength is given a spacialdirection by the �xed dipole orientation qi. Finally, the matrix G(ri) contains the gain



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 5factors from the spatial components of the ith dipole at location ri to the M sensors,which measure either electric potential in the case of EEG or the magnetic 
ux in thecase of MEG. This so called forward model G(ri) can be calculated based on a modelof the head accounting for the electrical properties of di�erent layers (e.g. brain matter,scull bone, and scalp as indicated in Fig. 1). With respect to the sensor number M ,current whole head MEG and EEG systems provide in the range of 64 to more than 300channels.If we assume the noise in N to be zero-mean Gaussian and uncorrelated with thesource transients, then we can make the following approximation:kFk2F � kXk2F + kNk2F : (3)The noise power can be estimated from pre-stimulus data, corresponding to a period of~L time slices before any event-related signals are produced, yieldingkNk2F � L~Lk ~Nk2F : (4)A signal-to-noise ratio (SNR) of EEG/ MEG data can then be calculated asSNR = kXk2FkNk2F (5)using the Frobenius norm k � kF .2.2 Low-Rank ApproximationThe rank of a matrix can be revealed by performing a singular value decomposition(SVD): UTFV = " �0 # ; F 2 RM�L ; M � L (6)where U 2 RM�M and V 2 RL�L are orthogonal matrices and � = diagf�mg 2 RM�Mholds the singular values of F ordered as �1 � �2 � � � � � �M � 0. The number ofnon-zero singular values then determines the rank of F, which, for noiseless data, givesthe number of linearly independent sources contributing to the measurements. However,in the presence of noise, the matrix will become full rank. For the case of spatially andtemporally uncorrelated Gaussian noise with variance �2nn, the lastM�r singular valueswill take the value of �m = pL � �2nn; 8m 2 [r + 1;M ], while the �rst r singular valueswill be elevated above this noise 
oor by the singular values of the noiseless data matrix.
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Figure 2: Example of the singular values of a data matrix for r = 4 independent sourcesmeasured using an array of M = 20 sensors and corrupted by Gaussian white noise; theslope in the singular values corresponding to the noise-only subspace is due to �nite-sample statistics.An example for a Gaussian white noise corrupted data matrix F 2 R20�100 containinglinearly combined observations of r = 4 temporally independent sources is shown inFig. 2.Using an SVD, F can be written in the expansion form [9]F = MXm=1 �mumvTm (7)where U = [u1;u2; � � �uM ] 2 RM�M and V = [v1;v2; � � �vL] 2 RL�L span the columnand row space of F. If F contains structured data emanating from r linearly independentsources in the presence of independent and identically distributed (iid) white noise, theexpansion (7) can be truncated after r terms thus suppressing the noise introduced bythe remaining M � r non-zero singular values. We refer to the truncated form~FLRA = rXm=1 �mumvTm (8)as a low-rank approximation of F. It can also be seen as a projection of F onto itssignal-subspace spanned by Ur = [u1; � � �ur], ~FLRA = UrUTr F, which eliminates anycomponents of F in the noise-only subspace U?r , where (�)? refers to the orthogonalcomplement. Thus, for white Gaussian noise, the noise variance is reduced by a factorr=M .
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Figure 3: De-noising of a one dimensional time-series: in the transform domain, additivenoise remains smeared, while the signal of interest is parameterized by only few coe�-cients. By thresholding and inverse transformation, a noise reduction can be achieved.2.3 De-NoisingDe-noising as originally proposed by Donoho and Johnstone [6] is applicable to 1-dimensional signals corrupted by white noise. The signal is transformed, the transformcoe�cients thresholded according to some criterion, and an inverse transform used toobtain a noise reduction. This procedure is shown in Fig. 3. De-noising relies on anappropriate transform that is able to parameterize the signal of interest with a few sig-ni�cant coe�cients while, for an orthogonal transform, the noise will remain spread overthe entire transform domain.A discrete wavelet transform (DWT) is usually employed as its ability to yieldlocal representation in both time and frequency domain is advantageous for the anal-ysis of transient signals. The quality of the parameterization determines the ability torecover a minimally distorted de-noised signal. If we assume iid Gaussian noise, a pa-rameterization by K � L coe�cients yields a noise reduction of approximately K=L. Ahuge variety of wavelets has been investigated in literature possessing di�erent proper-ties such as minimum length of support and maximum smoothness [10], near symmetry,or good localization in both time and frequency [11].



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 8A second important choice is the thresholding method. Hard-thresholding zeroesevery coe�cient that falls below a de�ned threshold, while for soft-thresholding, a con-tinuous non-linear function is applied to the transform coe�cients. The most straight-forward approach is to additionally shrink all surviving coe�cients by the amount ofthe threshold. Threshold selection is determined by whether the de-noising procedure isoptimized in a mean squared error, minimax, or visually appealing (\visu-shrink" [12])sense [6]; often the choice is heuristic. Additionally, di�erent threshold optimizationscan be combined with adaptive and transform-level dependent schemes [13].The threshold schemes generally assume white Gaussian iid noise with unit vari-ance corrupting the signal of interest. Therefore, prior to de-noising, the signal has to bescaled to set the noise variance correctly. Often, the initial noise variance is estimatedusing the highpass part of the data, i.e. the wavelet coe�cients at the �nest transformlevel, and a normalization with their median absolute deviation is applied. This methodassumes a su�cient smoothness of the underlying signal of interest such that only noiseis present at high frequencies [12].3 Ensemble De-NoisingThis section will introduce a particular de-noising scheme, in which we exploit pre-stimulus data to estimate noise and signal energies. We add security and a degree ofdeterminism to the threshold selection by incorporating the spatial dimension of thedata in the decision, which provides ensembles probes of the noise process. Hence werefer to our method as ensemble de-noising (EDN).3.1 ConceptWe represent a real valued DWT by an orthogonal transform matrix T, such thaty = Tx is the DWT of x [14]. Applying the transform to the temporal dimension ofthe data matrix F, we can express the de-noising procedure as~F = ��FTT �T; (9)where �(�) performs a threshold operation and (�)T denotes transpose.For spatio-temporal EEG/ MEG data, the signal of interest in each channel is alinear combination of the same source transients. We can improve the performance of



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 9the de-noising procedure by making use of this property: since we expect to see similarcharacteristics in the transform coe�cients across the sensor array [3], we can use amask common to the whole array rather than de-noising each measurement time seriesseparately, i.e. ~FEDN = F TTMT| {z }TF-�lter (10)with M = diagf�lg 2 RL�L . For hard thresholding, the elements of M form a binarymask �l = ( 1 : �t2f (l) � �0 : �t2f (l) < � l = 0(1)L�1 (11)depending on the squared transform coe�cients averaged over the spatial dimension�t2f (l) = 1kFTTk2F M�1Xm=0 jtf(m; l)j2 : (12)The reason for averaging over the energy of the coe�cients rather than the coe�cientvalues themselves lies in the forward model, which linearly combines the source tran-sients and therefore sign changes across the array must be considered. The normalizationkFTTk2F in (12) is to ensure k �t2fk1 = 1, i.e. the overall energy represented in the pa-rameters �t2f (l) is unity. With (3), this energy can be separated into contributions formsignal of interest and noise.3.2 Threshold SelectionWe want to select the threshold � by picking the K largest coe�cients from �t2f suchthat the de-noised signal only retains as much energy as that estimated for the signalusing (5). The elements of �t2f are re-ordered by a permutation matrix P such that theresulting vector ~t2f = P �t2f (13)has its elements in descending order, i.e. ~t2f (0) � ~t2f (1) � � � � � ~t2f (L�1). Then thecumulative sum on ~t2f(l) s(l) = lXi=0 ~t2f (i); (14)represents the normalized energy in the l largest coe�cients. We determine the number
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uence the probability of picking thecorrect coe�cients in noise? For the analysis, we assume as a simpli�cation that thesignal of interest can be represented by a single coe�cient, tx, having constant modulusacross the array, and that the noise coe�cients tl;i are samples of a Gaussian iid processN with zero mean and variance �2nn. We are interested in the probabilityP (z � M � t2x); with z = M�1Xi=0 t2l;i; tl;i 2 N (0; �2nn) (16)as a measure for the probability that the signal will be hidden in noise. The speci�cthreshold in (16) refers to the case where signal and noise have identical power. Thus,the random variable z is characterized by an appropriately scaled chi-square distributionwith M degrees of freedom [15].
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Figure 5: Statistical security of looking across the sensor array in dependency of the ratiobetween feature parameter and variance of corrupting noise, and the dimensionality Mof the sensor array.Fig. 5 shows the probability P (z �M � t2x) drawn over the ratio t2x=�2nn for di�erentsensor array dimensions M . It can be seen that for a reasonable ratio t2x=�2nn, averagingthe coe�cient energy across the M -array considerably enhances the statistical securityfor picking the correct coe�cient. Note, that for a spatio-temporal data matrix of Lrecorded discrete time slices and parameterization of the signal of interest by a singlecoe�cient tx,� the SNR of the data is given by t2x=(L � �2nn); and� the probability that tx is selected despite the presence of L noisy coe�cients yields(1� P (z �M � t2x))L.The high error probability P (z � M � t2x) for small ratios t2x=�2nn in Fig. 5 highlightsboth the fact that de-noising is unsuitable for very low SNR and the necessity that thetransform in the de-noising process su�ciently parameterizes the signal of interest.3.3 Translation-Invariant Ensemble De-NoisingAs mentioned earlier, it is implicitly assumed in the de-noising procedure that the signalsof interest, i.e. the dipole time series, can be represented by a small subset of the basis



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 12initialize ~f [l] = 0 8l = 0(1)L�1for i = 1(1)2Dcircularly shift noisy signal left by i samples:f (s)i [l] = f [(l + i)modL]de-noise signal f (s)i [l] using a periodically extending transform:f (s)i [l]! ~f (s)i [l]circularly shift de-noised signal right by i samples:~fi[l] = ~f (s)i [(l � i)modL]average: ~f [l] � i�1i � ~f [l] + 1i � ~fi[l]Figure 6: Flow-chart for translation-invariant (TI) de-noising of a 1-d time series f .Variables with superscript (s) refer to circularly shifted signals, D is the number of levelsof the applied DWT. For TI-EDN circular shift operations are applied to all rows of thedata matrix F.functions of the transform. However, problems also arise due to the phase-sensitivitythrough the cyclo-stationarity of the DWT associated with the decimation process. As aresult, the basis functions sit orthogonal to each other on a �xed dyadic grid. Thereforeeven if the signal of interest matches one of the basis functions, a phase shift of the signaldestroys the representation by a single coe�cient and can blur the signal energy overseveral transform coe�cients of smaller amplitude, which may be masked in the noiseand get subsequently truncated when falling below the threshold selected according toSec. 3.2.These truncations result in oscillations similar to Gibbs phenomena in the re-constructed de-noised time-series [16]. A translation-invariant (TI) approach recentlydiscussed in literature [16, 17, 18, 19] can address this problem. We have followed theapproach of [16], where shifted versions of the data matrix are ensemble de-noised, back-shifted, and averaged as shown in the 
ow chart in Fig. 6. This presents a compromiseover searching for an optimum shift with minimum entropy in the transform domain,i.e. energy concentration in as few coe�cients as possible [20], as a shift that is optimalfor one transient may not be optimal for another transient contained in the same data.



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 13The shift operation in Fig. 6 is executed circularly. As the sensor time seriesforming the rows of the data matrix F are �nite intervals, the DWT | e�cientlyevaluated using an octave �lter bank [11] rather than the matrix multiplication in (10)| requires an extension of the signal. If a periodic or symmetric extension is chosen,�ltering can be performed in steady-state, thus avoiding transients that distort thesubband signals holding the DWT coe�cients [8, 21]. Although a periodic extensiongenerally su�ers from discontinuities and \wrap-around" e�ects at the margins of thetemporal interval [14], it has been employed for this work as the TI approach canbe easily realized by circular shifts. In terms of implementation, it is not required tocalculate a full transform for every shift from scratch, as reduced computational schemescan be applied [12, 22, 17, 23].4 Simulations and ResultsWe compare the de-noising methods described in Sections 2.3 and 3 to the low rankapproximation of the data matrix obtained via a truncation of the SVD expansion asdescribed in Section 2.2. To evaluate the results in terms of noise reduction, we haveto use synthetic data. As source transients si, superpositions of Hermite-type functionshave been employed, which are derivatives of Gaussian window functions and realisticfor simulating activations [24]. Examples for such source transients are given in Fig. 7.The wavelet transform uses a Symmlet-8 wavelet [12, 10], which has a relatively goodfrequency selectivity due to maximum smoothness and gives an approximate alignmentof non-stationarites in various scales due to its near-symmetry. However, the choice ofthe 8-coe�cient wavelet is heuristic and based on empirical results with wavelet �ltersof di�erent lengths in combination with the realistic simulation data employed in thefollowing.Fig. 8 shows the averaged results over 25 trials with di�erent noise power spectraldensities (PSD) and realistic source data for di�erent de-noising techniques and the lowrank approximation. The �gure shows the �nal SNR = 10 � log10(kXk2F � k~F � Xk�2F )versus the cut-o� frequency of the coloured (lowpass) noise. The initial SNR of the datamatrix F was 5dB. The temporal colouring of the noise is achieved by lowpass �ltering,with the cut-o� frequency indicated on the abscissa. For standard de-noising of eachsensor time series, we achieved best results using a visu-shrink soft threshold [12]. TheSNR produced by ensemble de-noising is consistently higher due to exploitation of pre-stimulus and spatial information. However, note that further improvements are achieved
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Figure 7: Example time series si[l], i = f0; 1; 2g, to simulate three source activations con-sisting of superposed Hermite-type functions, for construction of synthetic EEG/MEGdata matrices.
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Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 15by applying translation-invariant (TI) ensemble de-noising.Example time series for de-noising results in Fig. 8 are given in Figs. 9{11. Fig. 9shows the measurement at a speci�c sensor, i.e. one row of the data matrix, as a lin-ear combination of the source transients in Fig. 7, which is corrupted by noise at 5dBSNR, having a PSD with a normalized angular cut-o� frequency at 
=� = 0:15. Thestandard de-noising solution using a visu-shrink threshold is drawn as a solid line, andclearly su�ers from the strong colouring of the added noise. The reconstructed mea-surements using various noise-reduction techniques are shown in Fig. 10, with the errorbetween the noiseless time series and the reconstructed response given in Fig. 11. Aremarkable di�erence between the proposed ensemble de-noising methods and low-rankapproximation is that the time-frequency approach well suppresses noise outside theactivation interval of the sources, within which low rank approximation appears to givea better �t to the original signal.To further investigate the suspected complementarity between ensemble de-noisingand the SVD based noise reduction, we look at an extreme simulation, where a singlesource transient is matched by the analysis function (again a Symmlet-8) of the DWT.Therefore in the resulting situation, ensemble de-noising can be expected to give itsmaximum bene�t. The results in terms of noise-reduction in the reconstructed matrix~F, are displayed in Fig. 12 for di�erent initial SNRs in the data matrix F. The steepdrop in performance of ensemble de-noising for low SNR is due to a high probabilityfor any coe�cient to pass the threshold �, as indicated in Section 3.2. For high SNR,both methods reach a constant level, since the noise reductions approach the factors(M�r)=M for low-rank approximation (LRA) and (L�K)=L for de-noising, as discussedin Sections 2.2 and 2.3. The partial complementarity of LRA and de-noising becomesevident from a combination of both methods, where the data is �rst ensemble de-noisedand then low-rank approximated. The result of this combined operation is drawn asdotted line in Fig. 12, with increased noise reduction over either method separately.Since subspace-based dipole source localization algorithms inherently perform a low-rank approximation [4], ensemble de-noising is expected to give additional bene�t.For the situation in Fig. 12, Tab. 1 contains results of source parameter estimation[4] for di�erent SNRs with and without ensemble de-noising (EDN). Performance mea-sures are the average of the mislocation of the dipolar source, k~r� rk2 (in cm), and therelative error of the reconstructed source activation function, k~s � sk2 with ksk2 = 1,where tilded variables refer to estimated quantities. There is some minor improvementin estimating the source location and slight enhancement of the reconstructed time series
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Figure 9: Linear combination of source transients in Fig. 7 measured at one sensor (dash-dotted); with coloured Gaussian noise added at 5dB SNR (dashed); and reconstructedtime-series using standard de-noising.
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Figure 10: Reconstructed time series of sensor measurement in Fig. 9 applying variousnoise reduction methods.
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Figure 11: Errors between the reconstructed time series in Fig. 10 and the underlyingsignal of interest in Fig. 9.
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Table 1: Averaged deviation of location (in cm) and relative time series error for sourceparameter estimation according to [4] for a single dipole.SNR EDN k�rk2 k�sk2no 0.0423 0.01545dB yes 0.0410 0.0109no 0.1012 0.05110dB yes 0.0982 0.0361no 0.2944 0.1366-5dB yes 0.2442 0.0879when applying the denoising method prior to source localization.5 ConclusionWe have introduced a wavelet de-noising method for spatio-temporal EEG/MEG data,which incorporates pre-stimulus and spatial information in the selection of the threshold.The resulting scheme yields an enhanced SNR improvement over standard de-noising,and o�ers some complementarity to low-rank approximation, a noise reduction techniquebased on an SVD of the data rather than a time-frequency analysis as performed withde-noising. We found that, compared to low-rank approximation, denoising is very goodat removing noise from intervals where no source is active but does not perform well ifthe analysis wavelet and source activation function are not well matched.Since good parameterization is crucial, in our current research we are looking intomethods for further improvement of ensemble de-noising by adapting the transform tothe analyzed data. Coifman et al. [20] have introduced a best basis selection method forthe transform, such that the signal energy is contained in as few coe�cients as possible.With a similar criterion, a library of di�erent wavelets can be searched to �nd a basisfunction that most closely matches the signal's features and subsequently leads to a lowentropy in the transform domain. There is also the possibility of using soft thresholding[25] in (10), with an appropriate threshold function designed to preserve the estimatedenergy of the signal of interest.



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 19References[1] Wendling F, Bellanger JJ, Badier JM, Coatrieux JL. Extraction of Spatiotempo-ral Signatures from Depth EEG Seizure Signals Based on Objective Matching inWarped Vectorial Observations. IEEE Trans Biomed Eng 1996; 43(10):990{1000,1996.[2] Hoppe U, Eysholdt U, Wei� S. A Sequential Detection Method for Late AuditoryEvoked Potentials. In Proc Intern Conf IEEE Engineering in Medicine and BiologySociety, Amsterdam, The Netherlands, November 1996.[3] Sun M, Qian S, Yan X, et al. Localizing Functional Activity in the Brain throughTime-Frequency Analysis and Synthesis of the EEG. Proc IEEE 1996; 84(9):1302{1311.[4] Mosher JC, Lewis PS, Leahy RM. Multiple Dipole Modeling and Localization fromSpatio-Temporal MEG Data. IEEE Trans Biomed Eng 1992; BME-39(6):541{557.[5] Mosher JC, Spencer ME, Leahy RM, Lewis PS. Error bounds for EEG and MEGdipole source localization. Electroenceph clinical Neurophys 1993; 86:303{321.[6] Donoho DL, Johnstone IM. Ideal Spatial Adaptation Via Wavelet Shrinkage.Biometrika 1994; 81:425{455.[7] Bartnik E, Blinowska K, Durka P. Single Evoked Potential Reconstruction byMeans of Wavelet Transform. Biol Cybern 1992; 67:175{181.[8] Wei� S, Hoppe U. Recognition and Reconstruction of Late Auditory Evoked Poten-tials Using Wavelet Analysis. In Proc IEEE Intern Symp Time-Frequency Time-Scale Anal 1996; pp.473{476, Paris, France.[9] Golub GH, Van Loan CF. Matrix Computations. 3rd edn. Johns Hopkins UniversityPress, Baltimore, Maryland 1996.[10] Daubechies I. Ten Lectures on Wavelets. SIAM, Philadelphia 1992.[11] Mallat SG. A Theory for Multiresolution Signal Decomposition: The WaveletRepresentation. IEEE Trans Pattern Anal Machine Intelligence 1989; 11(7):674{692.[12] Buckheit J, Chen S, Donoho DL, Johnstone IM, Scargle J. Wavelab 7.01. Availablefrom http://playfair.stanford.edu/~wavelab, 1996. Stanford University.



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 20[13] Donoho DL, Johnstone IM. Adapting to Unknown Smoothness Via Wavelet Shrink-age. J American Statistical Association 1995; 90(432):1200{1224.[14] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in C.2nd edn. Cambridge University Press, Cambridge 1992.[15] Papoulis A. Probability, Random Variables, and Stochastic Processes. 3rd edn.McGraw-Hill, New York 1991.[16] Coifman RR, Donoho DL. Translation-Invariant De-Noising. In: A. Antoniadis(ed). Wavelets and Statistics. Springer Verlag 1995.[17] Liang J, Parks TW. A Translation Invariant Wavelet Representation Algorithmwith Applications. IEEE Trans Signal Processing 1996; 44(2):225{232.[18] Pesquet JC, Krim H, Carfantan H. Time-Invariant Orthonormal Wavelet Repre-sentations. IEEE Trans Signal Processing 1996; 44(8):1964{1970.[19] Sari-Sarraf H, Brzakovic D. A Shift-Invariant Discrete Wavelet Transform. IEEETrans Signal Processing 1997; 45(10):2621{2626.[20] Coifman RR, Wickerhauser MV. Entropy-Based Algorithms for Best Basis Selec-tion. IEEE Trans Inf Theory 1992; 38(2):713{718.[21] Strang G, Nguyen T. Wavelets and Filter Banks. Wellesley{Cambridge Press,Wellesley, MA 1996.[22] Beylkin G. On the Representation of Operators in Bases of Compactly SupportedWavelets. SIAM J Numerical Analysis 1992; 29:1716{1740.[23] Delfs C, Jondral F. New Aspects on Classi�cation Using Translation-InvariantWavelet Packet Transforms. In Proc. 2nd IEEE UK Symp Appl Time-FrequencyTime-Scale Methods. University of Warwick, England 1997. pp 73{76.[24] Raz J, Biggins CA, Turetsky B, Fein G. Frequency Domain Dipole Localization:Extension of the Method and Applications to Auditory and Visual Evoked Poten-tials. IEEE Trans Biomed Eng 1993; 40(9):909{920.[25] Donoho DL. De-Noising by Soft-Thresholding. IEEE Trans Inf Theory 1995;41(3):613{627.



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 21List of Figures1 Modelling focal neural activity in the brain by a current dipole. . . . . . 42 Example of the singular values of a data matrix for r = 4 independentsources measured using an array of M = 20 sensors and corrupted byGaussian white noise; the slope in the singular values corresponding tothe noise-only subspace is due to �nite-sample statistics. . . . . . . . . . 63 De-noising of a one dimensional time-series: in the transform domain, ad-ditive noise remains smeared, while the signal of interest is parameterizedby only few coe�cients. By thresholding and inverse transformation, anoise reduction can be achieved. . . . . . . . . . . . . . . . . . . . . . . 74 Threshold selection for ensemble de-noising. . . . . . . . . . . . . . . . . 105 Statistical security of looking across the sensor array in dependency of theratio between feature parameter and variance of corrupting noise, and thedimensionality M of the sensor array. . . . . . . . . . . . . . . . . . . . 116 Flow-chart for translation-invariant (TI) de-noising of a 1-d time seriesf . Variables with superscript (s) refer to circularly shifted signals, Dis the number of levels of the applied DWT. For TI-EDN circular shiftoperations are applied to all rows of the data matrix F. . . . . . . . . . 127 Example time series si[l], i = f0; 1; 2g, to simulate three source activa-tions consisting of superposed Hermite-type functions, for constructionof synthetic EEG/MEG data matrices. . . . . . . . . . . . . . . . . . . . 148 Final SNR achieved by di�erent de-noising methods applied to data froma 73-sensor array. Initial SNR is 5dB, with temporally coloured noise ofdi�erent bandwidths produced using a 5th order Butterworth �lter. Thesignal of interest arises from three dipolar sources activated by Hermite-type functions. All de-noising methods use a Symmlet-8 wavelet for thetransform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Linear combination of source transients in Fig. 7 measured at one sensor(dash-dotted); with coloured Gaussian noise added at 5dB SNR (dashed);and reconstructed time-series using standard de-noising. . . . . . . . . . 1610 Reconstructed time series of sensor measurement in Fig. 9 applying var-ious noise reduction methods. . . . . . . . . . . . . . . . . . . . . . . . . 16



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 2211 Errors between the reconstructed time series in Fig. 10 and the underlyingsignal of interest in Fig. 9. . . . . . . . . . . . . . . . . . . . . . . . . . 1712 Comparison of combination of ensemble de-noising with a low-rank ap-proximation for di�erent SNRs. . . . . . . . . . . . . . . . . . . . . . . . 17



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 23Mathematical Symbols(�)T (uppercase) matrix or vector transpose(�)? (perp) orthogonal space0 (null, bold) null matrixD (uppercase) depth of DWT (number of iterations of halfband �lteroperations)� (greek eta, lowercase) energy ratioEDN (uppercase, script) subscript indicating ensemble-denoisingF (uppercase, bold) spatio-temporal data matrix~FEDN (uppercase, bold, tilde) spatio-temporal data matrix after ensem-ble de-noising (EDN)~FLRA (uppercase, bold, tilde) spatio-temporal data matrix after lowrank approximation (LRA)G (uppercase, bold) gain matrixK (uppercase) number of non-zero time samples after hard-thresholdde-noisingl (lowercase, bold) discrete time indexL (uppercase, bold) number of time slices / samples~L (uppercase, bold, tilde) number of time slices / samples recordedfor pre-stimulus dataLRA (uppercase, script) subscript indicating low rank approximationM (uppercase) number of sensorsM (uppercase, bold) diagonal threshold / masking matrix�l (greek mu, lowercase) masking value for lth coe�cient of sensortime seriesN (uppercase, bold) noise-only component of the spatio-temporaldata-matrix~N (uppercase, bold, tilde) spatio-temporal matrix with noise-onlypre-stimulus dataN (�; �2) (uppercase, calligraphy) normally distributed process with mean� and variance �2
 (greek Omega, uppercase) normalized (angular) frequency 
 =!Ts, with sampling period TsP (uppercase, bold) permutation matrixP (z) (uppercase) probability of event zqi (lowercase, bold) spatial orientation of ith dipolar sourceri (lowercase, bold) spatial location of ith dipolar source



Weiss, Leahy, Mosher, and Stewart: An Ensemble De-Noising Method ... 24r (lowercase) number of temporally independent dipolar sourcesRM�L (uppercase, blackboard (amstex)) set of M-by-L matrices with realentriess(n) (lowercase) cumulative sum on re-arranged averaged squaredtransform coe�cientssi (lowercase, bold) vector holding N discrete time samples of acti-vation function of ith dipolar source�m (greek sigma, lowercase) singular value�2nn (greek sigma, lowercase) variance of noise� (greek Sigma, uppercase, bold) diagonal matrix holding singularvaluesSNR (uppercase, script) signal-to-noise ratioT (uppercase, bold) (discrete wavelet) transform matrixtf(m; l) (lowercase) nth transform coe�cient of the mth sensor time series�t2f(l) (lowercase) nth squared transform coe�cient averaged across thesensor array�t2f (lowercase, bold) �t2f(n) arranged in a vector~t2f (lowercase, bold) re-arranged averaged squared transform coe�-cient vectortl;i (lowercase) transform coe�cients representing noise-only compo-nentstx (lowercase) noise-free transform coe�cient parameterizing signalof interest� (greek theta, lowercase) energy threshold�(�) (greek Theta, uppercase, bold) matrix valued threshold functionU, V (uppercase, bold) orthogonal matrices produced by singular valuedecompositionum, vm (lowercase, bold) vectors spanning the matrices U, VX (uppercase, bold) noise-free spatio-temporal data matrix only con-taining measurements due to source transients


