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ABSTRACT

In this paper we consider a non-linear transceiver design for
non-regenerative multiple-input multiple-output (MIMO) re-
lay networks where a direct link exists between the source
and destination. Our system utilises linear processors at the
source and relay as well as a zero-forcing (ZF) decision feed-
back equaliser (DFE) at the receiver. Under the assumption
that full channel state information (CSI) is available the pre-
coding and equaliser matrices are designed to minimise the
arithmetic mean square error (MSE) whilst meeting transmit
power constraints at the source and relay. The source, re-
lay, and destination processors are provided in closed form
solution. In the absence of the direct link our design partic-
ularises to a previous ZF DFE solution and as such can be
viewed as a generalisation of an existing work. We demon-
strate the effectiveness of the proposed solution through sim-
ulation and show that it outperforms existing techniques in
terms of bit error ratio (BER).

1. INTRODUCTION

The use of relaying nodes to forward data from a source to
destination offers spatial diversity in a communication sys-
tem which can extend network coverage, increase channel
capacity, and improve link reliability [1], [2], [3]. When each
node in the network is equipped with multiple antennas the
system is referred to as a MIMO relay system. MIMO relay-
ing has gained significant attention from researchers lately
and are considered an integral component in the design of
next generation wireless networks.

MIMO relay transceivers are generally categorised as
either decode forward (DF) or amplify forward (AF) [1],
which are also commonly known as regenerative and non-
regenerative respectively. In the case of regenerative relay-
ing the relay node decodes the received signal, re-encodes
the data bits, and then forwards to the next node in the net-
work. In non-regenerative protocols the relay simply trans-
mits an amplified version of the received signal to the subse-
quent node in the system. It is well known performing linear
precoding at the relay can significantly enhance performance
when compared to the conventional AF protocol [2], [4], [5].

Linear transceiver designs have been well studied for
non-regenerative MIMO relaying. In [4] the optimal relay
precoder that minimises the arithmetic MSE is derived under
the assumption that the source precoder is a scaled identity
matrix. A unified framework, based on majorisation theory,
is presented in [5] for multi-carrier non-regenerative MIMO
relays where the optimal source and relay precoders are de-
rived for Schur convex and Schur concave objective func-
tions. It is shown that for Schur concave objective functions

the optimal source and relay processors diagonalise the MSE
matrix and subsequently the overall communication system
is converted to a set of single-input single-output (SISO) sub-
systems. For the case of Schur convex objective functions the
optimal processors result in a MSE matrix with non-diagonal
structure and the system is only diagonalised up to a specific
rotation of the transmit and receive data symbols.

Non-linear techniques have also been considered for two-
hop MIMO relay systems. The solution for the source and
relay precoders when a DFE is utilised at the destination was
investigated in [6]. In [7] minimum MSE processors were de-
rived for a non-regenerative MIMO relay network with Tom-
linson Harashima precoding employed at the source.

The works in [4], [5], [6], and [7] all assumed that the
destination did not use any information received directly
from the source. The direct source-destination link provides
extra spatial diversity in the system and can lead to further
benefits in performance. The authors in [8] investigate the
joint design of linear precoders to minimise the arithmetic
MSE when the direct link is included. It is shown that with
the inclusion of the direct link the optimisation problem is
very complicated and a direct minimisation of the MSE is
difficult. As such the authors propose to minimise an upper
bound on the MSE which, although leads to a suboptimal
solution, significantly simplifies the design process.

In this work we focus on the design of linear processors
when a ZF DFE is employed at the destination and a direct
path exists between the source and destination antennas. We
assume that each node in the network has full CSI and derive
processors to minimise the arithmetic MSE. The remainder
of the paper is organised as follows: In section 2 we introduce
the signal model for the system under consideration. Section
3 presents the transceiver design and a numerical example is
provided in section 4. Finaly conclusions are drawn in 5.

Notation: We conform to the standard notation where
vectors and matrices are denoted by lower and upper case
bold font respectively. The sets of real and complex numbers
are R and C, which in the case of vector and matrix quantities
indicate dimensions by means of a superscript. The operators
E{·}, tr{·}, (·)H, (·)−1, (·)†, and |·| denote the expectation,
trace, hermitian transpose, inverse, pseudo-inverse, and de-
terminant respectively. IM is the M ×M identity matrix and
0N×M is a matrix of dimension N ×M with zero entries. The
element in the ith row and jth column of matrix A is denoted
as ai j and the ith element of vector a is denoted as ai. Ma-
trix rank is noted by rank(·) and diag{a1,a2, ...,aN} denotes
a diagonal matrix with diagonal entries {a1,a2, ...,aN}. The
operators min(a,b) and max(a,b) return the minimum and

maximum values of a and b and we define [x]+ , max(x,0).
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Figure 1: DFE signal model for a two-hop MIMO relay system with direct source-destination link.

2. SYSTEM MODEL

We consider transmission of Ns data streams over a two-hop
MIMO relay system where the source, relay, and destina-
tion have Ns, Nr, and Nd antennas respectively and a direct
link exists between the source and destination. To ensure Ns

data streams can be transmitted across the network we as-
sume that Ns ≤ min(Nr,Nd). For the purposes of interference
cancellation we admit linear processors in each stage of the
network and employ a DFE at the receiver. This configura-
tion is shown in Figure 1.

Due to half-duplex relaying the transmission of data
from source to destination is carried out over two seper-
ate time-slots. In the first phase the data symbols x[n] ∈
C

Ns , which are assumed to be uncorrelated with covariance
E
{

x[n]x[n]H
}

= INs , are transmitted to both the relay and

destination. The relay receives r[n] ∈ C
Nr given by

r[n] =HsFx[n]+vs[n] (1)

where Hs ∈ C
Nr×Ns is the source-relay channel, F ∈ C

Ns×Ns

is the linear source precoder, and vs[n] ∈ C
Nr is an addi-

tive white Gaussian noise (AWGN) vector with covariance
Rvsvs = E

{

vs[n]v
H
s [n]

}

= σ 2
vs
INr . The signal yd [n] ∈ C

Nd

received at the destination in the first time-slot is

yd [n] =HdFx[n]+vd [n] (2)

where Hd ∈ C
Nd×Ns is the direct source-destination channel

and vd [n] ∈ C
Nd is an AWGN vector with covariance matrix

Rvdvd
= E

{

vd [n]v
H
d [n]

}

= σ2
vd
INd

.

In the second phase of transmission the relay processes
the signal r[n] and transmits across the relay-destination

channel Hr ∈ C
Nd×Nr resulting in the data received at the

destination in the second phase yr[n+1] ∈ C
Nd being

yr[n+1] =HrGr[n]+vr[n+1] (3)

where G ∈ C
Nr×Nr and Hr ∈ C

Nd×Nr are the relay precoder
and relay-destination channel respectively and the noise vec-
tor vr[n+1] ∈C

Nr×Nd contains AWGN samples with covari-

ance Rvrvr = E
{

vr[n+1]vH
r [n+1]

}

= σ2
vr
INd

.
The data received at the destination over two consecutive

time-slots, given in (2) and (3), is processed by the linear
equaliser W ∈ C

Ns×2Nd resulting in

z[n+1] =WHFx[n]+Wv[n+1] (4)

where for notational convenience we define

H,

[

Hd

HrGHs

]

, v[n+1],

[

vd [n]
HrGvs[n]+vr[n+1]

]

.

(5)

Here H ∈ C
2Nd×Ns is the effective MIMO channel between

the source and destination antennas and v[n+1]∈C
2Nd is the

equivalent noise vector at the equaliser input with covariance
matrix Rvv = E

{

v[n+1]vH[n+1]
}

given by

Rvv =

[

σ2
vd
INd

0Nd×Nd

0Nd×Nd
HrGGHHH

r σ2
vs
+σ2

vr
INd

]

. (6)

After processing by W, successive interference cancel-
lation is performed by a strictly upper right triangular matrix
B ∈ C

Ns×Ns . The data estimates in x̂[n+1] ∈ C
Ns are recur-

sively computed according to [9]

x̂i[n+1] =C

[

zi[n+1]−
Ns

∑
j=i+1

bi j x̂ j[n+1]

]

(7)

for j = Ns,Ns − 1, . . . ,1. The operator C [.] signifies a map-
ping to the nearest constellation point of the transmitted sym-
bols. The operation in (7) is equivalent to successively mak-
ing decisions [10] on

x̃[n+1] =WHFx[n]+Wv[n+1]−Bx̂[n+1]. (8)

The error between the input to the decision device and the

transmitted symbols is defined as e[n+ 1] , x̃[n+ 1]−x[n]
which using (8) results in

e[n+1] = (WHF−U)x[n]+Wv[n+1] (9)

where we have used the standard assumption of correct past

decisions [9], [10], and we define U,B+INs as a unit diag-
onal upper right triangular matrix. Using the error signal in
(9) the error covariance matrix Ree = E

{

e[n+1]eH[n+1]
}

can be computed as

Ree = (WHF−U)(WHF−U)H +WRvvW
H. (10)

The transceiver in this paper aims to minimise the arithmetic
MSE, which is simply given by tr{Ree}/Ns, whilst meeting
certain system constraints.

3. TRANSCEIVER DESIGN

In this section we derive the processors that minimise the
system arithmetic MSE whilst abiding by the ZF condition
as well as power constraints at both the source and relay ter-
minals.
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3.1 Optimal ZF Equaliser

The ZF condition ensures a perfect reconstruction of the
transmit symbols in the absence of noise and imposes the
following constraint on the equaliser matrix W

WHF=U (11)

which upon substituting in (10) results in the error covariance
matrix Ree reducing to

Ree =WRvvW
H. (12)

It is well known [10] that, for a given U, H, F, and Rvv, the
optimal solution for W that minimises (12) and satisfies the
condition in (11) is provided by

W =U
(

R
−1/2
vv HF

)†

R
−1/2
vv . (13)

Since Ns ≤ Nd the product R
−1/2
vv HF ∈ C

2Nd×Ns has more
rows than columns and as such the pseudo-inverse [11] is

given by (R
−1/2
vv HF)† = (FHHHR−1

vv HF)−1FHHHR
−1/2
vv .

Substituting (13) in (12) we arrive at the MSE matrix

Ree =U
(

FHHHR−1
vv HF

)−1
UH (14)

where we note that the error covariance is now no longer a
function of the equaliser matrix W.

3.2 Constrained Optimisation Problem

As previously mentioned the transceiver design in this paper
aims to minimise the arithmetic MSE. However, as in [6],
[7], and [10], we propose to minimise the geometric MSE,
which lower bounds the arithmetic MSE, and then suitably
contruct processors such that the arithmetic MSE achieves
the minimised lower bound.

The relationship between the arithmetic and geometric
MSE is a simple consequence of the arithmetic-geometric
mean inequality [11] which states that for a positive semi-

definite matrix A ∈ C
N×N we have the inequality |A|1/N ≤

tr{A}/N where equality is achieved if, and only if, A =
αIN for any α ≥ 0. Applying the arithmetic-geometric mean
inequality to (14) we obtain the following bounds

|FHHHR−1
vv HF)|−1/Ns

≤ tr
{

U(FHHHR−1
vv HF)−1UH

}

/Ns (15)

where we have used the facts that |A−1| = |A|−1, |AB| =
|A||B| for square matrices A and B, and |U| = |UH| = 1
since U is a unit diagonal triangular matrix. Using the lower
bound in (15) as the objective function and considering the
source and relay power constraints we arrive at

min
F,G

|(FHHHR−1
vv HF)|−1/Ns (16)

s.t. tr
{

FFH
}

= Ps (17)

tr
{

G(HsFF
HHH

s +σ2
vs
INr)G

H
}

= Pr (18)

Here (17) and (18) are the source and relay power constraints
and Ps and Pr are the available power budgets. We note that
the optimisation problem in (16), (17), and (18) is the same
as that for the ZF DFE design in [6]. However, as will be
seen, the solution differs significantly due to the inclusion of
the direct source-destination link.

3.3 Precoder and Feedback Processors

We now focus on the design of the source and relay pre-
coders, F and G, as the solution to (16), (17), and (18) as
well as the feedback matrix B.

3.3.1 Source Precoder Structure

For a given relay precoder G that satisfies the relay power
constraint in (18) we introduce the decomposition

HHR−1
vv H=VhΛhV

H
h (19)

where Vh ∈ C
Ns×Ns is a unitary matrix and the diagonal ma-

trix Λh = diag
{

λh1
,λh2

, . . . ,λhNs

}

contains the non-zero sin-

gular values of HHR−1
vv H. We assume here that the matrix

HHR−1
vv H is full rank i.e. rank

{

HHR−1
vv H

}

= Ns.
Using the Hadamard determinant inequality [11] we can

state from (16) and using the decomposition in (19) that

|FHHHR−1
vv HF|−1/Ns ≥

Ns

∏
i=1

(

γ2
i λhi

)−1/Ns
(20)

where the lower bound is achieved with any processor F
given by F = VhΓΨ where Γ = diag{γ1,γ2, . . . ,γNs} and

Ψ ∈ C
Ns×Ns is an arbitrary unitary matrix. The elements of

the power allocation matrix Γ can be found by substituting
F=VhΓΨ in (16) and (17) and solving

min
γi

Ns

∏
i=1

(

γ2
i λhi

)−1/Ns
(21)

s.t.
Ns

∑
i=1

γ2
i = Ps, γ2

i ≥ 0, ∀i. (22)

This is a standard convex optimisation problem and the so-
lution can be found using the Karush-Kuhn-Tucker (KKT)

method [12] and is given by γi =
√

Ps/Ns, ∀i. We can
thus state that, for any relay precoder G that satisfies (18),
the source precoder that minimises (16) and satisfies (17) is
given by

F=
√

Ps/NsVhΨ (23)

where Ψ is a unitary matrix yet to be determined.

3.3.2 Relay Precoder Structure

Having established the structure of the source precoder F we
now focus on computing the relay processor G. We firstly
note that using the definitions for H and Rvv in (5) and (6)
and the source precoder in (23) we can expand the determi-
nant in (16) as

|FHHHR−1
vv HF|−1/Ns = (Ns/Ps)|D+XYZ|−1/Ns (24)

where for convenience we define matrices D,HH
d R

−1
vdvd

Hd ,

X , HH
s G

HHH
r , Y ,

(

HrGGHHH
r σ2

vs
+σ2

vr
INr

)−1
, and

Z , HrGHs. We note here that when the direct link is
negligible (24) particularises to the objective function for the
ZF design in [6]. As such our design is a generalisation of
the ZF DFE transceiver in [6] to include the direct source-
destination link.

The relay precoder G must be designed such that

|D+XYZ|−1/Ns is minimised and the power constraint in
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(Ns/Ps)|D|−1/Ns |INs +D−1/2HH
s G

HHH
r

(

HrGGHHH
r σ2

vs
+σ2

vr
INd

)−1
HrGHsD

−1/2|−1/Ns

≥ (Ns/Ps)
Ns

∏
i=1

λ
−1/Ns

di

Ns

∏
i=1

(

1+λ 2
ti

φ 2
i λ 2

ri

(

φ 2
i λ 2

ri
σ2

vs
+σ2

vr

)−1
)−1/Ns

(28)

(18) is satisfied. From the Hadamard determinant inequality
we can state that the determinant is minimised if the matrix
D+XYZ is diagonalised by the precoder G. It is clear
that this diagonalisation cannot be directly conducted since
D is not a function of G. However we note that by using

D+XYZ = D1/2(INs +D−1/2XYZD−1/2)D1/2 we can
write the optimisation for the relay precoder in (16)-(18) as

min
G

(Ns/Ps)|D|−1/Ns |INs +D−1/2XYZD−1/2|−1/Ns

(25)

s.t. tr
{

G(HsFF
HHH

s +σ2
vs
INr)G

H
}

= Pr (26)

where we note that the source power constraint has been
omitted from the optimisation problem because it is guar-
anteed to hold with the precoder F given in (23).

Before calculating the relay precoder G as the solution
to (25) and (26) we firstly introduce the following singular
value decompositions

D=UdΛdV
H
d , HsD

−1/2 =UtΛtV
H
t , Hr =UrΛrV

H
r

(27)
where Ud ∈ C

Ns×Ns , Vd ∈ C
Ns×Ns , Ut ∈ C

Nr×Ns , Vt ∈
C

Ns×Ns , Ur ∈ C
Nd×Nr , and Vr ∈ C

Nr×Nr are all unitary ma-
trices. The matrices Λd = diag

{

λd1
,λd2

, . . . ,λdNs

}

, Λt =

diag
{

λt1 ,λt2 , . . . ,λtNs

}

and Λr = diag
{

λr1
,λr2

, . . . ,λrNr

}

are diagonal matrices containing the singular values of D,

HsD
−1/2, and Hr respectively.

Applying the Hadamard determinant inequality to (25),
and using the definitions for X, Y, and Z, as well as the sin-
gular value decompositions in (27), we can state the inequal-
ity shown in (28) at the top of the page. The lower bound in
(28) is achieved when the relay precoder is of the form

G= V̄rΦUH
t (29)

where V̄r ∈ C
Nr×Ns contains the leftmost Ns columns of Vr,

Φ = diag{φ1,φ2, . . . ,φNs}, and Ut was defined in (27). The
elements of the diagonal matrix Φ can be found by minimis-
ing the objective function in (28) subject to the power con-
straint (26). The problem can be stated as

min
φi

Ns

∏
i=1

(

1+λ 2
ti

φ 2
i λ 2

ri

(

φ 2
i λ 2

ri
σ2

vs
+σ2

vr

)−1
)−1/Ns

(30)

s.t.
Ns

∑
i=1

φ 2
i pii = Pr, φ 2

i ≥ 0, ∀i. (31)

where pii is the element in the ith row and ith column of

the matrix P , UH
t Us

(

(Ps/Ns)Λ
2
s +σ2

vs
INs

)

UH
s Ut . Here

Us ∈ C
Nr×Ns and Λs = diag

{

λs1
,λs2

, . . . ,λsNs

}

result from

the singular value decomposition Hs = UsΛsV
H
s . We also

note that the term (Ns/Ps)
Ns

∏
i=1

λ
−1/Ns

di
has been omitted from

(30) since it is a constant and has no effect on optimisation
of the variables φi. The solution to the optimisation problem
can be found using the KKT conditions of optimality to be

φ 2
i =





−bi +
√

b2
i −4aici

2ai





+

(32)

where we define the variables

ai , λ 4
ri

σ2
vs
(λ 2

ti
+σ2

vs
), bi , λ 2

ri
σ2

vr
(λ 2

ti
+2σ2

vs
),

ci ,

(

σ4
vr
−

µλ 2
ti

λ 2
ri

σ2
vr

pii

)

. (33)

Here the parameter µ must be calculated to satisfy (31).
The remaining task is to calculate the feedback matrix

B and the unitary source matrix Ψ such that (15) holds
with equality and the arithmetic MSE achieves the minimised
lower bound in (28). With the decomposition in (19) and the
source precoder in (23) we calculate B and Ψ similar to [10]
by performing the following geometric mean decomposition

√

Ps/NsΛ
1/2

h =QŪΨH (34)

where Q ∈C
Ns×Ns is an orthogonal matrix and Ū, β−1/2U

is an upper right triangular matrix with diagonal elements

β−1/2. Here we define β to be the lower MSE bound in (28).

The feedback matrix B is now given by B= β 1/2Ū− INs .

4. SIMULATION RESULTS

We assess the BER performance of the proposed system
through simulations and compare it to existing linear tech-
niques. We compare our design to the Naive AF (NAF),
Pseudo-Matched Filter (PMF), optimal MMSE relay pre-
coded design in [4], and the joint MMSE design in [8].

All benchmark systems use the optimal MMSE receiver,
that takes the direct source-destination link into consid-
eration, given by W = FHHH(HFFHHH + Rvv)

−1.
Both the NAF and PMF algorithms employ

F =
√

Ps/NsINs at the source. The relay pre-
coders for the PMF and NAF designs are given by

G =
√

Pr/tr
{

HH
r H

H
s (HsFFHHH

s +σ2
vs
INr)HsHr

}

HH
r H

H
s

and G =
√

Pr/tr
{

HsFFHHH
s σ2

s +σ2
vs
INr

}

INr respectively.

The precoders for the optimal MMSE relay precoded system
and joint MMSE design are given in [4] and [8] respectively.

We assume the channel matrices contain complex Gaus-
sian entries with zero mean and unit variance and the sym-
bols from the source antennas are drawn from QPSK con-
stellations. We define the signal-noise ratio (SNR) for the
source-relay, relay-destination, and source-destination stages

as SNRs , Ps/σ2
vs

, SNRr , Pr/σ2
vr

, and SNRd , Ps/σ2
vd

.
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Figure 2: BER versus SNR for Ns = Nr = Nd = 4.

In the first simulation we consider transmission of data
streams over a network with Ns = Nr = Nd = 4 antennas at
the source, relay, and destination. We set SNR = SNRs =
SNRr = SNRd and compare the BER performance of the pro-
posed and benchmark designs for varying SNR shown in Fig-
ure 2. In the second scenario we consider Ns = Nr = Nd = 3
and set SNRs = 15 dB and SNRd = 5 dB. Figure 3 shows
the BER performance of all designs for varying SNRr. All
simulation results obtained were averaged over 1000 chan-
nel realisations. It is clear that the proposed ZF DFE design
offers a significant increase in performance in terms of BER
compared to the linear benchmark systems.

5. CONCLUSIONS

In this paper we considered a non-linear transceiver design
for AF MIMO relay networks where a direct link exists be-
tween the source and destination. Linear processors were
utilised in each layer of the network and a decision feedback
device at the receiver. The processors were designed to min-
imise the arithmetic MSE under the ZF condition and power
constraints at the source and relay. Our design generalises an
existing ZF DFE for the case of a direct source-destination
link. Simulations demonstrate that the proposed design out-
performs existing linear techniques in terms of BER.
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