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Abstract .-  This work presents a novel mechanism for 
detection of late auditory evoked potentials (AEP). AEPs, 
which are an im.portant diagnostic tool to  detect hearing 
deficiencies, are contained within the electroencephalo- 
gram (EEG) at a very low SNR. Our proposed automatic 
detection of A E P s  is based on a Wavelet-Transform of 
EEG data for feature extraction. Several transform co- 
eficients are then used for a classification by a neural 
network; its decisions on successive EEG segments are 
judged b y  a sequential statistical test. This test stops 
when a certain confidence i s  reached to either accept or 
reject an AEP. Besides providing an objective recognition 
of AEPs, this procedure can considerably reduce nzeasure- 
ment time. 

1. INTRODUCTION 
Late auditory evoked potentials (AEP) are part of the 
electroencephalogram (EEG) in reaction to the cortical 
processing of perceived acoustic stimuli. Therefore, in 
audiometry late AEPs are widely used to obtain objec- 
tive frequency specific hearing thresholds, with objectiv- 
ity in a sense that the active cooperation of the experi- 
menlee is replaced by the interpretation of the EEG by 
an operator. As due to background EEG the AEP of- 
ten has an SNR below -10dB, this interpretation is very 
difficult and to  date had to  be based on the support by 
techniques like eg. averaging of sweeps (EEG segments 
synchronously recorded to  the stimuli), cross-correlation, 
or Fourier coefficients [l]. 

In the following, we introduce a new method to se- 
quentially assess successive sweeps in three stages as it 
can be seen in Fig. 1, comprising of a feature extraction by 
a discrete wavelet transformation (DWT) of the sweeps, 
which yields a good parameterisation of thc AEP pattern 
by a set of few transform coefficients [2, 31, followed by 
neural network (NN) classification of these coeficients for 
successive sweeps. However, as the NN possesses a high 

Figure 1: Block diagram of AEP detection scheme 
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probability for false positives (type-11-error) , a sequential 
statistical test judging the number of positive or negative 
classifications produced by the NN forms the last stage 
of lhe detectiori procedure. This sequential test allows a 
decision based on a predefined confidence, and stops the 
measurement when this confidence is reached. 

2. M E T H O D S  

2.1. Feature Extraction Procediire 
A typical late AEP of a person with normal hearing abil- 
ity is shown in Fig. 2(a), with a low frequent response in 
the range of approx. 3-5Hz and a duration of up to 400ms 
after the stimulus [l]. Variations from this shape must be 
expected for children and hearing impaired. Generally, a 
lower level of the acoustic stimulus yields a less significant 
amplitude and larger latency of the main pcak, causing 
the AEP to be much harder to detect. 

To parameterise the basic features in the recorded 
EEG segments (sweeps), a discrete Wavelet transform 
(DWT) has been successfully employed [3], based on the 
general use of the DWT for evoked potcntisls [a]. Us- 
ing Mallat’s Algorithm [4], every sweep is decomposed 
by an octave filter bank, where the subbands yield the 
wavelet transform coefficients. For our measurements, 
the expected time-frequency range of the AEP is repre- 
sented by 7 DWT coefficients in total, forming the feature 
vector (FV). An example of the information contained 
within the FV is given in Fig. 2(b), showing the inverse 
DWT of the feature vector corresponding to  the curve in 
Fig. 2(a). The advantages of applying a DWT are the 
noise reduction by cutting off irrelevant frequencies, the 
immense data reduction, and the low variance between 
individual feature vectors as each coefficient represents a 
time interval of more than 100ms. 

Figure 2: (a) typical late AEP after averaging of 50 single 
sweeps, (b) reconstruction of DWT coefficients in the feature 
vector. 
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Figure 3. Decision based on the acceptance and rejection 
boundaries of the sequential test of NN classification 

2.2. Neura l  Ne twork  Classification of Single Fea- 
ture Vectors  

An NN is used to binary classify the previously calculated 
FV of a single sweep to identify a potential AEP. The FV 
is fed into a feed-forward NN with one hidden layer, after 
removing the mean and a normalisation of the FV’s L,- 
norm to one. Simulations suggest an optimum number of 
8 neurons in the hidden layer. With fewer neurons, thc 
classification results decrease, while an increase in hidden 
neurons only slightly improves the classification at  the es- 
pense of a reduced generalisation of the NN. Considering 
the potential variations of the AEP, generalisation is an 
important characteristic of the NN. 

Training of the NN was performed with 200 feature 
vectors which have been calculated from both averaged 
measurements of 15 cxperimentees and synthetic signals 
produced from expert knowledge. 

Due to normalisation, all input FV lie on the surface 
of a 7-dimensional hypercube. Using Monte-Carlo inte- 
gration with l o 4  random input veclors, the surface area 
for positive classification was determined to be 24%. As 
this false positive rate is too large, the decision cannot be 
based upon the classification of a single sweep’s FV. 

2.3. Sequential Statistical Analysis  

To improve the decision, the classification of single sweeps 
produced by the NN is sequentially tested using a sta- 
tistical method described in [5]. This test checks if the 
number of correctly classified sweeps is outside the ex- 
pected statistical distribution for random values. The 
significance cy of this test, which is identical to the type- 
11-error, and the maximum number of measurements N 
have to be specified in advance. 

For practical reasons, we have chosen N = 70 and 
cy = 0.05. The results of the single sweep classification 
can be regarded as a binomial distribution Bnp(k) where 
B denotes the probability to get I ;  positive classifications 
out of a total number of n,  and p is the probability for a 
positive classification. For n > 10, Bnp(K) approximates 
a Gaussian distribution with mean ?i = n p  and variance 
r2 = np( 1 - p ) ,  such that 5%-percentiles of the distribu- 
tion can be calculated in dependency of n. Upon these, 
boundaries for acceptance or rejection of an AEP can be 
set, as shown in Fig. 3. There, the abscissa represents the 
riurriber of measurements, n,  the ordinate the total num- 

stimulus level [dB] 20 I 40 I 60 I 80 I -eo* 
rate of positives II 0.80 I 0.96 I 0.94 I 0.98 I 0.06 

I I I . . ._ I average no. sweeps 11 34 I 27 I 25 I 22 I 49 

Table 1: Detection rates and average number of sweeps need 
for a decision for various stimulus levels (* no stimulus given). 

ber of positives, k .  If after n sweeps k exceeds the upper 
boundary, an AEP is detected and the measurement can 
be stopped. When the lower boundary is reached after n 
measurements it is impossible that the upper boundary 
is met in the remaining N - n sweeps, an AEP is rejected 
and the measurement can also be stopped. The dashed 
line shows the mean value ( n p  with p = 0.24) for positive 
NN-classifications in the absence of an AEP. 

3. RESULTS 

The proposed method has been applied to 232 sets of 
EEG measurements of eight normal hearing adults, which 
have been acoustically stimulated by 1000 Hz short sine- 
bursts of various sound pressure levels. The results are 
listed in Tab. 1, together with the average number of 
sweeps needed for a decision. Results for 48 measurement 
sets without any given stimulus show a very low false 
decision rate for an incorrectly assumed AEP. 

4. C O N C L U S I O N  

This work has introduced an automatic detection method 
for late AEPs, based on a DWT for low noise feature ex- 
traction, a feature classification using a neural network, 
and a decision mechanism based on a sequential statistical 
assessment of the NN’s output. Practical results under- 
line the suitability of this method. Additionally it was 
shown that substantial reduction of measurement time 
can be achieved when sequential testing is applied. Thus, 
an audiometric investigation via AEP becomes more ac- 
curate and faster. 
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