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Abstract. EEG/MEG are important tools for non-invasive medical diagnosis and basic
studies of the brain and its functioning, but often applications are limited due to a very
low SNR in the data. Here, we present a discrete wavelet transform (DWT) based
de-noising method for spatio-temporal EEG/MEG measurements collected by a sensor
array. A robust threshold selection can be achieved by incorporating spatial information
and pre-stimulus data to estimate signal and noise energies. Further improvement can
be gained by applying a translation-invariant approach to the derived de-noising scheme.
In simulations, the performance of the proposed method is evaluated in comparison to
standard de-noising and low-rank approximation, which offers some complementarity to

our approach.

Keywords: EEG/ MEG, source localization, de-noising, low-rank approximation,

discrete wavelet transform.

1 Introduction

The electro- and magnetoencephalogram (EEG/ MEG) are recordings of the scalp po-
tential and magnetic field outside the head resulting from electrical neural activity in
the brain. The human EEG was first recorded back in 1924, and has, together with
MEG, acquired an important role as a diagnostic tool in medicine and brain research.
Applications include detection of epileptic seizure [1], identification of evoked potentials
in reaction to stimuli, which can be used, for example, for an objective audiogram [2],
exploration of sleep states [3], or general analysis to find areas of neural activity from
event related data by solving an inverse problem using the EEG/MEG measurements
[4].

Our main interest has been in localizing neural sources in the brain. Transient
neural current sources associated with event related EEG/ MEG are generally assumed
focal in nature and can be approximated using equivalent current dipoles. Therefore
using measurements from a sensor array, the location, orientation, and time series of
a number of equivalent dipoles can be determined by solving an inverse problem [4].
However, even after stimulus-locked averaging from multiple trials, usually the data
still possesses a very low SNR due to background brain activity and instrumental and
environmental noise. This low SNR results in reduced accuracy of the estimated dipole
parameters [5], and also limits the utility of EEG/MEG in other previously mentioned
applications. Here we address the problem of improving the SNR of recorded EEG/MEG
data.
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Since the signals of interest are transient in nature, simple bandpass filtering is
not a suitable technique for separation of signal and noise. When the signals of interest
are a linear combination of a small number of linearly independent time series, noise
reduction can be achieved in sensor array data by exploiting the spatial structure of
the underlying signals. This structure can be revealed by applying a singular value
decomposition (SVD) to the data matrix and performing a low-rank approximation
(LRA), thus truncating noisy unstructured contributions. LRA is implicitly performed

on the data when using sub-space based source localization algorithms [4].

A different approach to improving the SNR of recorded EEG/ MEG data is to
use wavelet de-noising, which is a time-frequency method to recover an unknown tran-
sient signal from broadband noise [6]. By applying a suitable orthonormal transform
to the time-dimension of the data, the noise will remain spread across the transform
space while the signal of interest can be parameterized by few transform coefficients that
will stand out from the noise. The localizing properties of the discrete wavelet trans-
form (DWT), in both time and frequency, make it suitable for parameterizing transient
evoked responses within the EEG, as demonstrated in, for example, [7, 8]. By applying
an inverse transform after appropriately thresholding the transform coefficients, noise
reduction can be achieved. In the following, we introduce a form of de-noising that
has been adapted to our EEG/MEG problem by exploiting the additional information
specific to our model of the data, and present simulation results to demonstrate the

benefit of this approach to noise reduction.

The paper is organized as follows. In Section 2 we introduce a signal model for
EEG/MEG based on focal neural current sources, and briefly review low-rank approx-
imation and wavelet de-noising. The customization of the de-noising approach for our
problem is the subject of Section 3. We present comparisons to other methods and
results in Section 4. Our notation uses plain italicized text for scalar values, and bold

face lower and upper case for vector and matrix quantities, respectively.

2 Preliminaries

This section describes the signal model for array-recorded EEG/MEG measurements,
and introduces two basic concepts of noise reduction. The first one, low rank approxi-
mation, exploits the fact that the signal of interest has some spatial structure while the
noise is weakly structured, if at all. The second approach searches for feature param-

eters in the time-frequency plane that stand out from the noise, which is subsequently
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Figure 1: Modelling focal neural activity in the brain by a current dipole.

suppressed by masking or shrinking of the noise-only coefficients.

2.1 Signal Model

We assume that r dipolar neural sources are activated in the brain in response to a par-
ticular stimulus. The signal at an M element sensor array is formed by the superposition
of the fields from each of the r dipoles with position r;, orientation q; and time series
s;, with instrumental and environmental noise to yield an M-by-L spatio-temporal data

matrix

F = G(r;)qs; +N =X+ N, (1)

with  G(r;)eRM*3  gain matrix,
q;€R**!  dipole orientation,

s,€R¥*!  dipole time series, and

NeRM*E  additive noise,

where L is the number of collected time slices. The vector s;,
T

contains the amplitude (or “strength”) of the ith dipole over a time interval of L discrete
samples, often also referred to as activation function. This strength is given a spacial

direction by the fixed dipole orientation q;. Finally, the matrix G(r;) contains the gain
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factors from the spatial components of the ith dipole at location r; to the M sensors,
which measure either electric potential in the case of EEG or the magnetic flux in the
case of MEG. This so called forward model G(r;) can be calculated based on a model
of the head accounting for the electrical properties of different layers (e.g. brain matter,
scull bone, and scalp as indicated in Fig. 1). With respect to the sensor number M,
current whole head MEG and EEG systems provide in the range of 64 to more than 300

channels.

If we assume the noise in IN to be zero-mean Gaussian and uncorrelated with the

source transients, then we can make the following approximation:
IF|[7 ~ X7 + IN[7 (3)

The noise power can be estimated from pre-stimulus data, corresponding to a period of

L time slices before any event-related signals are produced, yielding
I -
INI% ~ EIINII% : (4)

A signal-to-noise ratio (SNR) of EEG/ MEG data can then be calculated as

X7

SNR =Nz )

using the Frobenius norm || - || .

2.2 Low-Rank Approximation

The rank of a matrix can be revealed by performing a singular value decomposition
(SVD):

by
UTFV:[()], FecRM M<L (6)

where U € RM*M and V € RE*L are orthogonal matrices and ¥ = diag{c,,,} € RM*M
holds the singular values of F ordered as oy > g5 > -+ > o)y > 0. The number of
non-zero singular values then determines the rank of F, which, for noiseless data, gives
the number of linearly independent sources contributing to the measurements. However,

in the presence of noise, the matrix will become full rank. For the case of spatially and

2
nn?’

will take the value of 0, = \/L - 02,,,Ym € [r 4+ 1, M|, while the first r singular values

will be elevated above this noise floor by the singular values of the noiseless data matrix.

temporally uncorrelated Gaussian noise with variance o, the last M —r singular values
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Figure 2: Example of the singular values of a data matrix for » = 4 independent sources
measured using an array of M = 20 sensors and corrupted by Gaussian white noise; the
slope in the singular values corresponding to the noise-only subspace is due to finite-

sample statistics.

An example for a Gaussian white noise corrupted data matrix F € R2?0%100

containing
linearly combined observations of » = 4 temporally independent sources is shown in

Fig. 2.

Using an SVD, F can be written in the expansion form [9]

M
F = Z Oy, Ve (7)
m=1

where U = [u;,uy,---uy| € RM*M and V = [v, vy, --vz] € R*" span the column
and row space of F. If F' contains structured data emanating from r linearly independent
sources in the presence of independent and identically distributed (iid) white noise, the
expansion (7) can be truncated after r terms thus suppressing the noise introduced by

the remaining M — r non-zero singular values. We refer to the truncated form

FLRA = Z O'mUmV,:I;1 (8)

m=1
as a low-rank approximation of F. It can also be seen as a projection of F onto its

signal-subspace spanned by U, = [uy,---u,], Fra = U, UTF, which eliminates any

1

L where ()1 refers to the orthogonal

components of F in the noise-only subspace U

complement. Thus, for white Gaussian noise, the noise variance is reduced by a factor
r/M.
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Figure 3: De-noising of a one dimensional time-series: in the transform domain, additive
noise remains smeared, while the signal of interest is parameterized by only few coeffi-

cients. By thresholding and inverse transformation, a noise reduction can be achieved.

2.3 De-Noising

De-noising as originally proposed by Donoho and Johnstone [6] is applicable to 1-
dimensional signals corrupted by white noise. The signal is transformed, the transform
coefficients thresholded according to some criterion, and an inverse transform used to
obtain a noise reduction. This procedure is shown in Fig. 3. De-noising relies on an
appropriate transform that is able to parameterize the signal of interest with a few sig-
nificant coefficients while, for an orthogonal transform, the noise will remain spread over

the entire transform domain.

A discrete wavelet transform (DWT) is usually employed as its ability to yield
local representation in both time and frequency domain is advantageous for the anal-
ysis of transient signals. The quality of the parameterization determines the ability to
recover a minimally distorted de-noised signal. If we assume iid Gaussian noise, a pa-
rameterization by K < L coefficients yields a noise reduction of approximately K/L. A
huge variety of wavelets has been investigated in literature possessing different proper-
ties such as minimum length of support and maximum smoothness [10], near symmetry,

or good localization in both time and frequency [11].
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A second important choice is the thresholding method. Hard-thresholding zeroes
every coefficient that falls below a defined threshold, while for soft-thresholding, a con-
tinuous non-linear function is applied to the transform coefficients. The most straight-
forward approach is to additionally shrink all surviving coefficients by the amount of
the threshold. Threshold selection is determined by whether the de-noising procedure is
optimized in a mean squared error, minimax, or visually appealing (“visu-shrink” [12])
sense [6]; often the choice is heuristic. Additionally, different threshold optimizations

can be combined with adaptive and transform-level dependent schemes [13].

The threshold schemes generally assume white Gaussian iid noise with unit vari-
ance corrupting the signal of interest. Therefore, prior to de-noising, the signal has to be
scaled to set the noise variance correctly. Often, the initial noise variance is estimated
using the highpass part of the data, i.e. the wavelet coefficients at the finest transform
level, and a normalization with their median absolute deviation is applied. This method
assumes a sufficient smoothness of the underlying signal of interest such that only noise

is present at high frequencies [12].

3 Ensemble De-Noising

This section will introduce a particular de-noising scheme, in which we exploit pre-
stimulus data to estimate noise and signal energies. We add security and a degree of
determinism to the threshold selection by incorporating the spatial dimension of the
data in the decision, which provides ensembles probes of the noise process. Hence we

refer to our method as ensemble de-noising (EDN).

3.1 Concept

We represent a real valued DWT by an orthogonal transform matrix T, such that
y = Tx is the DWT of x [14]. Applying the transform to the temporal dimension of

the data matrix F, we can express the de-noising procedure as
F=0(FT")T, (9)
where ©(-) performs a threshold operation and ()T denotes transpose.

For spatio-temporal EEG/ MEG data, the signal of interest in each channel is a

linear combination of the same source transients. We can improve the performance of
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the de-noising procedure by making use of this property: since we expect to see similar
characteristics in the transform coefficients across the sensor array [3], we can use a
mask common to the whole array rather than de-noising each measurement time series
separately, i.e.

Fppy = F T'MT (10)

TF-filter
with M = diag{y;} € REL. For hard thresholding, the elements of M form a binary

mask

IR AU B B
m_{o e [ =0(1)L—1 (11)

ol ol

depending on the squared transform coefficients averaged over the spatial dimension

2 12

The reason for averaging over the energy of the coefficients rather than the coefficient
values themselves lies in the forward model, which linearly combines the source tran-
sients and therefore sign changes across the array must be considered. The normalization
|IFTT)% in (12) is to ensure ||t_?c||1 = 1, i.e. the overall energy represented in the pa-
rameters ¢7(l) is unity. With (3), this energy can be separated into contributions form

signal of interest and noise.

3.2 Threshold Selection

We want to select the threshold 6 by picking the K largest coefficients from t_?c such
that the de-noised signal only retains as much energy as that estimated for the signal
using (5). The elements of t?c are re-ordered by a permutation matrix P such that the

resulting vector

= Pt? (13)

has its elements in descending order, i.e. t?f(O) > t3(1) > - t42(L—1). Then the

<k

cumulative sum on t?c(l)

s(l) = Zt;(@'), (14)

represents the normalized energy in the [ largest coefficients. We determine the number
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Figure 4: Threshold selection for ensemble de-noising.

of coefficients, K, to retain by comparing s(l) to the ratio n of energies of X and F as
illustrated in Fig. 4. Therefore, n gives the fraction for the contribution of the signal
of interest to the overall energy contained in the measured data. The equivalence of
the energy of the spatio-temporal data and that of the transform coefficients is a direct
result of the norm preserving property of the orthonormal transform matrix T. The
ratio 1 can be calculated from the EEG/ MEG data using assumptions (3) and (4)
g — IXIE  IFIE — FINTE
IFI% IFI%
We then search for the smallest K € N that fulfills s(K—1) > n, and obtain the threshold
0= t2(K—1).

(15)

By evaluating (11), and insertion into (10) the noise in the data matrix F has
been reduced. We refer to this method as ensemble de-noising (EDN), since the spatial

dimension of the data presents us with ensemble probes of the noise process.

How does the ensemble strategy in (12) influence the probability of picking the
correct coefficients in noise? For the analysis, we assume as a simplification that the
signal of interest can be represented by a single coefficient, ., having constant modulus
across the array, and that the noise coefficients ¢, ; are samples of a Gaussian iid process
N with zero mean and variance o2,. We are interested in the probability

M-1
P(z>M-t2), withz= >t t;€N(0,07,) (16)

i=0
as a measure for the probability that the signal will be hidden in noise. The specific
threshold in (16) refers to the case where signal and noise have identical power. Thus,
the random variable 2 is characterized by an appropriately scaled chi-square distribution
with M degrees of freedom [15].
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Figure 5: Statistical security of looking across the sensor array in dependency of the ratio
between feature parameter and variance of corrupting noise, and the dimensionality M

of the sensor array.

Fig. 5 shows the probability P(z > M -t2) drawn over the ratio ¢2 /o2, for different

2

sensor array dimensions M. It can be seen that for a reasonable ratio 2 /02, |

averaging
the coefficient energy across the M-array considerably enhances the statistical security
for picking the correct coefficient. Note, that for a spatio-temporal data matrix of L
recorded discrete time slices and parameterization of the signal of interest by a single

coefficient %,

e the SNR of the data is given by t2/(L - 02,); and

e the probability that t, is selected despite the presence of L noisy coefficients yields
(1—-P(z>M-t2)".

The high error probability P(z > M - t2) for small ratios t2/02, in Fig. 5 highlights
both the fact that de-noising is unsuitable for very low SNR and the necessity that the

transform in the de-noising process sufficiently parameterizes the signal of interest.

3.3 Translation-Invariant Ensemble De-Noising

As mentioned earlier, it is implicitly assumed in the de-noising procedure that the signals

of interest, i.e. the dipole time series, can be represented by a small subset of the basis
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initialize f[[] =0 VI =0(1)L—1

for i = 1(1)2P

circularly shift noisy signal left by ¢ samples:

FON = F1(1 +14) mod ]

de-noise signal fi(s)[l] using a periodically extending transform:

FEOm — 21

circularly shift de-noised signal right by 7 samples:

fill) = 2101 — i) mod 1]

average: f[I] «— =2 flI] 4+ 1 fifl]

)

Figure 6: Flow-chart for translation-invariant (TT) de-noising of a 1-d time series f.
Variables with superscript (¥) refer to circularly shifted signals, D is the number of levels
of the applied DWT. For TI-EDN circular shift operations are applied to all rows of the

data matrix F.

functions of the transform. However, problems also arise due to the phase-sensitivity
through the cyclo-stationarity of the DW'T associated with the decimation process. As a
result, the basis functions sit orthogonal to each other on a fixed dyadic grid. Therefore
even if the signal of interest matches one of the basis functions, a phase shift of the signal
destroys the representation by a single coefficient and can blur the signal energy over
several transform coefficients of smaller amplitude, which may be masked in the noise
and get subsequently truncated when falling below the threshold selected according to
Sec. 3.2.

These truncations result in oscillations similar to Gibbs phenomena in the re-
constructed de-noised time-series [16]. A translation-invariant (TT) approach recently
discussed in literature [16, 17, 18, 19] can address this problem. We have followed the
approach of [16], where shifted versions of the data matrix are ensemble de-noised, back-
shifted, and averaged as shown in the flow chart in Fig. 6. This presents a compromise
over searching for an optimum shift with minimum entropy in the transform domain,
i.e. energy concentration in as few coefficients as possible [20], as a shift that is optimal

for one transient may not be optimal for another transient contained in the same data.
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The shift operation in Fig. 6 is executed circularly. As the sensor time series
forming the rows of the data matrix F are finite intervals, the DWT — efficiently
evaluated using an octave filter bank [11] rather than the matrix multiplication in (10)
— requires an extension of the signal. If a periodic or symmetric extension is chosen,
filtering can be performed in steady-state, thus avoiding transients that distort the
subband signals holding the DWT coefficients [8, 21]. Although a periodic extension
generally suffers from discontinuities and “wrap-around” effects at the margins of the
temporal interval [14], it has been employed for this work as the TI approach can
be easily realized by circular shifts. In terms of implementation, it is not required to
calculate a full transform for every shift from scratch, as reduced computational schemes
can be applied [12, 22, 17, 23].

4 Simulations and Results

We compare the de-noising methods described in Sections 2.3 and 3 to the low rank
approximation of the data matrix obtained via a truncation of the SVD expansion as
described in Section 2.2. To evaluate the results in terms of noise reduction, we have
to use synthetic data. As source transients s;, superpositions of Hermite-type functions
have been employed, which are derivatives of Gaussian window functions and realistic
for simulating activations [24]. Examples for such source transients are given in Fig. 7.
The wavelet transform uses a Symmlet-8 wavelet [12, 10], which has a relatively good
frequency selectivity due to maximum smoothness and gives an approximate alignment
of non-stationarites in various scales due to its near-symmetry. However, the choice of
the 8-coefficient wavelet is heuristic and based on empirical results with wavelet filters
of different lengths in combination with the realistic simulation data employed in the

following.

Fig. 8 shows the averaged results over 25 trials with different noise power spectral
densities (PSD) and realistic source data for different de-noising techniques and the low
rank approximation. The figure shows the final SNR. = 10 - log,(||X||% - [|F — X[|%)
versus the cut-off frequency of the coloured (lowpass) noise. The initial SNR of the data
matrix F was 5dB. The temporal colouring of the noise is achieved by lowpass filtering,
with the cut-off frequency indicated on the abscissa. For standard de-noising of each
sensor time series, we achieved best results using a visu-shrink soft threshold [12]. The
SNR produced by ensemble de-noising is consistently higher due to exploitation of pre-

stimulus and spatial information. However, note that further improvements are achieved
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Figure 7: Example time series s;[l], i = {0, 1, 2}, to simulate three source activations con-
sisting of superposed Hermite-type functions, for construction of synthetic EEG/MEG

data matrices.
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Figure 8: Final SNR achieved by different de-noising methods applied to data from a
73-sensor array. Initial SNR is 5dB, with temporally coloured noise of different band-
widths produced using a 5th order Butterworth filter. The signal of interest arises from
three dipolar sources activated by Hermite-type functions. All de-noising methods use

a Symmlet-8 wavelet for the transform.
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by applying translation-invariant (TT) ensemble de-noising.

Example time series for de-noising results in Fig. 8 are given in Figs. 9-11. Fig. 9
shows the measurement at a specific sensor, i.e. one row of the data matrix, as a lin-
ear combination of the source transients in Fig. 7, which is corrupted by noise at 5dB
SNR, having a PSD with a normalized angular cut-off frequency at /7 = 0.15. The
standard de-noising solution using a visu-shrink threshold is drawn as a solid line, and
clearly suffers from the strong colouring of the added noise. The reconstructed mea-
surements using various noise-reduction techniques are shown in Fig. 10, with the error
between the noiseless time series and the reconstructed response given in Fig. 11. A
remarkable difference between the proposed ensemble de-noising methods and low-rank
approximation is that the time-frequency approach well suppresses noise outside the
activation interval of the sources, within which low rank approximation appears to give

a better fit to the original signal.

To further investigate the suspected complementarity between ensemble de-noising
and the SVD based noise reduction, we look at an extreme simulation, where a single
source transient is matched by the analysis function (again a Symmlet-8) of the DWT.
Therefore in the resulting situation, ensemble de-noising can be expected to give its
maximum benefit. The results in terms of noise-reduction in the reconstructed matrix
F, are displayed in Fig. 12 for different initial SNRs in the data matrix F. The steep
drop in performance of ensemble de-noising for low SNR is due to a high probability
for any coefficient to pass the threshold #, as indicated in Section 3.2. For high SNR,
both methods reach a constant level, since the noise reductions approach the factors
(M —1r)/M for low-rank approximation (LRA) and (L—K)/L for de-noising, as discussed
in Sections 2.2 and 2.3. The partial complementarity of LRA and de-noising becomes
evident from a combination of both methods, where the data is first ensemble de-noised
and then low-rank approximated. The result of this combined operation is drawn as
dotted line in Fig. 12, with increased noise reduction over either method separately.
Since subspace-based dipole source localization algorithms inherently perform a low-

rank approximation [4], ensemble de-noising is expected to give additional benefit.

For the situation in Fig. 12, Tab. 1 contains results of source parameter estimation
[4] for different SNRs with and without ensemble de-noising (EDN). Performance mea-
sures are the average of the mislocation of the dipolar source, ||t —r||; (in cm), and the
relative error of the reconstructed source activation function, ||§ — s||y with |[s|]z = 1,
where tilded variables refer to estimated quantities. There is some minor improvement

in estimating the source location and slight enhancement of the reconstructed time series
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Figure 9: Linear combination of source transients in Fig. 7 measured at one sensor (dash-
dotted); with coloured Gaussian noise added at 5dB SNR (dashed); and reconstructed

time-series using standard de-noising.
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Figure 10: Reconstructed time series of sensor measurement in Fig. 9 applying various

noise reduction methods.
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Figure 11: Errors between the reconstructed time series in Fig. 10 and the underlying
signal of interest in Fig. 9.
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Table 1: Averaged deviation of location (in cm) and relative time series error for source

parameter estimation according to [4] for a single dipole.

SNR. | EDN | [JAr[, | [|As]];
no || 0.0423 | 0.0154
B s | 0.0410 | 0.0109
no || 0.1012 | 0.0511
0dB 1 es | 0.0982 | 0.0361
no || 0.2944 | 0.1366
SIB e | 0.2442 | 0.0879

when applying the denoising method prior to source localization.

5 Conclusion

We have introduced a wavelet de-noising method for spatio-temporal EEG/MEG data,
which incorporates pre-stimulus and spatial information in the selection of the threshold.
The resulting scheme yields an enhanced SNR improvement over standard de-noising,
and offers some complementarity to low-rank approximation, a noise reduction technique
based on an SVD of the data rather than a time-frequency analysis as performed with
de-noising. We found that, compared to low-rank approximation, denoising is very good
at removing noise from intervals where no source is active but does not perform well if

the analysis wavelet and source activation function are not well matched.

Since good parameterization is crucial, in our current research we are looking into
methods for further improvement of ensemble de-noising by adapting the transform to
the analyzed data. Coifman et al. [20] have introduced a best basis selection method for
the transform, such that the signal energy is contained in as few coefficients as possible.
With a similar criterion, a library of different wavelets can be searched to find a basis
function that most closely matches the signal’s features and subsequently leads to a low
entropy in the transform domain. There is also the possibility of using soft thresholding
[25] in (10), with an appropriate threshold function designed to preserve the estimated

energy of the signal of interest.
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Mathematical Symbols

—~
-
o9

O <

EDN

FEDN

Frra

=

SIS

LRA

uppercase) matrix or vector transpose

perp) orthogonal space

null, bold) null matrix

uppercase) depth of DWT (number of iterations of halfband filter

A~~~ I~ N

operations)
(greek eta, lowercase) energy ratio

(uppercase, script) subscript indicating ensemble-denoising
(uppercase, bold) spatio-temporal data matrix
(uppercase, bold, tilde) spatio-temporal data matrix after ensem-

ble de-noising (EDN)
(uppercase, bold, tilde) spatio-temporal data matrix after low

rank approximation (LRA)
(uppercase, bold) gain matrix

(uppercase) number of non-zero time samples after hard-threshold
de-noising

(lowercase, bold) discrete time index

(uppercase, bold) number of time slices / samples

(uppercase, bold, tilde) number of time slices / samples recorded

for pre-stimulus data
(uppercase, script) subscript indicating low rank approximation

(uppercase) number of sensors
(uppercase, bold) diagonal threshold / masking matrix
(greek mu, lowercase) masking value for [th coefficient of sensor

time series
(uppercase, bold) noise-only component of the spatio-temporal

data-matrix
(uppercase, bold, tilde) spatio-temporal matrix with noise-only

pre-stimulus data
(uppercase, calligraphy) normally distributed process with mean

1 and variance o
(greek Omega, uppercase) normalized (angular) frequency =

wTy, with sampling period T
(uppercase, bold) permutation matrix

(uppercase) probability of event z
(lowercase, bold) spatial orientation of ith dipolar source
(

lowercase, bold) spatial location of ith dipolar source
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(lowercase) number of temporally independent dipolar sources
(uppercase, blackboard (amstex)) set of M-by-L matrices with real

entries
(lowercase) cumulative sum on re-arranged averaged squared

transform coefficients
(lowercase, bold) vector holding N discrete time samples of acti-

vation function of ith dipolar source
(greek sigma, lowercase) singular value

(greek sigma, lowercase) variance of noise
(greek Sigma, uppercase, bold) diagonal matrix holding singular

values
(uppercase, script) signal-to-noise ratio

(uppercase, bold) (discrete wavelet) transform matrix
(lowercase) nth transform coefficient of the mth sensor time series
(lowercase) nth squared transform coefficient averaged across the

sensor array
(lowercase, bold) #7(n) arranged in a vector

(lowercase, bold) re-arranged averaged squared transform coeffi-

cient vector
(lowercase) transform coefficients representing noise-only compo-

nents
(lowercase) noise-free transform coefficient parameterizing signal

of interest
(greek theta, lowercase) energy threshold

(greek Theta, uppercase, bold) matrix valued threshold function
(uppercase, bold) orthogonal matrices produced by singular value

decomposition
(lowercase, bold) vectors spanning the matrices U, V

(uppercase, bold) noise-free spatio-temporal data matrix only con-

taining measurements due to source transients
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