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Abstract

A novel multi-block compact-TVD finite difference method for the simula-

tion of compressible flows is presented. The method combines distributed and

shared-memory paradigms to take advantage of the configuration of modern

supercomputers that host many cores per shared-memory node. In our ap-

proach a domain decomposition technique is applied to a compact scheme

using explicit flux formulas at block interfaces. This method offers great

improvement in performance over earlier parallel compact methods that rely

on the parallel solution of a linear system. A test case is presented to assess

the accuracy and parallel performance of the new method.
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1. Introduction

Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS)

of fluid flows require high accuracy numerical schemes which must be capa-

ble of resolving a very broad range of length scales that are often orders of

magnitude apart. For this purpose, compact methods have been developed

that guarantee spectral-like resolution. However, compact schemes have a

semi-global nature, as a linear system must be solved to compute spatial

derivatives along grid lines. Efficient parallelisation of these schemes there-

fore represents a significant challenge. Previously, Sun and Moitra [1] and

Povitsky [2] devised parallel algorithms for the solution of the underlying lin-

ear system, but as highlighted by Ladeinde et al. [3], these algorithms scale

poorly at high processor counts. Improved scalability can be achieved if

a structured-block domain decomposition technique is employed: Gaitonde

and Visbal [4] and Sengupta et al. [5] have employed compact schemes to

advance independently the solution in overlapping subdomains. Laizet et

al. [6] have proposed a dual-domain decomposition, namely slab decompo-

sition, which changes during a single time step depending on the spatial

direction processed. Their incompressible DNS code showed good parallel

performance, even though in some tests communication took up to 40% of

the total simulation time because of the global data transposition implied by

the dual decomposition.

The class of compact upwind methods developed by Pirozzoli [7] have

opened new possibilities for the application of a classical and efficient paral-

lel multi-block strategy to compact schemes. These compact schemes com-

pute a numerical flux function, unlike other compact schemes which com-
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pute derivatives, and so a multi-block parallelisation approach can be im-

plemented by simply enforcing the continuity of the numerical flux function

across block-interfaces. Chao et al. [8] have exploited this possibility by de-

veloping a multi-block compact method. Their parallel algorithm is based

on a compact-WENO scheme employing domain decomposition. We have

extended the compact-TVD method developed by Tu and Yuan [9] for in-

viscid flows to viscous flows using the Navier-Stokes Kinetic Flux Vector

Splitting [10] technique. In this paper, we present a parallel algorithm based

on domain decomposition employing our compact-TVD method [11].

The parallelisation strategies discussed are task-based and rely on the

SPMD (Single Program Multiple Data) programming model. The modern

trend in High Performance Computing is to increase the number of cores

sharing the memory on a compute node. In a shared memory environment

thread-based parallelism is possible, based on the SMP (Symmetric Multi-

Processing) programming model. For large-scale fluid dynamics calculations

employing compact schemes, this is particularly interesting, as efficient paral-

lelisation in a distributed memory environment is possible by weakly relaxing

the global dependency of the scheme (this point is clarified in Section 3.1).

As noted by Chao et al. [8], this will affect the global resolution properties

of the scheme as the number of cores is increased [8]. In a shared memory

environment, parallelisation is in principle possible without modifying the

numerical method (and so preserving the resolution properties), even though

attention must be payed in order to achieve good parallel performance. Many

investigations into dual-level parallelism have been pubblished. For example,

Huan and Tafti [12] combined multi-threading and multi-tasking to achieve
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a good load balance when the governing equations are solved using Adaptive

Mesh Refinement. Gropp et al. [13] have shown that decreasing the number

of tasks and increasing the number of threads can speed up explicit flux com-

putation as the mesh size increases. Recently, Rabenseifner et al. [14] have

shown that a dual-level parallelism mapped onto the machine topology can

significantly speed up a parallel tridiagonal block CFD solver. We have de-

veloped a code exploiting both distributed and shared memory models. Two

different parallelisation strategies are employed, depending on the memory

model, and are nested in a funnelled mode as detailed in Section 3. The paper

is structured as follows: in Section 2 we present the governing equations; in

Section 3 we describe the parallelisation procedures for both distributed and

shared-memory paradigms; in Section 4 we present a test case and analyse

the difference between the single-block and the multi-block solutions, along

with the parallel performance.

2. The Governing Equations

The method we have developed [11] solves the compressible Navier-Stokes

equations in general coordinates. Here we present a two-dimensional inviscid

test, so the governing equations are the two-dimensional Euler equations,

whose strong conservation form in general coordinates (ξ, η) is:

∂tQ̃ + ∂ξẼ + ∂ηF̃ = 0, (1)

where

Q̃ = 1/J {ρ, ρu, ρv, ρE}T , (2)

Ẽ = 1/J {ρVξ, ρVξu + pξx, ρVξv + pξy, ρVξH}T , (3)
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F̃ = 1/J {ρVη, ρVηu + pηx, ρVηv + pηy, ρVηH}T . (4)

In the above relations t is time, ξx, ξy, ηx, ηy are the metrics and J the Ja-

cobian of the transformation, ρ is the density, p the pressure, u and v are,

respectively, the components of the velocity vector along cartesian coordi-

nates x and y, E = e + (u2 + v2)/2 is the total energy, H = E + p/ρ is

the total enthalpy, e = p/[(γ − 1)ρ] is the internal energy, Vξ = uξx + vξy

and Vη = uηx + vηy are, respectively, the ξ and η components of the velocity

vector in the transformed space.

3. Numerical method

Parallelisation of the scheme developed by the authors [11] in a distributed-

memory environment is achieved via the classical and efficient structured-

block domain decomposition procedure: the computational domain is parti-

tioned into several structured blocks and each block is assigned to a different

process. The algorithm, discussed in Section 3.1, employs the Message Pass-

ing Interface, MPI. In a distributed-memory environment this technique is

preferred to slab decomposition [6] because it avoids the data transposition

step and requires less communication which leads to a better parallel per-

formance. However, we use the slab decomposition approach to parallelise

our compact-TVD method [11] over a compute-node because, in a shared-

memory environment, it can be implemented easily and without the overhead

of data transposition and communication. Our implementation is based on

OpenMP and the algorithm is described in Section 3.2. The shared-memory

parallel algorithm is nested into the distributed-memory parallel algorithm

in a funnelled mode. The computational domain is partitioned into several
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blocks, each of them assigned to a different MPI process. Each MPI pro-

cess is the master thread in a team of OpenMP threads, which process the

block in parallel according to the algorithm described in Section 3.2. Master

threads processing different blocks communicate using MPI according to the

algorithm described in Section 3.1. Slave threads processing the same block

communicate using shared memory, while slave threads processing different

blocks do not communicate.

3.1. Distributed-memory parallel algorithm

The communication between different processes is achieved by providing

each block with ghost cells, where the solution is not computed by the MPI

process the current block is assigned to, but received from the MPI process

assigned to the adjacent block. Domain decomposition cannot be applied

in principle to our compact-TVD method [11], as the values of the high

order numerical flux function at cell faces along a grid line are coupled.

We follow the same approach as Chao et al. [8] and use fifth-order explicit

upwind formulas at inter-block boundaries. By employing such formulas,

consistency with the compact upwind formulas employed for the internal faces

is retained, and no loss in formal accuracy is implied by the decomposition.

While Chao et al. [8] use vertex-centred grids, we employ cell-centered grids.

This allow us to enforce just the continuity of the numerical flux function,

while they must enforce the continuity of the flux divergence across blocks,

which in turn implies the continuity of the numerical flux function. In our

case, explicit formulas are employed only once per inter-block boundary per

grid line, whereas in their case they are employed twice.

Consider, for instance, the computation of ∂ξẼ, and suppose boundary
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i = 1/2 is an inter-block boundary. If the fluid variables are cell-centred, the

high-order numerical flux function Ê = Ê+ + Ê− is computed by:

Ê+
1/2

= 1/60
(

2Ẽ+
−2 − 13Ẽ+

−1 + 47Ẽ+
0 + 27Ẽ+

1 − 3Ẽ+
2

)

, (5)

Ê−

1/2
= 1/60

(

−3Ẽ−

−1 + 27Ẽ−

0 + 47Ẽ−

1 − 13Ẽ−

2 + 2Ẽ−

3

)

. (6)

Provided the fluid dynamic variables in the cells with indices from -2 to 3 in

the current block indexing are consistent across the two neighbouring blocks,

the same flux at the shared face is independently computed by the processes

handling the blocks. The resulting multi-block scheme is conservative over

the whole domain with minimum modification of the original method. If

fluid dynamic variables are computed at cell vertices instead, as vertex i = 1

is shared among the blocks, the two processes must compute independently

fluxes Ê±

1/2
and Ê±

3/2
in order to compute the same value of

(

∂ξẼ
)

1
. Explicit

formulas must then be used for both Ê±

1/2
and Ê±

3/2
. In both cases, at each

block boundary, three layers of ghost cells are required to retain the upwind

bias and the formal accuracy of the inner compact scheme.

3.2. Shared-memory parallel algorithm

A slab decomposition approach has been implemented over a compute-

node, as follows. Consider a two-dimensional structured grid made of Nξ×Nη

cells. For each coordinate ηj , a one-dimensional compact-TVD reconstruction

along ξ of the numerical flux function is performed in order to compute ∂ξẼ.

As the reconstructions are independent, the domain is partitioned in slabs

along the η direction, so that each thread performs reconstructions along ξ

for the grid lines belonging to the slab it is assigned with. In a similar fash-

ion, the computation of ∂ηF̃ is divided among the threads partitioning the
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domain in slabs along the ξ-direction, so that each thread performs recon-

structions along η. As the memory is shared among the threads, no explicit

communication is implied by the overlapping between the domains assigned

to the threads in the ξ and η partitions. Unlike MPI-based parallelisation,

there is no approximation involved with the OpenMP approach, which makes

it attractive in Direct Numerical Simulation of turbulence, where breaking

the global dependence could have a significant impact on the results.

4. Numerical test

In this section we present a numerical test. Our main goals are: (i) to

assess the accuracy of our compact-TVD method through direct comparison

with numerical schemes of established accuracy, (ii) to study the effect of the

structured-block domain decomposition on the computed results, and (iii) to

assess the parallel performance of the method when distributed and shared-

memory algorithms are combined. The first and second points are covered

in Section 4.1, while the third point is addressed in Section 4.2.

4.1. Computation of shock-jet interaction

In this section we present the simulation of a Mach 2 planar shock wave

propagating in air and interacting with a cylindrical jet. The test case was

designed by Don and Quillen [15], who investigated the ability of finite differ-

ence ENO and spectral schemes to predict a complex process to enhance the

performance of combustion engines. The set up is the same as described by

Don and Quillen [15], but, while they model the presence of different species,

having a hydrogen jet surrounded by air, we consider a single species with

density variations. As the test case is inviscid, there is no species diffusion;
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Figure 1: Density contours for the shock-jet interaction at indicated times: left, spectral

method of Don and Quillen [15]; middle, present single-block compact-TVD method; right,

difference between the multi-block and single-block compact-TVD results.
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hydrogen and air are both modelled as diatomic gases, so the isentropic index

is γ = 7/5 for both. So no major difference due to the different modelling is

expected to appear in the computed fluid dynamic variables. In discussing

the results we use the following acronyms: CU5TVD-SB refers to the inviscid

compact-TVD method applied on a single-block structured grid; CU5TVD-

MB refers to the inviscid compact-TVD method applied on a multi-block

structured grid.

In Fig. 1 density contours computed by CU5TVD-SB on 752 × 376 cells

are shown in the middle column. For comparison, we retain the resolution

used by Don and Quillen [15] in their fifth-order ENO computation. The

computed solution is compared to the results obtained by Don and Quillen

using a spectral code, shown in the left column of Fig. 1. The spectral cal-

culation has an equivalent resolution of about 800 × 512 grid points on the

domain considered here [15], as it was carried out with fewer grid points on

a smaller domain. For the density contour plots, we use the same levels as

Don and Quillen i.e. 40 contour lines equally spaced between 0.05 and 1.2

kg/m3, so comparison between the left and the middle columns in Fig. 1 is

actually quantitative. The results of CU5TVD-SB clearly agree with those

of the spectral code. It is not surprising that CU5TVD-SB gives a superior

description of waves and shocklets at early times (t = 20, 40µs), as it was

designed to compute shocks. However, it is surprising that the internal struc-

ture of the jet at time t = 60µs predicted by CU5TVD-SB closely resembles

the one predicted by the spectral code. This demonstrates that the TVD

filter is very effective close to discontinuities and does not destroy the small

scale structures. CU5TVD-SB resolves the feature of the jet better than the
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fifth order ENO scheme employed by Don and Quillen [15], whose results are

not reported here, even though the ENO scheme is uniformly high accurate.

In the right column of Fig. 1 is shown the difference between the density

computed by CU5TVD-SB and the one computed by CU5TVD-MB. For the

multi-block calculation the domain was divided into 10 × 10 blocks along x

and y, respectively. The density difference plots have 20 contour lines equi-

spaced between -0.1 and 0.1 kg/m3. At early times (t = 20, 40µs) the density

difference contours map on shocks and contact discontinuities. The internal

structure of discontinuities is not resolved and their thickness is purely a

numerical artefact, so no error is introduced by the domain partitioning at

this stage of the simulation. Discontinuities and waves are correctly propa-

gated across blocks. As the simulation proceeds and vortical structures begin

to form within the jet, small density differences are detected close to these

structures. This confirms that breaking the global dependency of the com-

pact scheme and using explicit formulas with lower resolution properties at

block interfaces does affect the computation of vortical structures.

4.2. Parallel performance

We have made an assessment of the parallel performance of the multi-

block compact-TVD method for the shock-jet interaction problem. The

simulations have been run on a Cray XT4 system of the UK National Su-

percomputing Service, HECToR (www.hector.ac.uk). The XT4 comprises

1,416 compute blades, each of which has 4 quad-core processor sockets. This

amounts to a total of 22,656 cores, each of which acts as a single CPU. The

processor is an AMD 2.3 GHz Opteron. The point-to-point bandwidth is

2.17 GB/s and the latency between two processors is around 6 µs. Strong
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Figure 2: Strong scaling test. (a): MPI and MPI/OpenMP modes. (b): OpenMP mode.

scalability tests have been run for different problem sizes. A coarse grid of

752× 376 cells and a fine grid of 1504× 752 cells have been considered. The

simulations have been run on an increasing number of cores, starting with

4 and doubling the number at each stage. For a fixed number of cores and

grid resolution, each simulation has been run first in pure MPI mode and

then in hybrid MPI/OpenMP mode. In pure MPI mode, the domain was

partitioned into as many blocks as cores. In hybrid MPI/OpenMP mode, the

domain was partitioned into as many blocks as shared-memory nodes, and

each block was processed in parallel by the four cores belonging to the node,

each of them assigned with an OpenMP thread. Fig. 2(a) shows the results

in terms of specific time, defined as the time taken to simulate one time step,

divided by the number of cells. A parallel efficiency can be defined as the ra-

tio between the specific time and the ideal specific time, which scales linearly

with the number of cores. In pure MPI mode, efficiencies of about 90% are

achieved on 256 cores for the coarse grid and on 1024 cores for the fine grid,

which is an excellent result. As the number of cores increases the work-load
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per core decreases, the time spent in core-to-core communication becomes

comparable to the time each core spends in computation and eventually be-

gins to dominate it. For the coarse grid this happens at about 4000 cores,

whereas for the fine grid the code is still scaling at 16000 cores. The parallel

efficiency in hybrid MPI/OpenMP mode is below 70% of that in pure MPI

mode if the same number of cores is employed. At the highest core counts

the communication time in pure MPI mode dominates the computing time

and a better efficiency is achieved in hybrid mode because less communica-

tion is required. This is clearly shown for the coarse mesh, whereas for the

fine mesh it would likely happen at a core count higher than the maximum

number of cores currently available.

We have examined the possibility of improving the performance of the

shared-memory kernel. Specific times obtained with the different configura-

tions are shown in Fig. 2(b). First, more tasks have been parallelised, such

as boundary condition enforcement, variable initialisation and update. In

Fig. 2(b), FP (full parallel) refers to this code configuration, whereas PD

refers to the case in which just the flux divergence and the stable time step

are computed in parallel. Second, as the OpenMP parallelism is mostly based

on loop unrolling, we have considered different scheduling strategies, namely

static and dynamic scheduling. In Fig. 2(b), the terms SS and DS refer to

static and dynamic scheduling, respectively. The specific times shown in

Fig. 2(a) for the hybrid MPI/OpenMP were based on runs employing PD-SS

configuration for the shared-memory kernel.

An insight into the shared-memory algorithm behaviour is gained from

analysis of Fig. 2(b). First, static scheduling is quicker for low core counts,
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whereas dynamic scheduling is quicker for high core counts. This is likely

due to the fact that the overhead introduced by the dynamic scheduling is

overwhelmed by the benefit of minimising the time threads lie idle, just

if the number of threads is sufficiently high. Second, parallelising non-

computationally-intensive operations degrades the performance at high core

counts, but has a different effect for different scheduling strategies at low core

counts. Finally, good scalability is achieved on two cores but this quickly

degrades as the core count increases. This is likely to be related to the non-

optimal data placement in Non-Uniform Memory Access architectures [16].

This issue will be addressed in the future.

5. Conclusions

We have developed a parallel algorithm based on a compact-TVD method

using both distributed and shared-memory paradigms. The accuracy of the

method has been assessed on a complex fluid dynamic test case. Our results

agree with those obtained using a spectral code and the domain decomposi-

tion does not have a significant impact on the simulated field. Excellent scal-

ability properties are demonstrated and employing a shared-memory kernel

within a compute node improves the performance over a pure distributed-

memory algorithm at high core counts. Data placement within a shared-

memory node needs further attention in order to fully exploit the potential

of modern multi-core supercomputers.
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