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A Method for Vibration-Based Structural Interrogation and 
Health Monitoring Based on Signal Cross-Correlation.  

I Trendafilova 
Department of Mechanical Engineering, The University of Strathclyde, 75 Montrose 
street, Glasgow, G1 1XJ 
 
Irina.Trendafilova@strath.ac.uk 
 
Abstract. Vibration-based structural interrogation and health monitoring is a field which is 
concerned with the estimation of the current state of a structure or a component from its 
vibration response with regards to its ability to perform its intended function appropriately. 
One way to approach this problem is through damage features extracted from the measured 
structural vibration response. This paper suggests to use a new concept for the purposes of 
vibration-based health monitoring. The correlation between two signals, an input and an 
output, measured on the structure is used to develop a damage indicator.  The paper 
investigates the applicability of the signal cross-correlation and a nonlinear alternative, the 
average mutual information between the two signals, for the purposes of structural health 
monitoring and damage assessment. The suggested methodology is applied and demonstrated 
for delamination detection in a composite beam. 

1. Introduction  
Maintenance and operation costs are usually among the largest expenditures for most structures - civil, 
aerospace, and military. An ageing structure may reduce profits with increased maintenance costs and 
down time and it can become a hazard for its users. The ability to access the integrity of a structure 
and discover a fault at a rather early stage, before it has developed so that it can cause damage to the 
structure, can significantly reduce these costs. A large class of the structural health monitoring  (SHM) 
methods are vibration-based methods where the state of the structure is assessed using its vibration 
response. Among the most common features are the ones extracted from the modal properties, like 
resonant frequencies, damping and mode shapes [1,2,3]. All of them have their advantages and 
disadvantages, the main problems being lack of sensitivity to damage, noise sensitivity and difficulties 
to estimate from measured data. Such methods assume structural linearity. A large group of 
monitoring methods, the model-based methods assume and use a model for the structure under 
interrogation [1]. A lot of the model-based methods use a linear structural model. Contrary to the 
model-based methods, methods that are based on the measured vibration data only do not assume any 
structural model or linearity [1,2]. These methods have seen quite a development during recent years. 
Some of them utilise signal analysis and statistical methods.  Monitoring methods based on the time-
domain vibration signatures represent a relatively new paradigm in SHM [3,4]. These methods are 
mostly based on non-linear signal analysis and non-linear dynamics tools. They represent a very 
attractive alternative since they only require the measured structural vibration time-domain signals in 
the current and possibly in the baseline (undamaged) state especially when the suggested features are 
easy to estimate from data. Possible problems might be lack of damage sensitivity and noise 
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(imperfection) robustness.  Several studies suggest to use the idea of signal comparison, correlation 
and dissimilarity measures for the purposes of structural health monitoring [5-8]. All of them share the 
general concept of comparison of signals coming from different structural states – the healthy and 
possibly damaged one. The idea is that if two signals (measured in a certain point on the structure) 
come from the same structural state they will be highly correlated, while this correlation will decrease 
if damage is introduced in the structure. The authors suggest several criteria for damage detection and 
localization [6-8]. 

We are taking a different view thus suggesting a novel concept for damage assessment which is to 
compare an input signal and an output signal for the case of random excitation. The main idea behind 
the method suggested is that for a linear system the output signal will be highly correlated to the input.  
For a nonlinear structure the correlation between the input and the output will go down. The 
introduction of a fault introduces a nonlinearity in the system and this will accordingly decrease the 
correlation between the two signals. Thus the correlation of a structure will go down, as compared to 
the one of the original (intact) structure, when a fault is introduced and when the fault grows. 

We consider random excitation as the natural excitation created by passing traffic (on e.g. bridges), 
wind and any other vibrations (including seismic) to which most civil and mechanical engineering 
structures are subjected.  

The method suggested can use any signal as an input- it could be the displacement, the velocity or 
the acceleration. The input and the output signals are measured in different points so that the output 
signal is captured after propagating through the structural member under interrogation. In this case we 
consider a beam subjected to vertical vibration and a displacement signal measured at the bottom of 
the beam is considered an input while the output is an acceleration signal measured on the top (see 
Figure 1). The proposed method is based only on the measured input and output signals and does not 
assume any model or structural linearity.  

In this study the method is applied and demonstrated for delamination detection in a composite 
beam.  Composite materials are inherently nonlinear and composite beams are known to demonstrate 
well expressed nonlinear vibratory behaviour [3].  

2. The method and the characteristics used.  
The damage assessment method proposed is based on two time domain vibration signals measured in 
two different points on the structure. The method is based on the fact that for an ideal linear system the 
input and the output signals will be highly correlated, while if there is damage (or nonlinearity) present 
in the structure then the system will no longer be neither linear nor ideal and the correlation will go 
down. As an alternative for the case of nonlinear structures, for which the cross correlation between 
the two signals will to be lower in their initial intact state, another metric based on the mutual 
information between the signals is suggested. 

2.1. Signal cross correlation and damage assessment. 
In signal processing cross-correlation is a measure of similarity of two signals as a function of a time-
lag applied to one of them. Let x(t) is an input signal and y(t) is the output signal measured on the 
structure. The cross correlation between x(t) and y(t) is defined as follows [9]: 
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The cross correlation is a signal as well. It will have a maximum when the two signals are aligned. 
It examines linear relationship between the signals x and y. If y is the same signal as x the cross-
correlation will have a maximum for 0. If y is a shifted and amplified/attenuated version of x then the 
cross correlation will have a maximum for the shift between the two signals. The normalized cross-
correlation function between two signals is defined as [9]:  

                                            
)0().0(

)(
)(

yyxx

xy
xy

RR

mR
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where Rxx and Ryy are the autocorrelations of x and y respectively and 1)( mxy  for all m

For a linear structure the output y(n) will be linearly related to the input x(n) in the sense that y(n) 
will be a shifted and attenuated version of x(n). The normalized cross correlation (3) between the input 
and the output of a linear system/structure (for long enough signals x and y)  will have a maximum of 
1. On the other hand the normalized cross correlation will be 0 or close to 0 for all time lags m if two 
signals are completely uncorrelated. When the maximum normalized cross correlation between an 
input and an output signal of a structure is less than 1, then this is due to noise and any nonlinearities 
present in the system. For a real structure with close to linear behaviour when there is not a lot of noise 
interference the maximum normalised cross correlation is expected to be close to 1.  

In this study we use the maximum normalized cross correlation (4) as a damage metric: 

                                                      )(max mxy
m

xy                                                                        (4) 

2.2. The average mutual information and damage assessment 
A lot of vibrating systems cannot be considered linear especially at high amplitude vibrations and/or at 
high frequencies, rather than using the linear cross-correlation we suggest a nonlinear alternative for 
signal correlation, the mutual information. The mutual information can be regarded as a nonlinear 
analogue to the cross correlation. The mutual information is a theoretic idea that connects two sets of 
measurements and it determines the amount of information that one of the sets “learns” from the other, 
or in other words, it determines their mutual dependence in terms of information [4,5].  

The mutual information between two signals x and y is defined as: 
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where Pxy is the joint probability density function of the signals x(i) and y(j) and Px and Py are the 
individual probability densities of x(i) and y(j) respectively. The average over all measurements, the 
average mutual information between x(i) and y(j) is 
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The average mutual information (AMI) between two signals is 0 if they are completely independent 
and their joint probability density is equal to the product of their individual probability densities. On 
the contrary if two signals are highly correlated then their AMI will tend to 1. If x and y are the input 
and the output signals to a structure respectively then if the structure is linear the AMI for such 
structure will be one or close to 1. For a nonlinear structure the signals x and y will be nonlinearly 
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related in the sense that the structure’s transfer (impulse response) function [9] will be nonlinear. The 
AMI is supposed to measure nonlinear relation between two signals. Thus for some nonlinear 
dependencies between x and y the AMI will tend to 1 as well. For an arbitrary nonlinear structure in its 
intact state the AMI will have a certain value which might or might not be close to 1. But it will keep 
on the same level (and we prove that later for our composite beam) as long as the no changes are 
introduced in the structure and thus the mutual dependence between two signals, an input and an 
output, is kept the same. But the AMI will change when damage is introduced in the structure since 
damage will introduce an additional nonlinearity which in turn will affect the relation between x and y 
and hence their mutual information.    

In this study the average mutual information Ixy is used for the purposes of signal comparison and 
as a damage metric. 

3. Our structure and the delamination scenarios.  

 
Output signals measurement points 

p1,p2,…, p9 
 
 

excitation
Input signal measurement 

point 

Figure 1. The beam, the excitation and measurement points 

 
 
 
 
 
 
 
 
 
In this paper we demonstrate the method for a composite laminate beam made of carbon fibre. The 
beam dimensions are as follows: length 1m, width 0.06 m and thickness 0.008m. It is made of 10 
layers. Delamination is introduced between two layers. It is introduced in three different positions 
along the beam thickness, vis. between the upper two layers (up) between the layers 9 and 10 (down) 
and in the middle between layers 5 and 6 (middle) and in three different positions along the length of 
the beam, vis. 100mm from the left end (left), in the middle (centre) and 100 mm from the right end 
(right). The delamination is over the whole width of the beam and has different lengths, namely 0.01m 
(small), 0.02m (medium) and 0.03m (large).  

The beam is clamped at both sides and it is excited at the bottom at 0.4 m from the left end with a 
random Gaussian broadband signal. The input signal is the displacement measured at the bottom in the 
middle of the beam. The output signals are the accelerations measured in nine equidistant points at the 
top of the beam (Figure 1). 

4. Robustness of the characteristics to noise and to changes in the measurement points and the 
excitation signal.  

In this paragraph we present the results from a test carried out to check the robustness of the average 
correlation    and the AMI to signal changes, measurement point changes as well as to noise. This is to 
confirm that our damage features do not change when the excitation signal or the measurement 
position are changed and are not affected by noise.  The tests are done for an intact beam and thus they 
are used to prove the robustness of the damage metrics for the case of no damage. 

The following test was carried out in order to check for the sensitivity of xy and Ixy to changes in 
the input signal as well as to changes in the measurement point. The applied force is generated by a 
signal generator. Ten different j=1,2,…,10 normally distributed signals with frequency range between 
0-1 kHz are used as an excitation force. The corresponding input signal is measured and the output 
signals are measured at i=1,2,…,9 nine different points along the beam length at the measurement 
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points p1,p2,.., p9 which are at 0.1m, 0.2m, 0.3m and 0.4m from each end and in the middle.  Each test 
is conducted 20 times. We then calculate xy and Ixy for the input and the response signals for all the 
nine positions. The results are presented in the Tables below. Tables 1a) and 1b) give the mean values 
and standard deviations of the maximum normalized correlation for the different measurement points 
and for the different signals respectively. In the first case each of the statistics is calculated for a single 
measurement point over the different signals and experimental realizations (Table 1a)) while in the 
second case each statistic is calculated for a single excitation signal over the 9 measurement points and 
20 realizations for each point (Table (1b)). It can be seen that the mean values of xy are very much 
the same: they change between 0.755 and 0.836 in the first case and the standard deviations do not 
exceed 1.8%, and between 0.795 and 0.812 with maximum standard deviation of 3.7% for the second 
case. Thus it can be appreciated that there is bigger variability in the cross correlation if the 
measurement points are varied, while changing the excitation signal causes a rather small variability. 
Similar conclusions can be made for the AMI- the mean values of the AMI keep very much on the 
same level: they change between 0.863 and 0.919 with standard deviations less than 1.7% for the 
different measurement points and between 0.893 and 0.906 with standard deviations of up to 3.1%.  

 
Table 1. Maximum normalized cross correlation mean values and standard deviations a) for the 
different measurement points (calculated over the 10 signals) and b) for the different signals 

(calculated over the 10 points) 
 

point Mean 
value 

Standard 
deviation 

signal Mean 
value 

Standard 
deviation 

1 0.774 0.015 1 0.804 0.025 
2 0.804 0.013 2 0.804 0.037 
3 0.827 0.014 3 0.800 0.032 
4 0.806 0.006 4 0.802 0.036 
5 0.784 0.013 5 0.800 0.026 
6 0.812 0.014 6 0.795 0.023 
7 0.836 0.018 7 0.812 0.032 
8 0.755 0.009 8 0.802 0.018 
9 0.828 0.013 9 0.800 0.030 
   10 0.801 0.027 

a)                                                       b) 
 

Table 2. Mean value and standard deviations of AMI a) for the different measurement points 
(calculated over the 10 signals) and b) for the different signals (calculated over the 9 measurement 

points) 
point Mean 

value 
Standard 
deviation 

signal Mean 
value 

Standard 
deviation 

1 0.899 0.009 1 0.900 0.020 
2 0.916 0.017 2 0.906 0.031 
3 0.863 0.010 3 0.894 0.029 
4 0.892 0.010 4 0.897 0.026 
5 0.865 0.011 5 0.900 0.028 
6 0.919 0.010 6 0.901 0.024 
7 0.928 0.008 7 0.898 0.024 
8 0.902 0.015 8 0.897 0.025 
9 0.901 0.010 9 0.893 0.020 
   10 0.897 0.024 

a)                                                       b) 
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These results are similar to the results obtained for the cross correlation namely changing the 

measurement points results in a bigger variability of the AMI than the change in the excitation signal.  
The next two Tables 3a) and 3b) give information about the noise sensitivity of the method. In this 

case the method is verified experimentally and thus the only way to judge about its noise sensitivity is 
to test it experimentally. Tables 3a) and 3b) give the mean values and the standard deviations of both 
quantities that are suggested a damage metrics over 20 test realizations that are carried out for each 
tests. Since each experiment is noise contaminated then if the standard deviations over a number of 
realizations are low then this is proof of the robustness of the method to noise contamination. 
Moreover if the mean values of the quantities investigated do not change a lot for different 
measurement points and for different excitation signals then this also implies robustness of the method 
with respect to noise. It can be seen from the tables below that the standard errors of the cross 
correlation are quite low- for most cases they are below 2% and the biggest value is 2.5%. The mean 
values keep between 0.789 and 0.806 so their variability is 0.55% only and thus it can be concluded 
that they practically do not change.   

 
Table 3a) Mean values and standard deviations of the maximum normalized cross correlation over 

the 20 experimental realizations for different signals (vertically) and different measurement points 
(horizontally) 

 
Measurement 

point 
1 2 3 4 

signal Mean 
value 

Standard 
deviation%

Mean 
value

Standard 
deviation

Mean 
value

Standard 
deviation 

Mean 
value 

Standard 
deviation

1 0.799 2.5 0.801 1.0 0.800 1.5 0.790 2.0 
2 0.804 1.2 0.795 1.9 0.810 1.6 0.800 2.1 
3 0.800 1.3 0.789 1.4 0.802 1.5 0.800 0.8 
4 0.802 0.9 0.802 1.1 0.803 1.9 0.806 1.2 
5 0.795 1.9 0.803 1.7 0.804 2.0 0.789 1.2 

 
 

 
 
 
 
 
 

 
 
The results for the AMI are very much similar again the mean values practically do not change or 

exhibit very small changes. Overall they vary between 0.889 and 0.906 and thus their variability 
(standard error) is very low vis. 0.55%. This proves the robustness of this characteristic to noise for 
this particular case. 

Table 3b) Mean values and standard deviations of the AMI over the 20 experimental realizations for 
different signals (vertically) and different measurement points (horizontally) 

Measurement 
point 

1 2 3 4 

signal Mean 
value 

Standard 
deviation

% 

Mean 
value 

Standard 
deviation

% 

Mean 
value 

Standard 
deviation

% 

Mean 
value 

Standard 
deviation 

% 
1 0.899 1.5 0.901 2.0 0.900 0.8 0.890 2.9 
2 0.904 2.2 0.895 2.7 0.910 2.6 0.900 2.1 
3 0.900 2.5 0.889 2.4 0.902 1.9 0.900 2.8 
4 0.902 1.9 0.902 2.1 0.903 1.8 0.906 2.5 
5 0.895 1.5 0.903 1.6 0.904 2.2 0.889 1.2 
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5. Some results and conclusions. 
Below some results obtained for the damage scenarios given in &3 are presented. The following 
experiment was performed in order to test the detection abilities of the two characteristics. We tested 
10 specimens identical with respect to size and material– one without delamination and nine others 
with each type of delamination with respect to the location along the length and the thickness of the 
beam. And we also made experiments with the three different delamination sizes, namely small, 
medium and large delamination. Each experiment was conducted 10 times and measurements were 
taken on the input and the output signals to get a representative sample of measured signals. 

We introduce two damage indexes based on the two metrics, which give their relative percentage 
changes. The one below xy  represents the percentage change in the maximum normalised cross-

correlation: 
 

                                                 100.
)(
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damin

xy

xy

xyxy




                                                                (7) 

where  is the maximum normalized cross-correlation (calculated according to equation (4)) 

corresponding to the initial state, which is assumed undamaged and  is the maximum 

normalized cross-correlation corresponding to the current possibly damaged state. In a similar way a 
delamination index based on the AMI is introduced, which represents the relative percentage change 
in the AMI between the baseline (undamaged) condition and the current possibly damaged one: 
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Tables 4a) and 4b) represent the changes in the corresponding damage indexes. The tables give the 

mean values of the changes (over the number of experiments conducted) and their standard deviations 
in per cent.  

 
Table 4a) Cross correlation-based index xy mean value and standard deviation with delamination 

 
Delamination 
position/ size  

small  medium large 

 mean Standard 
deviation 

(%) 

mean Standard 
deviation 

(%) 

mean Standard 
deviation 

(%) 
left upper 7.70 2.11 32.11 0.29 62.11 1.22 

 middle 7.20 2.09 30.02 2.11 56.00 3.44 
 lower 7.40 0.98 34.00 3.06 54.21 3.12 

centre upper 8.00 2.99 33.23 1.35 61.34 2.11 
 middle 6.60 3.10 33.41 1.23 51.00 3.09 
 lower 7.90 1.98 34.10 1.67 50.44 3.13 

right upper 7.60 1.45 25.00 1.78 57.12 1.89 
 middle 6.30 2.09 29.40 1.87 50.67 1.09 
 lower 7.20 1.34 34.09 1.99 49.01 1.91 
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It can be observed from Table 4a) that if we choose a threshold of 5% for xy so that 
  5xy indicates no delamination and 5xy  indicates delamination, all delaminations regardless 

of their size and position will be correctly detected using the above correlation-based index. In a 
similar way it can be observed from Table 4b) that most delaminations except for three cases of small 
delamination will be correctly detected using the same threshold for . All the medium and the 

large delamination cases are correctly detected using both indexes. Thus one can conclude that both 
delamination indexes can be successfully used for delamination detection. 

 xyi

 
Table 4b) AMI-based index ixy mean value and standard deviation with delamination 

 
Delamination 
position/ size  

small  medium large 

 Mean 
value  

Standard 
deviation 

(%) 

Mean 
value 

Standard 
deviation 

(%) 

Mean 
value 

Standard 
deviation 

(%) 
left upper 5.39 3.12 11.11 2.11 18.42 3.01 

 middle 4.29 4.01 9.70 2.07 16.07 0.45 
 lower 5.63 3.12 8.98 1.89 17.36 3.23 

centre upper 6.38 2.45 9.22 3.11 23.12 4.10 
 middle 6.13 2.21 11.11 3.09 20.16 2.61 
 lower 4.77 2.09 10.91 3.45 19.19 2.05 

right upper 5.02 2.13 10.83 2.06 17.19 2.53 
 middle 4.17 2.34 9.79 1.23 20.00 3.09 
 lower 6.13 2.45 10.62 0.11 20.00 2.22 

 
Both delamination indexes, xy and ixy, seem to possess the capability for size estimation 

of  
the delamination in the sense that a bigger index corresponds to bigger delamination. It can be 
observed from Tables 4a) and 4b) and from Figures 2 and 3 that the indexes corresponding to 
small delamination are the smallest ones. The cross-correlation indexes increase quite a big 
deal for medium delamination (to about 30%) and they grow to about 50-60% for large 
delamination (see Table 4a) and Figure 2). The changed in the AMI-based indexes are smaller 
but still can be used to distinguish between the three delamination size groups (Table 4b) and 
Figure 3).  

At first glance the delamination indexes introduced do not seem very helpful for purposes of 
delamination localisation along the beam length and/or thickness (Figures 2 and 3). It is difficult to 
find a common property/quantity in order to distinguish between delaminations in different locations. 
In general the upper delamination tends to cause bigger changes as compared to middle and lower 
ones for most locations along the beam length. But there is an exception for the case of medium 
delamination when the centre and the right delaminations tend to produce bigger cross correlation 
changes when they are in the lower part of the beam. Thus it can be said that the method is can be used 
to detect and quantify delamination.  

It is expected that for certain materials and certain structures one of the indexes might work better 
than the other one. It is the author’s opinion that the AMI-based index is more appropriate for well-
expressed nonlinear dynamic/vibratory behaviour, while the cross correlation-based index is expected 
to work better for structures with behaviour which is close to linear. But this still has to be verified 
with more experiments and numerical simulations. 
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Figure 3. AMI percentage changes with delamination a)large, b)medium, c) small delamination 
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