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ABSTRACT
In this paper we consider the design of zero forcing (ZF) and mini-
mum mean square error (MMSE) transceivers for non-regenerative
multiple input multiple output (MIMO) relay networks. Our de-
signs utilise linear processors at each stage of the network along
with a decision feedback detection device at the receiver. Under the
assumption of full channel state information (CSI) across the en-
tire link the processors are jointly optimised to minimise the system
arithmetic mean square error (MSE) whilst meeting average power
constraints at both the source and the relay terminals. We compare
the presented methods to linear designs available in the literature
and show the advantages of the proposed transceivers through sim-
ulation results.

1. INTRODUCTION

MIMO relay networks have gained significant attention from re-
searchers lately due to the fact that they can extend communication
range and network coverage [1] as well as provide other benefits
such as increased data throughput and link reliability [2]. Due to
the various advantages offered by multi-antenna relay systems they
are considered an integral component in the design of future gener-
ation wireless networks [2].

Relay networks are generally classed as either regenerative or
non-regenerative depending on the functionality of the relay termi-
nal [3]. These two classes are also commonly referred to as de-
code forward and amplify forward respectively. In the regenera-
tive case the relay terminal decodes the received signal streams and
then retransmits the regenerated symbols to the destination [3]. For
non-regenerative relaying, which is the least complex of the two ap-
proaches, the relay antennas simply amplify their received signal
before forwarding to the next relay.

Most works in the area of MIMO relaying have focussed on
the design of linear transceivers to enhance system performance in
some manner. The design of such transceivers is highly dependant
on the availability of CSI at each stage of the network. In [1] the
authors derive the optimal relay precoder that maximises the mutual
information between the source and destination, under the assump-
tion that the source distributes the available power budget uniformly
across the antennas. This requires the relay to have access to full
CSI of both transmission channels. In [3] the authors also focus on
the relay precoder design to maximise mutual information but intro-
duce linear equalisation at the destination. The introduction of the
linear equaliser improves the system information rate compared to
[1] but requires that the receiver also has full CSI of both channels.

As well as the maximisation of channel capacity other design
criteria such as MMSE have been well studied. In [4] a co-operative
relay strategy was designed to minimise the MSE subject to an av-
erage power constraint at the relay. This work showed that co-
operation between the relay nodes could enhance bit error ratio
(BER) performance compared to schemes that do not allow signal
mixing at the relay terminal [5]. However, co-operation among re-
lays is only possible when the nodes are clustered together with
short range local links [4]. When the relay antennas cannot ex-
change information with each other reliably then non-cooperative

relay protocols provide a more practical solution. In [6] a joint
MMSE optimisation strategy is suggested where the Wiener filter
is utilised at the receiver and the relay precoder is designed to min-
imise the system arithmetic MSE subject to an average power con-
straint.

A unified framework for the design of linear transceivers in con-
ventional two-hop non-regenerative MIMO relay networks, where
it is assumed that there is no direct link between the source and des-
tination, has been presented in [7]. This work presents solutions
to the joint optimisation of the source, relay, and destination pro-
cessors for a broad range of objective functions and is an extension
of the results derived in [8] which were obtained for the case of
point to point MIMO. Assuming Wiener filtering at the destination
the authors derive the optimal source and relay precoders for Schur
convex and Schur concave objective functions which cover most
reasonable design criteria. This work was later generalised to the
case of multi-hop MIMO relay networks in [9] where it was shown
that, as in the case of a two-hop network, the optimal source and
relay precoder structures diagonalise the MIMO relay system into a
set of parallel single input single output (SISO) sub-channels.

In this paper we consider the joint design of linear processors
for a non-regenerative two-hop relay system with decision feedback
detection at the destination. As in many works e.g. [1], [4], [5], and
[7] we assume that, due to high attenuation, the destination does not
receive any information directly from the source. It is also assumed
that the source, relay, and receiver have access to full CSI of both
transmission channels. We aim to jointly design the processors in
the network to minimise the system arithmetic MSE whilst abiding
by power constraints at the source and relay stages. The joint design
of linear processors for point to point MIMO with decision feedback
detection was studied extensively in [10]. Our work can be viewed
as an extension of that in [10] such that the transceiver designs are
applicable to two-hop non-regenerative MIMO relaying.

The remainder of this paper is organised as follows: In Section
2 we introduce the signal model for the communications system un-
der consideration. We then formulate a constrained optimisation
problem for the transceiver designs in Section 3. The problem is
formulated by first deriving an expression for the MSE and then ob-
taining and minimising a lower bound on the MSE subject to aver-
age power constraints. From this constrained optimisation problem
both the ZF and MMSE processors are derived. In Section 4 the per-
formance of the proposed designs are evaluated through simulations
and compared to benchmark linear designs. Finally conclusions are
drawn in Section 5.

Notation: In our notation vectors and matrices are denoted by
lower and upper case bold font respectively. The sets of real and
complex numbers are R and C, which in the case of vector/ matrix
quantities indicate dimensions by means of a superscript. The op-
erators E {·}, tr{·}, (·)H, and |·| denote the expectation, trace, her-
mitian transpose, and determinant respectively. The operator [.]+
signifies taking the maximum value of the term inside the bracket
and zero.
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Figure 1: MIMO relay system model with decision feedback detection.

2. SIGNAL MODEL

In this section we develop the signal model for a conventional
MIMO relay system with M antennas at both the source and destina-
tion, and N ≥ M antennas in the relaying layer. For the purposes of
interference cancellation we admit linear processors in each stage of
the network and, furthermore, employ decision feedback detection
at the destination. This configuration can be seen in Figure 1.

For the half duplex relaying system shown in Figure 1 the trans-
mission of data between the source and destination is carried out
in two separate time slots. In the first time slot the symbols from
the source s ∈ CM , which we assume are uncorrelated with covari-
ance Rss = E

{
ssH}= I, are linearly precoded by the source matrix

F ∈CM×M and then transmitted over the first channel H1 ∈CN×M

to the N relaying antennas. The data vector r ∈ CN received by the
relay layer can thus be written as

r=H1Fs+v1, (1)

where v1 ∈CN is an Additive White Gaussian Noise (AWGN) vec-
tor with covariance Rv1v1 = E

{
v1v

H
1
}
= σ2

v1
I. In the second time

slot the relays precode the received data by the matrix G ∈ CN×N

and transmit across the second stage channel H2 ∈ CM×N giving
the received signals at the destination

y =H2Gr+v2, (2)

where again the vector v2 ∈ CM contains AWGN samples and has
covariance Rv2v2 = E

{
v2v

H
2
}
= σ2

v2
I. The received data is pro-

cessed by the linear equaliser W ∈ CM×M , resulting in z = Wy.
Using (1) and (2) we can write the output of the equaliser as

z=WHFs+Wv, (3)

where for convenience we define H=H2GH1 to be the compound
MIMO channel between the source and destination antennas and
v =H2Gv1 +v2 to be the total noise at the input to the equaliser
with covariance Rvv = E

{
vvH} = H2GRv1v1G

HHH
2 +Rv2v2 .

After processing by W, successive interference cancellation (SIC)
is performed. The feedback matrix B ∈ CM×M is strictly upper
right triangular with co-efficients

B=


0 b12 · · · b1M
...

. . .
. . .

...
...

. . . b(M−1)M
0 · · · · · · 0

 . (4)

The SIC performed at the receiver is then as follows [11]:

ŝm =C

[
zm −

M

∑
n=m+1

bmnŝn

]
, m = M,M−1, . . . ,1, (5)

where the operator C[·] denotes quantisation to the nearest symbol
in the transmitted symbol constellation. This operation is equivalent
to successively making decisions [10] on

s̃=WHFs+Wv−Bŝ. (6)

The error between the input to the decision device and the transmit-
ted data vector provides a useful measure of quality for the decision
feedback transceiver and is constructed as e = s̃− s. Using (6) the
error can be written as

e= (WHF−B− I)s+Wv, (7)

where for mathematical tractability we have assumed correct deci-
sions on the past data symbols in s̃ i.e ŝ= s.

3. TRANSCEIVER DESIGN

The transceivers in this paper aim to minimise the system arith-
metic MSE under average power constraints at the source and re-
lay. From this optimisation problem the ZF and MMSE designs are
obtained depending on whether or not the equaliser W performs
a regularised inversion. In the following sub-sections we begin by
formulating the constrained optimisation problem before presenting
the individual ZF and MMSE solutions.

3.1 MSE Problem Formulation
Using (7) the covariance of the error Ree = E

{
eeH} can be ex-

panded as

Ree = (WHF−B− I)(WHF−B− I)H +WRvvW
H. (8)

The arithmetic MSE is simply given by the average of the diagonal
elements in (8) and can be stated as

σ̄2 = tr
{
(WHF−U)(WHF−U)H +WRvvW

H
}
/M, (9)

where for convenience we have used the substitution U = B+ I.
Although the processors could be designed to minimise (9) we can
obtain a lower bound on the MSE that will lead to transceivers with
better performance.

3.1.1 MSE Lower Bound

The geometric MSE provides a lower bound to (9) which is a sim-
ple consequence of the arithmetic geometric mean inequality [12]
which, for an M×M positive semi-definite matrix X, states that

|X|1/M ≤ tr{X}/M, (10)

which holds with equality when X= βI with β ≥ 0. Using (8) and
(10) we can obtain the following bounds on the MSE

|(WHF−U)(WHF−U)H +WRvvW
H|1/M

≤ tr
{
(WHF−U)(WHF−U)H +WRvvW

H
}
/M. (11)
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In the following designs we shall use the lower bound in (11) as our
objective function. However, the main goal of the transceivers is
to minimise the arithmetic MSE which is given by the upper bound
in (11). The transceivers may only achieve the lower bound on the
arithmetic MSE if (11) holds with equality [10]. Thus, F, G, W,
and U must be designed such that the error covariance matrix has
the structure Ree = βI.

3.1.2 Constrained Optimisation Problem

Using the lower bound in (11) as our objective function and with the
source and relay terminals having limited average transmit power
we can formulate the constrained optimisation problem as

min
F,G,W,U

|(WHF−U)(WHF−U)H +WRvvW
H|1/M (12)

subject to tr
{
FFH

}
= Ps, and (13)

tr
{
G(H1FF

HHH
1 +Rv1v1)G

H
}
= Pr, (14)

where (13) and (14) are the source and relay power constraints re-
spectively and (12) is the geometric MSE objective function.

3.1.3 Channel and Precoder Decomposition

As will be seen in the following sections the optimisation problem
stated in (12), (13) and (14) can be vastly simplified if we consider
the channel matrices H1 and H2, in terms of their singular value
decompositions

H1 =U1ΛVH
1 H2 =U2∆VH

2 . (15)

Although our designs can accomodate other cases, for simplicity we
assume that H1 and H2 are full rank with rank M. We denote the
first M columns of matrices U1 and V2 as Ū1 and V̄2 respectively.
As well as this the upper left M ×M sub-matrices of Λ and ∆ are
denoted by Λ̄ and ∆̄ and contain the non-zero singular values, λii
and δii, of channels H1 and H2.

It is also convenient to represent the source and relay precoders
by the following decompositions

F=ΘΓΨ G=ΞΦΥ. (16)

In the remainder of this paper we assume that the precoder F dis-
tributes power uniformly across the source antennas and thus has
rank M with Γ= γI where γ =

√
Ps/M is such that the power con-

straint in (13) holds with equality. Although an N ×N matrix we
will see in the following sub-sections that G can be at most rank
M. For later convenience we define Ξ̄ and Ῡ to contain the first M
columns of Ξ and Υ and the diagonal matrix Φ̄ to be the upper left
M×M submatrix of Φ containing the non zero singular values ϕii.

3.2 ZF Transceiver Design
The goal is now to design the processors F, G, W and U to min-
imise the geometric MSE in (12) under the power constraints (13)
and (14) whilst also meeting the ZF criterion.

3.2.1 ZF Constrained Optimisation Problem

As previously mentioned, the functionality of our designs is de-
pendant on the equaliser W. In the case of the ZF transceiver the
equaliser is required to eliminate all interference between transmit-
ted data symbols and perfectly reconstruct the signals in the absence
of noise. This requirement can be stated mathematically as

WHF=U. (17)

For a given F, G and U the optimal ZF equaliser can be calculated
directly from (17) as

W =U(FHHHHF)−1FHHH, (18)

where we have used the minimum norm pseudo inverse of the prod-
uct HF. Substituting (17) and (18) in (8) the error covariance ma-
trix for the ZF transceiver can be written as

Ree,ZF =U(FHHHR−1
vv HF)−1UH. (19)

From (11) we obtain the lower and upper bounds on the MSE as

|FHHHR−1
vv HF|−1/M ≤ tr

{
U
(
FHHHR−1

vv HF
)−1

UH
}
/M,

(20)
where we have used the fact that |U|= 1 since U is a unit diagonal
upper right triangular matrix. Using the lower bound in (20) as our
objective function we can then state the constrained optimisation
problem for the ZF transceiver to be

max
F,G

|FHHHR−1
vv HF| (21)

subject to tr
{
G(H1FF

HHH
1 +Rv1v1)G

H
}
= Pr, (22)

where we have used the fact that minimising |FHHHR−1
vv HF|−1/M

is equivalent to maximising |FHHHR−1
vv HF|. We also note that the

source power constraint in (13) has been eliminated as it is guaran-
teed to be met with F chosen as in sub-section 3.1.3.

3.2.2 ZF Processors

We now go on to present the ZF processors F, G and U that max-
imise (21) under the constraint (22). Using the channel and pre-
coder decompositions in sub-section 3.1.3, we can state from the
Hadamard determinant inequality [12] that

|FHHHR−1
vv HF| ≤

M

∏
i=1

γ2λ 2
ii |ϕii|2δ 2

ii
|ϕii|2δ 2

ii σ2
v1
+σ2

v2

, (23)

where the bound holds with equality when Θ = V1, Ξ̄ = V̄2 and
Ῡ= ŪH

1 . We have thus established the following sets of source and
relay precoders

F= γV1Ψ G= V̄2Φ̄ŪH
1 , (24)

where the unitary matrix Ψ provides a degree of freedom that shall
be exploited later in the design. Substituting such precoders in (21)
and (22) the optimal Φ̄ can be calculated by solving the following
optimisation problem

max
ϕii

M

∏
i=1

γ2λ 2
ii |ϕii|2δ 2

ii
|ϕii|2δ 2

ii σ2
v1
+σ2

v2

(25)

subject to
M

∑
i=1

|ϕii|2(γ2λ 2
ii +σ2

v1
) = Pr, |ϕii|2 ≥ 0. (26)

Since the objective function and inequality constraint are convex
and the equality constraint is affine with respect to the design vari-
able |ϕii|2 the solution to this problem can be obtained from the
Karush Kuhn Tucker (KKT) conditions of optimality [13] and is
given by

|ϕii|2 =

[√
µσ2

v2

δ 2
ii σ2

v1
(γ2λ 2

ii +σ2
v1
)
+

σ4
v2

4δ 4
ii σ4

v1

−
σ2

v2

2δ 2
ii σ2

v1

]+
, (27)

where µ is a constant required to fulfill the constraint in (26) and is
akin to the waterlevel in waterfilling procedures [14]. Having cal-
culated the optimal Φ̄ we now focus on computing a unitary matrix
Ψ such that the bound in (20) holds with equality. We firstly note
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that substituting (24) in (20) the lower bound on the MSE can be
calculated to be

σ̄2
ZF =

M

∏
i=1

(
γ2λ 2

ii |ϕii|2δ 2
ii

|ϕii|2δ 2
ii σ2

v1
+σ2

v2

)−1/M

. (28)

From the arithmetic geometric mean inequality we can state that
(20) holds with equality if, and only if, the error covariance ma-
trix in (19) is diagonal with equal diagonal elements. Thus, the ZF
transceiver achieves the lower bound in (28) only if

U(FHHHR−1
vv HF)−1UH = σ̄2

ZFI. (29)

Using the channel decompositions in (15) and the precoders in (24)
we can re-write (29) as

UΨH
(

γ2Λ̄2Φ̄2∆̄2(Φ̄2∆̄2σ2
v1
+σ2

v2
I)−1

)−1
ΨUH = σ̄2

ZFI.

(30)
Taking the Cholesky factor and re-arranging we arrive at(

γ2Λ̄2Φ̄2∆̄2(Φ̄2∆̄2σ2
v1
+σ2

v2
I)−1

)1/2
=QŪΨH, (31)

where Q ∈ CM×M is a unitary matrix and Ū = (1/σ̄ZF )U is an
upper right triangular matrix with equal diagonal elements given
by 1/σ̄ZF . The matrix decomposition in (31) is the geometric mean
decomposition [11] of (γ2Λ̄2Φ̄2∆̄2(Φ̄2∆̄2σ2

v1
+σ2

v2
I)−1)1/2. This

matrix decomposition is also commonly referred to as the equal di-
agonal QR decomposition [15].

The ZF transceiver that achieves the lower MSE bound in (28)
is thus constructed as follows. The channels H1 and H2 are de-
composed using the singular value decompositions in (15). The
power allocation matrix Γ for the source is constructed as Γ= γI=√

(Ps/M)I and the relay power allocation matrix Φ̄ is calculated
with diagonal elements satisfying (27). The geometric mean de-
composition in (31) is then computed from which the feedback ma-
trix B = σ̄ZFŪ− I can be calculated. Finally the source and relay
precoders are given by (24) and the DFE feedforward matrix from
(18).

3.3 MMSE Transceiver Design
Although the ZF solution completely eliminates interference be-
tween transmitted data symbols it can also amplify noise in the re-
ceiver which can result in poor performance. For this reason we now
consider an MMSE solution where the equaliser takes into account
the noise components in the system.

3.3.1 MMSE Constrained Optimisation Problem

The optimal equaliser W that minimises the MSE at the input to
the decision device is provided by the well known Wiener solution
and is given by

W =UFHHH(HFFHHH +Rvv)
−1. (32)

Substituting (32) in (8) we can write Ree for the MMSE transceiver
as

Ree,MMSE =U(I+FHHHR−1
vv HF)−1UH, (33)

and from the arithmetic geometric mean inequality in (10) we can
obtain the following lower and upper MSE bounds

|I+FHHHR−1
vv HF|−1/M

≤ tr
{
U
(
I+FHHHR−1

vv HF
)−1

UH
}
/M. (34)

As with the ZF design we use the lower MSE bound as our objective
function and under the constraint of limited average power at the
relay we can state the optimisation problem as

max
F,G

|I+FHHHR−1
vv HF| (35)

subject to tr
{
G(H1FF

HHH
1 +Rv1v1)G

H
}
= Pr. (36)

We note that maximising the objective function in (35) is equivalent
to maximising the mutual information.

3.3.2 MMSE Processors

Applying the Hadamard determinant inequality to the determinant
in (35) we can state that

|I+FHHHR−1
vv HF| ≤

M

∏
i=1

(
1+

γ2λ 2
ii |ϕii|2δ 2

ii
|ϕii|2δ 2

ii σ2
v1
+σ2

v2

)
, (37)

where the bound holds with equality when the source and relay pre-
coders have the same structure as given in (24). Substituting (24) in
(35) and (36) we arrive at the following scalar optimisation problem

max
ϕii

M

∏
i=1

(
1+

γ2λ 2
ii |ϕii|2δ 2

ii
|ϕii|2δ 2

ii σ2
v1
+σ2

v2

)
(38)

subject to
M

∑
i=1

|ϕii|2(γ2λ 2
ii +σ2

v1
) = Pr, |ϕii|2 ≥ 0. (39)

The solution to this optimisation problem provides the optimal di-
agonal elements of Φ̄ for the MMSE relay and can be calculated
from the KKT conditions to be

|ϕii|2 =

−bi +
√

b2
i −4aici

2ai

+ , (40)

with the variables

ai = δ 4
ii σ

2
v1
(γ2λ 2

ii +σ2
v1
) bi = δ 2

ii σ
2
v2
(γ2λ 2

ii +2σ2
v1
)

ci =

(
σ4

v2
−

µγ2λ 2
ii δ

2
ii σ

2
v2

γ2λ 2
ii +σ2

v1

)
, (41)

where again µ must be calculated to satisfy the equality in (39). We
now need to calculate the matrix Ψ such that Ree,MMSE is a diag-
onal matrix with equal diagonal elements and thus (34) holds with
equality. With the precoders in (24) and the channel decompositions
in (15) we can calculate the lower MSE bound in (34) to be

σ̄2
MMSE =

M

∏
i=1

(
1+

γ2λ 2
ii |ϕii|2δ 2

ii
|ϕii|2δ 2

ii σ2
v1
+σ2

v2

)−1/M

. (42)

Arguing as done for the ZF design we can state that the MMSE
transceiver only achieves the lower bound in (42) if

U(I+FHHHR−1
vv HF)−1UH = σ̄2

MMSEI. (43)

Substituting (15) and (24) in (43) we can write

UΨH
(
I+ γ2Λ̄2Φ̄2∆̄2(Φ̄2∆̄2σ2

v1
+σ2

v2
I)−1

)−1
ΨUH

= σ̄2
MMSEI. (44)

Similar to the ZF transceiver design the optimal matrix Ψ can be
extracted from the following geometric mean decomposition(

I+ γ2Λ̄2Φ̄2∆̄2(Φ̄2∆̄2σ2
v1
+σ2

v2
I)−1

)1/2
=QŪΨH, (45)
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Figure 2: BER results for proposed and benchmark systems

where Ū = (1/σ̄MMSE)U is an upper right triangular matrix with
equal diagonal elements given by 1/σ̄MMSE .

This concludes the derivation of our MMSE transceiver design.
The MMSE transceiver that achieves the lower bound in (42) is
constructed as follows: Given the transmission channel decompo-
sitions in (15) the source precoder is constructed as in (24) where
γ =

√
Ps/M and the unitary matrix Ψ is calculated from the ge-

ometric mean decomposition in (45). The diagonal matrix Φ̄ for
the relay precoder is calculated with diagonal elements satisfying
(40). The feedback matrix is calculated from B = σ̄MMSEŪ− I
where again Ū results from the decomposition in (45). Finally the
feedforward filter is given by (32).

4. SIMULATIONS AND RESULTS

In this section we evaluate the performance of the proposed ZF DFE
and MMSE DFE transceivers in terms of BER and compare them
to the linear MMSE, max IR, and minimax MSE designs presented
in [6], [3], and [7] respectively.

4.1 Simulation Parameters

In all simulations we assume N = M = 4 antennas in each layer
of the relay network with the resulting MIMO channels having
complex Gaussian entries with zero mean and unit variance. The
symbols from the souce antennas are selected from QPSK constel-
lations with unit variance. The Signal to Noise Ratio (SNR) for
the two transmission stages are defined as SNR1 = Ps/Nσ2

v1
and

SNR2 = Pr/Mσ2
v2

, with the source and relay power budgets being
set as Ps = Pr = 4. The linear transceiver design in [3] was de-
rived under the assumption that σ2

v1
= σ2

v2
and so, for a fair com-

parison, when assessing BER against SNR in simulations we set
SNR = SNR1 = SNR2.

4.2 Results

Figure 2 shows the uncoded BER results for the proposed designs
as well as the three linear benchmark systems. The solid curves
shown in Figure 2 are the results obtained for the proposed designs
in the absence of error propagation in the feedback loop. These
results are purely theoretical but provide an insight into the effect
that incorrect decisions causes on the BER performance of the pro-
posed transceivers. Clearly both the ZF and MMSE DFE designs
far outperform the linear benchmarks, particularly at high SNR val-
ues, with the MMSE solution providing the best performance over
all values of SNR.

5. CONCLUSIONS

In this paper we have presented two transceiver designs for non re-
generative MIMO relay systems that utilise linear processors in the
different stages of the network as well as decision feedback detec-
tion at the receiver. Under the assumption of full CSI at each stage
of the network, the processors for both designs were jointly opti-
mised to minimise the system arithmetic MSE under average power
constraints at the source and relay terminals. From this constrained
optimsation problem the ZF and MMSE solutions were derived de-
pending on the functionality of the equaliser. Simulation results
have shown that both the ZF and MMSE DFE’s provide far supe-
rior performance in terms of BER over linear designs available in
the literature.
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