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Abstract. We calculate the biphoton state generated by spontaneous

parametric down-conversion in a thin crystal and under collinear phase matching

conditions using a pump consisting of any superposition of Laguerre–Gauss

modes. The result has no restrictions on the angular or radial momenta or, in

particular, on the width of the pump, signal and idler modes. We demonstrate

the strong effect of the ratio of the pump width to the signal/idler widths on the

composition of the down-converted entangled fields. The knowledge of this ratio

is shown to be essential for calculating the maximally entangled states that can

be produced using pumps with a complex spatial profile.
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1. Introduction

Quantum entanglement is one of the defining properties of quantum mechanics. It forms

the basis of quantum information [1, 2] and quantum computing [3] and is essential

for applications such as entangled cryptographic systems [4] and quantum imaging [5–8].

A great deal of the research in this area has focused on qubit quantum entanglement, although

entanglement has also been demonstrated between spatial modes carrying orbital angular

momentum (OAM) [9–11]. Since these modes are defined within an infinite-dimensional,

discrete Hilbert space, there is considerable interest in their potential to generate multi-

dimensional entangled states not only for the enhancement of the efficiency of current quantum

protocols, but also for the realization of new, higher-dimensional quantum channels.

Spontaneous parametric down-conversion (SPDC), that is, the generation of two lower-

frequency photons when a pump field interacts with a nonlinear crystal, has been shown

to be a reliable source of photons that are entangled [12], in particular, in their OAM [9].

The spatial structure of the down-converted biphotons can be expressed as a superposition of

Laguerre–Gauss (LG) modes of different amplitudes, angular and radial momenta, with the

width of the modal expansion relating to the amount of entanglement of the final state. Both

angular (ℓ) and radial (p) momenta can be controlled and converted between one another using

diffractive optical elements, typically in the form of spatial light modulators (SLMs) displaying

holograms [13–15]. Experimentally, detection of the down-converted modes is often done using

single-mode fibres (SMFs), which accept only ℓ= p = 0 modes [11], and SLMs are used to

convert |ℓ|> 0 modes to ℓ= 0 modes. Note that SLMs affect both ℓ and p [13] and this should

be taken into consideration.

In this paper, we calculate the exact analytical form of the biphotons for any LG pump,

with no restrictions on the angular or radial momenta, ℓ and p, respectively, or, in particular,

on the widths, w, of the pump, signal and idler modes. Our calculation demonstrates that OAM

is conserved. We use our result to calculate the coincidence amplitudes of the LG modes in

the generated two-photon entangled state for a variety of pump beams. We demonstrate the

importance of the various beam sizes (the pump width and the choice of LG base for the signal

and idler) in determining the state of the down-converted photon and the resulting ℓ distribution,

also known as the quantum spiral bandwidth (SB) [16]. We find excellent agreement with

previous analyses that considered more restricted conditions [16, 17].

The size of the emission modes ws,i, and hence the choice of measurement basis,

is dependent on the experimental setup being used. In particular, in many experiments

(e.g. [11, 14, 15]), the widths are determined by the back-projected size on the crystal of

the SMF used for detection. Although the fibres will project onto structures that approach a

Gaussian, they are imaged onto the crystal via the SLM used in the detection process. Thus the

image on the crystal will be an LG mode determined by the ℓ of the SLM. We allow the sizes

of the emission modes to be free parameters in order to emphasize that these are experiment

dependent. In this way, our result provides a recipe for calculating the down-converted state

for any experimental configuration and, indeed, for finding the setup that would be required for

producing a given down-converted state.

Knowledge of the exact form of the down-converted photons opens up the possibility of

engineering the entangled modes, through an appropriate choice of the pump beam, in order

to produce biphotons that are, for example, maximally entangled in some subspace [18]. We

show how our result can be easily extended to pump beams that are complex superpositions
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of LG modes, including pump modes containing phase singularities (PSs). We again see

excellent agreement with previous analysis [18]. Moreover, by allowing the beam widths to

be free parameters, we show that the pump to signal/idler size ratio plays a critical role in

the engineering of the down-converted state, with states only being maximally entangled at

particular width ratios.

2. Spontaneous parametric down conversion (SPDC) and spiral bandwidth (SB)

We consider a thin nonlinear crystal (typically 1–3 mm), tuned for type-I, collinear down-

conversion, illuminated by a continuous-wave LG pump beam propagating in the z-direction

and confined within the crystal and assume perfect phase matching. This produces two highly

correlated, lower-frequency photons, commonly termed the signal and the idler. Since energy

is conserved, ωp = ωs +ωi, where the subscripts p, s and i refer to the pump, signal and idler,

respectively.

The down-converted biphoton state in this case is given by [18, 19]

|ψSPDC〉 =
∫

dr⊥8(r⊥)â
†
s (r⊥)â

†
i (r⊥)|0, 0〉, (1)

where 8(r⊥) is the spatial distribution of the pump beam at the input face of the crystal, |0, 0〉
is the vacuum state and â†

s (r⊥) and â
†
i (r⊥) are creation operators for the signal and idler modes,

respectively. The integral is over the plane perpendicular to the axis of the pump beam.

Since the photon pairs generated by SPDC are entangled in arbitrary superpositions of

an infinite number of modes with OAM, they are best described by mode functions that are

LG modes, LGℓ
p. At the beam waist (z = 0) the normalized LG modes are given, in cylindrical

coordinates, by [20]

LGℓ
p(ρ, φ)=

√

2p!

π (p + |ℓ|)!
1

w

(

ρ
√

2

w

)|ℓ|

exp

(−ρ2

w2

)

L |ℓ|
p

(

2ρ2

w2

)

exp(iℓφ). (2)

Here w is the beam waist, ℓ corresponds to the angular momentum, ℓh̄, carried by the beam

and describes the helical structure of the wave front around a wave front singularity and p + 1

describes the number of radial intensity maxima.

We can then write the biphoton state as

|ψSPDC〉 =
∑

ℓs,ps

∑

ℓi,pi

Cℓs,ℓi

ps,pi
|ℓs, ps; ℓi, pi〉 , (3)

where Pℓs,ℓi
ps,pi

= |Cℓs,ℓi
ps,pi

|2 is the probability of finding one photon in the signal mode |ℓs, ps〉 and

the other in the idler mode |ℓi, pi〉 given a pump mode |ℓp, pp〉.
The coincidence amplitudes Cℓs,ℓi

ps,pi
are calculated from the overlap integral

Cℓs,ℓi

ps,pi
= 〈ψi, ψs|ψSPDC〉 (4)

=
∫ 2π

0

dφ

∫ ∞

0

ρ dρLG
ℓp

pp(ρ, φ)
[

LGls

ps
(ρ, φ)

]∗ [
LGli

pi
(ρ, φ)

]∗
. (5)
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Note that after substituting (2) into (5), the integral over the azimuthal coordinate is
∫ 2π

0

dφ exp
[

i
(

ℓp − ℓs − ℓi

)

φ
]

= 2πδℓp,ℓs+ℓi
, (6)

from which we obtain the well-known conservation law for OAM: ℓp = ℓs + ℓi [9, 21].

Substituting this into (5) and using the associated Laguerre polynomial in the form [22]

L |ℓ|
p (x)=

p
∑

i=0

(−1)i
(p + |ℓ|)!

(p − i)!(|ℓ| + i)!i!
x i , (7)

we obtain

Cℓs,ℓi

ps,pi
= δℓp,ℓs+ℓi

√

2

πw2
p

2σℓ+1γ |ℓs|+1
s γ

|ℓi |+1

i
(

1 + γ 2
s + γ 2

i

)σℓ+1

√

pp!ps!pi!
(

|ℓp| + pp

)

! (|ℓs| + ps)! (|ℓi| + pi)!

×
pp
∑

k=0

ps
∑

i=0

pi
∑

j=0

(−2)k+i+ jγ 2i
s γ

2 j

i
(

1 + γ 2
s + γ 2

i

)k+i+ j

× [σℓ + k + i + j]!

(pp − k)!(|ℓp| + k)!k!(ps − i)!(|ℓs| + i)!i!(pi − j)!(|ℓi| + j)! j!
, (8)

where σℓ = (|ℓp| + |ℓs| + |ℓi|)/2 and γs = wp/ws, γi = wp/wi are the ratios of the pump width to

the signal/idler widths.

Equation (8) allows us to calculate the exact analytical form of the down-converted photons

produced using any LG pump (or superposition thereof) with no restrictions on any of the

beam parameters. The calculation of the coincidence amplitudes can also be used to calculate

the number of OAM modes participating in the down-converted state, also known as the spiral

bandwidth (SB).

3. Coincidence amplitudes and SB for special cases

For a given pump, equation (8) shows that the coincidence amplitudes have a strong dependence

on the ratio of the pump width to the chosen widths of the LG bases for the signal and idler,

γs and γi. Experimentally, the maximum width of the pump is limited by the size of the down-

conversion crystal, while the widths of the signal and idler beams are determined by the size of

the SMF used in the detection process. We can see this dependence more clearly if we consider

some simplified examples.

3.1. A Gaussian pump, ℓp = pp = 0.

We first consider the simplest possible case: a Gaussian pump with ℓp = pp = 0 and biphotons

with no radial dependence, i.e. ps = pi = 0. Moreover, we assume that the signal and idler

modes have the same width s.t. γs = γi = γ . From the conservation of OAM, equation (6), we

know that ℓs = −ℓi = ℓ in this case and so we can reduce equation (8) to

C
ℓ,−ℓ
0,0 =

√

2

πw2
p

(

2γ 2

1 + 2γ 2

)|ℓ|+1

. (9)
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Figure 1. SB for a Gaussian pump with ℓp = pp = 0 and the fixed widthwp = 1.0

as a function γ .
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Figure 2. SB for a Gaussian pump with ℓp = pp = 0 and wp = 1.0. The signal

and idler widths are equal and reduced s.t. γ = 1.0, 2.0, 3.0 from left to right.

Vertical (blue) lines were calculated using (9) and dashed (red) lines were

calculated using equations (10) and (11) of [16].

It is clear that the SB depends only on the ratio of the pump width to the signal/idler widths,

γ . As in previous works, for example [16, 17], this further reduces to

C
ℓ,−ℓ
0,0 ∝

(

2

3

)|ℓ|
(10)

when all the beam widths are the same, i.e. γ = 1.

The effect of γ on the SB is shown in figure 1, where we have plotted the SB as a function

of γ . It can be seen that as the signal/idler widths are reduced w.r.t. the pump width (i.e. as γ

increases), the SB increases but the amplitudes of the participating modes decrease. In figure 2

we plot (in blue) the SBs for γ = 1.0, 2.0 and 3.0. These results are in excellent agreement with

previous works, see, for example, figure 1 of [16] (shown in red in figure 2). Note that throughout

this work although we only plot the SB from −156 ℓ6 15, which are experimentally realizable

values, we calculate the coincidence amplitudes for a much larger range of ℓ and use these

results to ‘normalize’ the coincidence probabilities. The effect of different beam parameters on

a Gaussian pump has been explored in detail recently [23]. In particular, the work [23] explores

the effects of the radial nodes and shows that the coincidence probabilities are determined by the

overlap of the signal and idler with the pump. The work [23] also shows that there is excellent

agreement between the analysis for collinear systems, as presented here, and the analysis for

non-collinear geometries in the approximation of a thin crystal.
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Figure 3. SB for LG pumps of fixed width wp = 1.0 and ℓp = 1, 2, 3, 4 as the

signal/idler width is reduced s.t. γs = γi goes from 0.5 to 3.0.

3.2. A Laguerre–Gaussian pump, ℓp > 0.

We now consider what happens when the pump is a higher-order LG mode, i.e. ℓp > 0. In this

case the conservation of OAM requires ℓi = ℓp − ℓs. As before, we start with the simplest case,

pp,s,i = 0. The probability amplitudes are then described by

C
ℓs,ℓi

0,0 = δℓp,ℓs+ℓi

√

2

πw2
p

2σℓ+1σℓ!
√

|ℓp|!|ℓs|!|ℓi|!
γ |ℓs|+1

s γ
|ℓi|+1

i
(

1 + γ 2
s + γ 2

i

)σℓ+1
,

where σℓ = (|ℓp| + |ℓs| + |ℓi|)/2. This agrees with equation (8) of [17] when using normalized

LG modes and assuming that all the modes have the same width.

To see how the OAM of the pump affects the SB, we first calculate the coincidence

probabilities, P
ℓs,ℓp−ℓs

0,0 , as a function of ℓs and γ for different values of ℓp. As figure 3 shows,

the SB is symmetric around half the OAM value of the pump. For small values of γ the SB

has a single maximum around ℓp/2. As γ increases, however, the SB splits into two ‘wings’ for

ℓp > 0. These are still symmetric around ℓp/2 and have maxima that depend on ℓp and γ . The

physical explanation of this is that pump modes with ℓp > 0 form rings whose diameters increase

with both the value of ℓp and the width of the beam. Maximum overlap between the pump and

the signal/idler modes, and hence maximum coincidence amplitudes, occurs therefore at larger

values of ℓs and ℓi.

Next we consider what happens when the widths of the signal and idler are different. We

find that by varying the ratio of the signal width to the idler width (in this case from γi = 0.5γs

to 2.0γs) it is possible to fully suppress the SB for either negative or positive values of ℓs, as

shown in figure 4.

Until now, we have considered only modes with no radial modes, i.e. pp = ps = pi = 0.

Higher-order LG beams are commonly produced using an SLM. Since these produce OAM

modes with a range of radial indices, p [13], we now look at the effect that p has on the form

of the spatial mode function of the entangled photons. We find that the number of ‘wings’
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Figure 4. SB for a LG pump with ℓp = 2 and wp = 1.0 as the signal/idler width

is reduced s.t. γs goes from 0.5 to 3.0. The signal and idler modes have different

width ratios: γi/γs = 0.5, 0.75, 1.0, 1.5 and 2.0.

increases with the radial index of the pump as shown in figure 5. As before, altering the ratio of

the signal width to the idler width suppresses one set of wings. Again these correspond to areas

of maximum overlap between the pump and the signal/idler modes.

If we allow first our signal/idler beams to have non-zero radial modes and then all beams

to have non-zero radial modes, the SB as a function of γ becomes ever more complex. The

effect of the radial number of the pump is shown in figure 6.

3.3. Engineered entangled states

Entangling systems in higher-dimensional states is important for many quantum communication

applications. Not only does the higher dimensionality imply a greater potential for applications

in quantum information processing, but also it has been suggested that increasing the

dimensionality of the entangled states of a system can make its non-classical correlations more

robust to the presence of noise and other detrimental effects [24, 25]. Torres et al [18] have

demonstrated (theoretically) that arbitrary engineered entangled states in any d-dimensional

Hilbert space can be prepared using SPDC to translate the topological information contained

in a pump beam into the amplitudes of the generated entangled quantum states. Controlling

OAM state superpositions in this way engenders the ability to produce and manipulate quantum

states with an arbitrarily large number of dimensions. Indeed, Torres et al illustrated this
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Figure 5. SB for a LG pump with ℓp = 2 and wp = 1.0 as the signal/idler width

is reduced s.t. γs = γi goes from 0.5 to 3.0. The radial number of the pump is

increased from pp = 0 to 3.
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Figure 6. SB for a LG pump with ℓp = pp = 2 and wp = 1.0 as the signal/idler

width is reduced s.t. γs = γi goes from 0.5 to 3.0. The radial number of the signal

and idler modes is increased from ps = pi = 0 to 3.

by calculating a number of maximally entangled states of different dimensions, produced

using pump beams containing PSs. Here we describe how our results can be easily extended

to such pumps, which can be described by complex superpositions of LG modes [26].

Moreover, we demonstrate that the ratio of the pump width to the signal/idler widths must
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Figure 7. A pump containing six PSs, as described in [18], and the resulting

probability amplitudes. The blue lines show the results obtained using equation

(14) of [18], while the red line is the result obtained using equations (8) and (12).

be taken into consideration in the calculation as it plays a critical role in the composition

of the down-converted state: a state is generally maximally entangled for only one pump-

to-signal/idler width ratio.

We first calculate the coincidence amplitudes resulting from a pump that is a superposition

of LG modes of equal width, wp, and complex amplitudes an. We can write this as
∑

n

anLGℓn

pn
(ρ, φ)= a1LGℓ1

p1
(ρ, φ)+ a2LGℓ2

p2
(ρ, φ)+ · · · , (11)

where n labels the modes in the superposition and
∑

n |an|2 = 1. The overlap integral (5) then

becomes

Cℓs,ℓi

ps,pi
=
∑

n

∫ 2π

0

dφ

∫ ∞

0

ρ dρanLGℓn

pn
(ρ, φ)

[

LGls

ps
(ρ, φ)

]∗ [
LGli

pi
(ρ, φ)

]∗

=
∑

n

anCℓs,ℓi

n,ps,pi
, (12)

where Cℓs,ℓi
n,ps,pi

are the coincidence amplitudes, calculated from (8), for each Laguerre–Gaussian

component, |ℓp, pp〉, of the pump field.

In order to investigate a pump containing PSs we make use of its projection onto LG

modes [27]. A field containing N PSs can be written as a superposition of LG modes,
∑N

ℓ=0 aℓLGℓ
0, with complex amplitudes

aℓ =
√
π(−1)N−ℓ

(

wp√
2

)ℓ+1 √
ℓ! bN−ℓ, (13)

where bm are given by equation (11) of [18] or, equivalently, by

bm = 1

m!

∂m

∂xm

N
∏

i=1

(1 + ρi e
iφi x)|x=0 (14)

with m = [0, N ] and ρi and φi being the radial and azimuthal positions of the PSs, respectively.
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Figure 8. SB for superposition pump for γs = γi = 0.5 to 3.0 (left) with slices

at γs = γi = 1.0 (green, small dash), 2.0 (blue, large dash) and 3.0 (red, solid)

shown on the right.

Following [18], we consider a pump containing six PSs at positions ρ1 = 0.65wp, ρ2 =
1.85wp, ρ3 = 1.06wp, ρ4 = 0.54wp, ρ5 = 1.53wp, ρ6 = 1.24wp and φi = iπ/3 for i = 1, 6.

Substituting these values into (13) and then into (12) allows us to calculate the form of the

pump, as shown on the left in figure 7, and the resultant coincidence probabilities, vertical (blue)

lines shown on the right in figure 7. We find excellent agreement with the results from equation

(14) of [18] (dashed red line). We calculated the coincidence probabilities P
0,0
0,0 , P

1,1
0,0 , P

2,2
0,0 , P

3,3
0,0

and confirmed that these were equal and so this pump produces the maximally entangled

qu-quart in the subspace S4 = {|0, 0〉, |1, 1〉, |2, 2〉, |3, 3〉}. Note, however, that in this example

we assumed that the pump, signal and idler all had the same width, i.e. γs = γi = 1. Since we

have seen that the composition of the down-converted state is strongly dependent on the ratio of

the pump width to the signal and idler widths, we extended these results by calculating the SB

as a function of γ , keeping γs = γi for simplicity. As expected, we see a large variation in SB

for different γ , as shown on the left in figure 8. This can been seen more clearly on the right of

figure 8, where we plot the SB at γ = 1.0, 2.0, 3.0. It is clear that by choosing the mode widths

appropriately it is possible to tailor the SB in very different ways.

Changing the relative beam sizes has a large effect on the composition of the entangled

state with important implications to the ‘engineering’ of the down-converted state: states that

are maximally entangled for one value of γ are generally not maximally entangled for any other

values of γ . To illustrate this we consider the maximally entangled qu-quart produced by the six-

PS pump above and calculate the coincidence probabilities P
0,0
0,0 , P

1,1
0,0 , P

2,2
0,0 , P

3,3
0,0 as a function

of γ . From figure 9 it is clear that this state is only maximally entangled if γ = 0.5 or γ = 1.0.

In order to obtain this state, one has to ensure that these conditions are met.

4. Conclusion

We have calculated the exact analytical form of the biphotons produced by SPDC in a thin

crystal and under collinear phase matching conditions. Our result has no restrictions on the

angular or radial momenta or, in particular, on the width of the pump, signal and idler modes

and can be used with any pump that is an LG mode, or a superposition thereof. We have shown

that OAM is conserved and we find excellent agreement with previous analyses that considered

more restricted conditions.
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Figure 9. Normalized coincidence probabilities P
0,0
0,0 (red, solid), P

1,1
0,0 (blue,

small dash), P
2,2
0,0 (magenta, medium dash) and P

3,3
0,0 (green, large dash) as a

function of γ . These are equal and so the state is maximally entangled for only

two values of γ , γ = 0.5 and 1.0, as indicated by the circles.

We used our result to calculate the SB for a variety of pumps and demonstrated the

influence of various beam parameters, in particular the pump width and the choice of LG base

for the signal and the idler, on the resulting coincidence amplitudes.

In particular, we demonstrated the importance of beam widths when calculating engineered

entangled states and showed that maximal entanglement is dependent both on the form of the

pump and on the ratio of the beam widths. We suggest that this is an important consideration

and may also offer another degree of freedom in quantum communications.

Spontaneous parametric down-conversion is a very wide area of research and so we have

necessarily limited ourselves to the thin crystal, collinear phase matching conditions, which are

the regimes of importance to many current experiments in this area. Indeed, we have shown

previously that our results can be applied to the non-collinear setup for crystal lengths up to tens

of centimetres. Extension to non-collinear systems and thick crystals, where phase matching and

the effects such as spatial walk-off should be included, is a suitable topic for future analysis.
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