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In this work a multi-objective problem of finding optimal low thrust gravity assist trajectories for
interplanetary and orbital transfers is addressed. For this, recently developed pruning techniques for
incremental search space reduction—which will be extended for the current situation—in combination
with subdivision techniques for the approximation of the entire solution set, the so-called Pareto
set, are used. Subdivision techniques are particularly promising for the numerical treatment of these
multi-objective design problems since they are characterised (amongst others) by highly disconnected
feasible domains, which can easily be handled by these set oriented methods. The complexity of the
novel pruning techniques is analysed, and finally the usefulness of the novel approach is demonstrated
by showing some numerical results on two realistic cases.
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1 Introduction

NASAs Deep Space 1 and recently ESAs SMART-1 have shown the effectiveness of low-thrust
systems as primary propulsion devices. Such new scenarios make the task of mission analysts more
difficult than ever. In fact, the design of a low-thrust transfer generally requires the solution of an
optimal control problem, which has no general solution in closed form. Different methods have been
developed to tackle these trajectory design problems. However, all of them need to be initialised
with a first guess solution. The generation of a suitable first guess turns out to be a tricky and
quite time consuming task. Studies on the generation of first guess solutions for low-thrust
transfers, date back to the late nineties with the works of Coverstone et al. (4, 16), where
multi-objective genetic algorithms were first used to compute first guess solutions for an indirect
method. The derivation of approximating analytical solutions was addressed in the works of
Markopoulos (10), Bishop and Azimov (1, 2). Inspired by the work of Tanguay (20), Petropoulos
and Longuski (15) proposed a shape-based approach, which represents the trajectory (connecting
two points in space) with a particular parameterised analytical curve (or shape) and computes the
control thrust necessary to satisfy the dynamics. Although the resulting trajectory is not the actual
solution of an optimal control problem, by tuning the shaping parameters it is possible to generate
solutions, which are sufficiently good to initialise a more fine optimisation process. More precisely,
in the work by Petropoulos, a thrust arc is represented by an analytical curve, known as
exponential sinusoid, which consists of a five parameter shape in polar coordinates. This shape is
suitable for the approximation of planar motion, and the reduced number of shaping parameters
does not allow to satisfy all the possible boundary conditions on position, velocity, time of flight
and magnitude of the control acceleration; for 3D problems the propellant consumption for out of
plane motion is only estimated. By implementing the exponential sinusoid trajectory model in the
software code STOUR, Petropoulos and Longuski extended their systematic search for optimal
ballistic MGA transfers to the global solution of Low-Thrust Gravity Assist (LTGA) transfers
(11, 15, 13). Recently, it has been shown that whenever a Multiple Gravity Assist (MGA)
optimisation problem is characterised by a simple ∆v-matching for the swing-bys and no
deep-space manoeuvres are present, there exists a polynomial-time algorithm (with small
exponent) that provides an efficient solution to the problem (13). Namely a branch and prune
technique exists, the complexity of which is quartic with respect to dimensionality, i.e. in the
number of swing-bys, and cubic in the resolution of the discretisation of the time variable.
Space pruning techniques are incremental algorithms which allow pruning out infeasible regions
from a given domain (or space), which is typically huge compared to the feasible set, measured by
its volume. Pruning techniques have been used for decades as part of various deterministic
algorithms (14), from branch and prune algorithms applicable to general black-box problems to
algorithms built on specific problems, such as the one in (13). Pruning heuristics simply select from
the domain D, which is often neatly defined by box constraints, a collection C of disconnected
subsets Si ⊂ D of different shape and size. Thus, the success of the pruning techniques highly
depends on the way they are integrated into the entire optimisation process.
The results in (13) are particularly interesting for two reasons: the authors demonstrated that, by
exploiting problem characteristics, the search space for a particular model of MGA trajectories,
could be pruned very efficiently; pruning the search space increased significantly the probability of
finding a good local optimum with a stochastic based global optimisation method (in (13) the
authors used an implementation of Differential Evolution). Since the pruning process was
particularly efficient, the overhead in the computation cost due to the application of the pruning
plus the global search was largely compensated by the increase in the reliability of the search
process. Here it is understood that a search process is reliable if a given solution can be found with
high probability over a number of times that the process is run.
If Multi-LTGA (MLTGA) trajectories are considered it would be desirable to have an equivalent
polynomial-time algorithm. In this paper an incremental pruning algorithm is presented for the
solution of the MLTGA problem and an analysis of its computational complexity is given. As in
(13), it will demonstrated here that if a particular model for low-thrust arcs and for gravity assist
manoeuvres is used, then an algorithm exists (which sill be called LTGASP in the following) that
scales quadratically in space and quintic in time with respect to the number of gravity assist
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manoeuvres considered. Further, one possible way to use the output set C to tackle the
multi-objective optimisation problem (MOP) under consideration (i.e., minimisation of flight time
and fuel consumption) will be shown. To be more precise, multilevel subdivision techniques will be
used, which are state of the art for the numerical treatment of moderate dimensional and
continuous MOPs and which can cope with disconnected domains. The resulting process—i.e.,
pruning and subdivision—is suitable to solve such MLTGA problems efficiently and is competitive
with other existing methods.
In (13) the pruning algorithm was devised to address specifically MGA problems with a particular
structure. The algorithm is therefore problem dependent and fully exploits the characteristics of
the problem.
In this paper the heuristics proposed in (13) to tackle MLTGA problems will be extended.
Furthermore in (13) the pruning of the solution space was intended as a way to improve the search
of a stochastic-based global optimiser for single objective problems. In this paper, instead, the
pruned space is used to improve the search of a multi-objective algorithm and in particular it will
be shown how to improve the identification of the global Pareto front for an MLTGA problem.
The remainder of this paper is organised as follows: in Section 2 the background required for
understanding the work is stated. Section 3 proposes an incremental pruning algorithm for
MLTGA problems and its complexity is analysed in Section 4. Section 5 deals with the numerical
treatment of the multi-objective trajectory design problem, in Section 6 some numerical results are
presented, and finally conclusions are drawn in Section 7.

2 Background

In this section the required background for the understanding of the sequel is stated: the concept of
multi-objective optimisation is introduced, the trajectory design problem is stated, and finally the
subdivision techniques are described which will be used to attack the resulting problems.

2.1 Multi-Objective Optimisation

In a variety of applications in industry and finance a problem arises that several objective functions
have to be optimised concurrently. One important feature of these problems is that the different
objectives typically contradict each other and therefore certainly do not have identical optima.
Thus, the question arises how to approximate one or several particular ‘optimal compromises’ or
how to compute the entire set of optimal compromises – the Pareto set – of this multi-objective
optimisation problem (MOP). For the solution of both problems there already exists a huge variety
of efficient algorithms (see e.g. (12), (5) and references therein).
Mathematically speaking, an MOP can be stated in its general form as follows:

min
x∈S

{F (x)}, S = {x ∈
�n : h(x) = 0, g(x) ≤ 0},

where F is defined as the vector of the objectives, i.e.

F :
�n →

�k, F (x) = (f1(x), . . . fk(x)),

with f1, . . . , fk :
�n →

�
, h :

�n →
�m, m ≤ n, and g :

�n →
�q. A vector v ∈

�k is said to be
dominated by a vector w ∈

�k if wi ≤ vi for all i ∈ {1, . . . , k} and v 6= w. A vector v is called
nondominated with respect to a set P , if none of the vectors p ∈ P dominate v.
A point x ∈ S is called optimal or Pareto optimal, if F (x) is not dominated by any vector
F (y), y ∈ S. The solution set—the so-called Pareto set—consists typically not of finitely many
points as for scalar optimisation problems, but forms a (k − 1)-dimensional object. The image of
the Pareto set is called the Pareto front.



4

2.2 The Exponential Sinusoid

It is here proposed to use a particular model for multiple gravity assist low-thrust trajectories
(MLTGA). Low-thrust arcs are modeled through a shaping approach based on the exponential
sinusoid proposed by Petropoulos et al.(15). The spacecraft is assumed to be moving in a plane
subject to the gravity attraction of the Sun and to the control acceleration F = [F cos α, F sinα]T

of a low-thrust propulsion engine. The dynamic equations governing the motion of the spacecraft
can be written in polar coordinates as follows:

r̈ − rθ̇2 +
µ

r2
= F sinα

1

r

d

dt
(r2θ̇) = F cos α

where α is the thrust steering angle measured clockwise from the axis perpendicular to r in the
direction of motion. For this particular dynamics Petropoulos proposed to use the following shaping
function for the radius as a function of the polar angle θ.

r = k0ek1 sin(k2θ+φ)

Then, if the thrust vector is aligned with the velocity vector, the flight path angle γ and the thrust
steering angle α are equal. If γ = α, the thrust history and the polar angle history are uniquely
determined and the control acceleration is given by:

F =
µ

r2

tan γ

2 cos γ

»
1

tan2 γ + k1k2
2s + 1

−
k2
2(1 − 2k1s)

(tan2 γ + k1k2
2s + 1)2

–
(2.1)

with the time variation of the true anomaly given by:

θ̇2 =
“ µ

r3

” 1

tan2 γ + k1k2
2s + 1

(2.2)

and the flight path angle given by:

tan γ = k1k2 cos(k2θ + φ) (2.3)

with s = sin(k2θ + φ). Now, by solving the following integral:

∆t =

Z
dθr“

µ

r3

”
1

tan2 γ+k1k2
2
s+1

(2.4)

one can compute the actual time of flight.
The exponential sinusoid expresses the variation of the radius as a function of the polar angle θ and
depends on three shaping parameters k0, k1, k2 plus a phase parameter φ. By fixing the initial and
final radius for θ = 0 and theta = θ̄ respectively:

r1 = k0ek1 sin(φ)

r2 = k0ek1 sin(k2θ̄+φ)
(2.5)
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two of the three parameters can be computed as a function of the others (8).
The two position radii and the angular difference θ̄ between the departure and the arrival points
can be computed from the ephemerides of the departure and arrival planets or other celestial bodies
(in this work analytical ephemerides are used). In this case it is normally required that the transfer
trajectory going from one planet to the other is flown in a given time T . This implies that the
actual time of flight must be equal to the required time of flight in order to have a physical solution:

∆t − T = 0 (2.6)

If now this time constraint is solved a third parameter can be determined and the exponential
sinusoid becomes a single valued function (for more details on the solution of 2.6 please refer to (8)).
In this form, given the transfer time and the two position vectors at the beginning and at the end
of the transfer the velocities at the two extremal points and the thrust profile can be computed.
Since only one shaping parameter is free it is not possible to optimise the value of the velocities at
the boundaries plus the thrust profile but the problem is equivalent to the Lambert’s problem for
conic arcs.
Furthermore some analysis (15) reveals that the exponential sinusoid gives physical solutions
whenever k1k2

2 < 1. This limit will be used in the remainder of this paper to limit the values of the
shaping parameter k2.

2.3 Gravity Assist Model for the Exponential Sinusoid

Gravity assist manoeuvres are modeled with a linked-conic approximation: the manoeuvre is
instantaneous (i.e., no variation in the position of the spacecraft) and produces a deflection of the
planetocentric velocity vector, the planet is reduced to a point mass with no gravity, the deflection
angle βswing is a function of the mass of the planet and of the incoming velocity, such that:

evT
inevout = −ev2

i cos βswing (2.7)

and

βswing = 2arccos
` µp

ev2
inrp + µp

´
(2.8)

where µp is the gravity constant of the swing-by planet, evin and evout are the planetocentric
incoming and outgoing velocity vectors and rp is the radius of the pericentre of the swing-by
hyperbola.
Since the value of the velocities at the boundaries is not completely free, given an incoming velocity
vector it is not possible, in general, to match every possible outgoing velocity vector.
A match can be obtained by inserting a ∆V correction at the pericentre of the hyperbola of the
swing-by. This model will be called powered swing-by model or powered swing-by in the following.
Modeling gravity manoeuvres through powered swing-bys has a very important property: it
decouples the transfer arcs one from the other. In fact each transfer arc can be computed
independently from the others once the departure and arrival times of a transfer arc are defined.
Than, any pair of arcs can be matched through a ∆v manoeuvre. As will be shown in the
remainder of the paper, this important property of this specific trajectory model, allows to device
an algorithm with polynomial complexity that can incrementally prune the search space.

2.4 Problem Formulation

Here the bi-objective optimisation problem is described which will be considered in the sequel. The
two objectives are the propellant mass fraction and the flight time of a given trajectory.
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For N + 1 celestial bodies, a sequence of thrust legs is then assembled to all the others through a
sequence of powered swing-bys. Each thrust leg is modeled through a shape-based method based on
exponential sinusoids (15, 8), and the first objective is given as:

minimise: J(y)

subject to: rp ≥ rmin

(2.9)

the complete solution vector is then defined as follows:

y = [t0, T1, k2,1, n1, ..., Ti, k2,i, ni, ..., TN , k2,N , nN ]T (2.10)

where k2,i is the i-th shaping parameter for the exponential sinusoid and ni the number of
revolutions around the Sun. The objective function J is then defined as follows:

J = 1 − exp

„
−

„
∆VGA + ∆V0

g0Isp1
+

∆VLT

g0Isp2

««
(2.11)

where ∆VGA is the sum of all the ∆V s (variation in velocity) required to correct every gravity
assist manoeuvre, ∆V0 is the departure manoeuvre, while ∆VLT is the sum of the total ∆V of each
low-thrust leg. The two specific impulses Isp1 and Isp2 are respectively for a chemical engine and
for a low-thrust engine and g0 is the gravity acceleration on the surface of the Earth.
For the tests in this paper, the values Isp1 = 315s and Isp2 = 2500s are used. Note that, the
computation of a transfer arc with the exponential sinusoid does not require the time history of the
mass of the spacecraft. The time history of the mass would be required to compute the actual
thrust profile along the transfer arc. The integration of 2.1, instead, gives directly the ∆v due to
the low-thrust propulsion.
The objective function 2.11 is particularly appealing because it has values ranging from 0, best
transfer, to 1, worst transfer. In addition the impulsive ∆v and the low-thrust ∆v are weighted in
such a way that the use of low-thrust is favorite with respect to the use of the impulsive
corrections. Note that, the scope of this paper is not to demonstrate the suitability of the
exponential sinusoid model for the design of MLTGA trajectories but rather to demonstrate the
effectiveness of the proposed pruning technique.
The overall process for the composition of an MLTGA trajectory with the exponential sinusoid
model can be summarised with the following steps (see Fig. 1) :

• For each departure date t0 and N legs with transfer times T = [T1, ..., Ti, ..., TN ]T

• Compute a low-thrust arc through the exponential sinusoid model from planet i to planet i + 1
(see the transfer from A to B as an example in Fig. 1)

• Compute the incoming heliocentric velocity vector vin and the corresponding planetocentric
velocity vector evin

• Compute a low-thrust arc through the exponential sinusoid model from planet i + 1 to planet
i + 2 (see the transfer from B to C as an example in Fig. 1)

• Compute the required heliocentric outgoing velocity vector vrout and the corresponding
required planetocentric velocity vector evrout

• Compute the achievable planetocentric outgoing velocity vector evaout with pericenter radius
rp ≥ rmin

• If evaout 6= evrout compute the matching ∆Vi at the pericentre of the hyperbola
• Compute the launch impulsive manoeuvre ∆V0

• Compute the arrival impulsive manoeuvre ∆VN

• Compute the the low-thrust ∆VLT

• Compute the sum of all ∆V ’s

The arrival at planet i corresponds to a time ti = ti−1 + Ti, therefore the final time at the end of
the transfer is tN , while the corrective ∆V ’s are computed for all the indexes from 2 to N − 1.
Note that, although all the low-thrust arcs modeled with the exponential sinusoid are planar
trajectories, the whole trajectory develops in the three dimensional space. Therefore, the ∆V
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required for every plane change is obtained through an impulsive manoeuvre at the boundaries of
the low-thrust arc and included in ∆V0, ∆VN , or in the ∆VGA.

Figure 1. Composition of a whole MLTGA trajectory for the exponential sinusoid model

The second objective of the MOP which is addressed in this work is simply given by the flight time
tN − t0 used for the selected trajectory. This objective is of great importance for the design process
since the transfer can take several years (see e.g. the examples in Section 6).
Thus, the MOP under consideration reads as follows:

minimise:

(
J(y)

tN − t0

subject to: rp ≥ rmin

(2.12)

2.5 Subdivision Techniques

The subdivision techniques in (17), (7) have been primarily designed for MOPs without equality
constraints. Algorithms of this type start with a compact subset Q ⊂ S of the parameter space,
typically with one or more n-dimensional boxes. Each box gets subdivided into a set of smaller
boxes, and according to certain conditions it is decided which box could contain a part of the Pareto
set and is thus interesting for further investigation. The other, unpromising boxes are discarded
from the collection. This process, i.e., subdivision and selection, is performed on the current box
collection until the desired granularity of the boxes is reached. The approach is of global nature,
that is, in principle capable of detecting the entire set of Pareto points, see Fig. 2 for an example.
Subdivision algorithms are very effective for the numerical treatment of moderate dimensional
models, but, however, may become inefficient compared other approaches like e.g. evolutionary
strategies for higher-dimensional models. To combine the strength of both approaches, a
combination of subivision techniques with evolutionary strategies has been proposed in (19).
Though it was not required to use this hybrid method for the numerical results presented in the
sequel, it is an interesting candidate for the treatment of further (higher-dimensional) models.
Note that the initial box collection—as well as any further collections—(a) can in principle consist
of any number of boxes and that (b) the collection does not have to form one connected
component. Both observations are very important for the current purpose.
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Figure 2. Application of DS-Subdivision on an MOP F : Q ⊂ �3 → �2, where Q is defined by
box-constraints (see (7)).

3 LTGASP – Low Thrust Gravity Assist Space Pruning

In this section the LTGASP algorithm is proposed which is designed to efficiently detect and prune
infeasible parts of the domain of a given MLTGA problem.

3.1 The MLTGA Problem Formulation

In order to be able to perform the pruning the numbers of revolutions in the design problem (2.12)
have to be fixed. Thus, given an arbitrary but fixed sequence (n1, . . . , nN ) of numbers of
revolutions the following problem is considered:

minimise:

(
J(ỹ)

tN − t0

subject to: rp ≥ rmin

(3.1)

where the solution vector ỹ is given by:

ỹ = [t0, T1, T2, . . . , TN , k2,1, . . . , k2,N ],

and where the parameters have the following ranges:

t0 ∈ I0,

Ti ∈ Ii, i = 1, . . . , N,

k2,i ∈ Ik2,i
, i = 1, . . . , N.

Define I as the entire search space, i.e.

I := I0 × . . .IN × Ik2,1
× . . . × Ik2,N

. (3.2)

Introducing the map (analogue to (9))

f : x = [t0, T1, . . . , TN ] → X = [t0, t1, . . . , tN ],
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defined by the component wise relation ti = t0 +
Pi

j=0 Tj , i = 0, . . . , N , and setting

I∗ := f(I) × Ik2,1
× . . . × Ik2,N

(3.3)

problem (3.1) can be re-formulated as:

minimise:

(
J(X)

tN − t0

subject to: rp(X) ≥ rmin,

(3.4)

which will be considered in the sequel. In the following, some notations are given which are helpful
for the statement of the different pruning techniques. Every (feasible) trajectory from planet pi−1

to planet pi in the current setting is determined by the parameters ti−1, ti, and k2,i. Given these
three values, denote the resulting trajectory from pi−1 to pi by

T (ti−1, ti, k2,i).

Further, denote by D(I∗
i ) and D(Ik2,i

) the discretisations of I∗
i and Ik2,i

. Thus, the entire

discretised search space is given by

D(I∗) = D(I∗
0 ) × . . . × D(I∗

N ) × D(Ik2,1
) × . . . × D(Ik2,N

).

3.2 The Pruning Techniques

In the following the pruning techniques are proposed which are used for the LTGASP algorithm. A
pseudocode of all algorithms can be found in Appendix 1.

Initialisation. Mark all ti ∈ D(I∗
i ), i = 0, . . . , n, as valid as well as all trajectories

T (ti−1, ti, k2,i), ∀ti−1 ∈ D(I∗
i−1), ti ∈ D(I∗

i ),

k2,i ∈ D(Ik2,i
), i = 1, . . . , N.

∆V constraining. The maximal allowable ∆Vi is the main pruning criterion of the LTGASP
algorithm in phase i. It works on the sampled space D(I∗i−1) × D(I∗i ) × D(Ik2,i

) and prunes out all

those points corresponding to trajectories having a velocity change larger than a given budget
∆V max

i .
Algorithm 1 describes the ∆V pruning for the transfer from planet pi−1 to planet pi, i. e. for phase
i. Denote by ∆Vi(T ) the velocity change required by a given trajectory T .

Departure velocity constraining. This criterion prunes out all trajectories where the
departure velocity (and thus the corresponding thrust required by the spacecraft) is larger than a
given threshold.

Forward pruning. An application of the ∆V pruning in each phase typically reduces the
search space volume of an MLTGA problem significantly. As a consequence many values of the
arrival time ti in phase i become nonfeasible departure times in phase i + 1. To be more precise: if
there is no feasible trajectory that arrives at a planet on a given date because they have all been
pruned out according to the various criteria introduced, then there will be no departures from that
planet on that date. Thus, all the corresponding points will also be pruned.
Algorithm 2 describes the forward pruning from phase i to phase i + 1 with respect to ti ∈ D(I∗

i ).
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Backward constraining. This technique is analogue to the previous one: clearly, if a
departure time in phase i + 1 becomes infeasible because of pruning, also the relative arrival date in
phase i has to be pruned out.
Algorithm 3 describes the backward pruning from phase i + 1 back to phase i with respect to
ti ∈ D(I∗

i ).

Gravity assist maximum thrust constraint. The gravity assist maximum thrust
constraint prunes out the trajectories having a difference between incoming velocities of trajectories
in phase i (denote this velocity by V i

end(T ) for a given trajectory T ) and outgoing velocities of

trajectories in phase i + 1 (denote by V i+1
start(T )) during a gravity assist larger than some threshold,

Av. This threshold has to be set separately for each gravity assist. Further, an appropriate
tolerance, Lv, based on the Lipschitzian constant of the current phase plot has to be taken into
account.
Algorithm 4 describes the gravity assist maximum thrust constraint pruning between phase i and
phase i + 1.

Gravity assist angular constraint. The gravity assist angular constraint prunes
infeasible swing-bys from the search space on the basis of them being associated with a hyperbolic
periapsis under the minimum safe distance for the given gravity assist body.
This is determined over every arrival date t̄i ∈ D(I∗

i ) as follows: for all incoming trajectories
T (ti−1, t̄i, k2,i) and all outgoing trajectories T (t̄i, ti+1k2,i+1) check if the corresponding swing-by is
valid. In this case mark both incoming and outgoing trajectory as valid. Finally (i.e., after going
through all arrival dates), all trajectories not marked as valid by this procedure will be pruned out.
Algorithm 5 describes the gravity assist angular constraint pruning between phase i and phase i+1.

Breaking manoeuvre constraint. As well as the departure velocity constraint, it is logical
to add a constraint on the maximum breaking manoeuvre that a spacecraft can perform and prune
out trajectories with an exceedingly high fuel demand.

3.3 The LTGASP Algorithm

Having stated the different pruning techniques the complete pruning algorithm can be formulated
which is done in the followng.
Given an MLTGA problem (3.4), the LTGASP algorithm for the search space reduction reads as
follows:

(0) perform the initialisation process.
(1) perform the ∆V pruning, departure velocity pruning as well as the forward pruning (one ‘phase

shift’) for phase 1.
(2) for l = 2, . . . , n − 1

(a) perform the ∆V pruning for phase l.
(b1) perform the backward pruning from phase l down to phase 1.
(b2) perform the forward pruning from phase 1 up to phase l + 1.
(c) perform the gravity assist pruning for phases l − 1 and l.
(d) perform the angular constraint pruning for phases l − 1 and l.

(3) perform all the pruning steps described in step (2) plus the breaking manoeuvre constraint for
phase n.

Remarks 3.1(a) This is just one possible way to combine the different pruning techniques. Note
that the steps 2(a), 2(b) and 2(c) can be interchanged, and that the outcome of the resulting
pruning algorithm depends on this choice. However, since the angular constraint pruning is the
most time consuming technique (see the numerical results in Section 6), it is logical to apply
this technique at last in each phase. Further, it is also possible e.g. to apply the
backward/forward pruning after each crucial pruning criterion (such as the angular constraint
pruning). This technique is typically quite effective and has—in general—a running time which
is almost negligible compared to the other pruning criteria.
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(b) It has to be noted that the proposed pruning algorithm is of global nature, but does not
guarantee that parts of the feasible set are not pruned out. This is due to the fact that the
algorithms work on a discretisation of the domain.
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Figure 3. Possible resulting candidate set of the LTGASP algorithm for a two-phase sequence
(Earth – Venus – Earth) consisting of two connected components in each phase. The straight lines
indicate the boundaries of the feasible subset in ti − ti+1 space, i = 0, 1, which are given by the

minimal (Tm,i) and maximal (TM,i) time of flight in each phase, i.e., ti+1 ∈ [ti + Tm,i, ti + TM,i].

4 Time and Space Complexity for the LTGASP Algorithm

This section determines the time and space complexity of the LTGASP algorithm. It will be shown
that LTGASP scales quadratically in space and quintic in time with respect to the number of
gravity assist manoeuvres considered. Since the focus is here on the order of the complexities for
simplicity it can be assumed for the following analysis that the initial launch window and all phase
times are the same.

4.1 Space Complexity

Consider a launch window, a mission phase time, and the range of the k′
2s discretised into l bins.

Thus, for the first phase l3 Lambert problems have to be sampled. Since the number of possible
times the planet may be arrived at in phase i, i = 1, . . . , n can be assumed to be (i + 1)l (see (9))
the i-th phase will require an amount of (i + 1)l · l · l = (i + 1)l3 Lambert function evaluations
(given by the discretisations of the departure times, the time of flight and k2). This gives the series

O(n) = l3 + 2l3 + . . . + nl3 = l3
n(1 + n)

2
.

Therefore, the amount of space required for n phases is only of order O(n2), rather than O(k2n+1)
for full grid sampling.
Similarly, the space complexity with respect to the resolution l is of the order O(l3).
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4.2 Time Complexity

The memory space requirement is directly proportional to the maximum number of Lambert
problems that must be solved, and hence the time complexity of the sampling portion of the
LTGASP algorithm must also be of the order O(n2).
For the further time complexity analysis the following assumptions are made (see above):

|D(I∗
i )| = (i + 1)l, i = 0, . . . , n,

|D(Ik2,i
)| = l, i = 1, . . . , n.

(4.1)

∆V constraint complexity. The i-th step requires of the order of i2l3 operations since by
assumption (4.1) it follows that |D(I∗

i−1)| · |D(I∗
i )| · |D(Ik2,i

)| ≈ i2l3. Thus, the time complexity

applying the ∆V constraint is O(n3) with respect to the dimensionality and O(l3) with respect to
the resolution.

Forward and backward pruning complexity. The forward pruning requires of the
order of i2l3 flops for one ‘phase shift’ (i.e., the pruning of the departure times for phase i + 1 by
analysing the data of phase i). Since for every phase i there are i such phase shifts (i.e., after the
∆V pruning of phase i and after the backward pruning), for this pruning criterion an amount of

nX

j=1

jX

i=1

i2l3 = l3
nX

j=1

j(j + 1)(2j + 1)

6

flops is required. Thus, the complexity of the forward pruning is O(n4) with respect to the
dimensionality and O(l3) with respect to the resolution. Analogously, the complexity of the
backward pruning is of the same order.

Gravity assist thrust constraint complexity. The i-th step requires of the order of
2i2l3 operations. Thus, the time complexity applying the gravity assist thrust constraint is O(n3)
with respect to the dimensionality and O(l3) with respect to the resolution.

Gravity assist angular constraint complexity. The i-th step requires of the order of
2i3l5 operations. Thus, the time complexity applying the gravity assist angular constraint is O(n4)
with respect to the dimensionality and O(l5) with respect to the resolution.

Overall time complexity. The overall complexity, taken from the most complex part of the
algorithm (the gravity assist angular constraint), is quintic with respect to the resolution and
quartic with respect to the dimensionality.

5 Attacking the MOPs

Having performed the pruning techniques resulting in a candidate set C which typically has a much
smaller n-dimensional volume than the entire search space I (see Figure 3 for one example), the
question arises how this information can be integrated efficiently into the optimisation process.
Here one possible way is proposed to attack an MOP of the form (3.4) which involves the LTGASP
algorithm presented above. Obviously, the pruning techniques have to be performed before the
optimisation can start1. More interesting is how the set C, which can consist of up to hundreds of
different connected components of different shape and size, can be utilised for the optimisation
algorithm.
The authors of this work propose to proceed in the following way:

1Here sequential algorithms are considered.
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(1) Perform the LTGASP algorithm on the given setting. Denote the resulting candidate set by C.
(2) Construct a box collection R starting from C such that all boxes are mutually non-intersecting

and that R covers C ’tightly’ (see discussion below).
(3) Perform the subdivision techniques described in Section 2 using collection R as domain.

Before some numerical results can be presented, which is done in the next section, some remarks on
the approach have to be made:
A n-dimensional box B can be represented by bounds l, u ∈ �n:

B = Bl,u = {x ∈ �n : li ≤ xi ≤ ui ∀i = 1, .., n}.

One way to construct a box collection R which covers a candidate set C is by looking at the
connected components of the logical three-dimensional matrices Ai which correspond to the i-th
phase: set ajkl = 0 if T (tj , tk , k2l

) is detected as not valid for the underlying sequence, where tj is
the j-th element of |D(I∗

i−1)| (analogous for tk and k2l
); else set ajkl = 1. The boxes can e.g. be

selected by taking the minimal and maximal coordinate values of each connected component (see
Fig. 4 for an example). The corresponding n-dimensional boxes can be constructed on the basis of
this sequence of three-dimensional boxes, and overlapping boxes have to be merged together.
For a given set C there does typically not exist one ‘ideal’ box collection as the following discussion
shows: in order to speed up the computation, it is desired to keep the number of boxes small (since
all boxes have to be evaluated). This can be done e.g. by merging ‘neighboring’ boxes together.
However, since this increases the volume of R the probability of picking infeasible solutions in the
run of the search procedure will increase which will in turn decrease its performance. To avoid this,
smaller boxes can be considered which will in turn increase the number of boxes required to cover
C. As an example consider the set in Fig. 5 (b), which consists of 57 connected components. If
components which are merely separated by one discretisation step are merged together1 the
resulting box collection consists of five boxes, which is probably the best trade off solution for this
case.
For the stability of the transfer and due to the (long) resulting transfer times, up to date only few
celestial bodies are involved for ‘real’ missions. Thus, the resulting domain of a given trajectory
design problem can be considered to be low or moderate dimensional (say, ≤ 15). The authors of
this work have chosen to use subdivision techniques for the approximation of the Pareto sets since
the algorithms can easily cope with the disconnected domain and since they have proven their
efficiency on many applications so far (e.g., (7), (18)).
On the other hand, regarding the dimensionality of the models, certainly also other approaches can
in principle serve to produce satisfying results. However, note that due to the particular structure
of the domain an application is in most cases not straightforward. For instance, for multi-objective
evolutionary algorithms (MOEAs, see e.g., (3)), the probably most widely used class of algorithms
in this field, there does ad hoc exist no suitable cross-over operator since points from different
connected components of the feasible set (or from different boxes) do typically not have similar
characteristics. Further, a suitable penalisation strategy is also not straightforward.

6 Numerical Results

In this section some numerical results coming from two different settings are presented. All
computations have been done on an Intel Xeon 3.2 Ghz processor using the programming language
Matlab.

1That is, if in the logical matrix described above elements aj,k,l are set to 1 if aj−1,k,l = 1 = aj+1,k,l,
analogous for k and l.
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Figure 4. Relaxation of the candidate set (right) by using boxes (right), which are much easier to
handle for most optimisation algorithms.

6.1 Sequence EVMe

First the two-phase sequence Earth – Venus – Mercury (EVMe) is under consideration. Using the
parameters shown in Table 1 (see Appendix 1) the LTGASP algorithm computes the candidate set
displayed in Fig. 5. Here, the left upper limit on the arrival velocity has been kept very high to
allow for many possible arrival conditions at Mercury. The computation took about seven minutes
(see Table 2), a time which is equivalent to evaluate approximately 3,000 different trajectories
(note that there is a strong relation between the time for the pruning process and the time for a
function call since for the ∆V pruning single arcs of the trajectory have to be computed). The
resulting box collection consists of 47 boxes with a total volume of 5.86 · 104. Since the volume of
the entire search space I∗ (see (3.3)) is 7.18 · 109, LTGASP pruned out 99.9992 percent of the
initial volume. Using the box collection as domain, the subdivision techniques described above
obtained the Pareto front shown in Fig. 6 using a budget of N = 50, 000 function calls.
The huge diversity in the values of the front indicates that the multi-objective approach is indeed
interesting for this mission: the total time of flight varies between 200 and 1200 days which makes a
difference of nearly three years, and the mass fraction varies by more than 80 %, which is certainly
a huge value as well.
In order to compare the results, the subdivision techniques have been used on the same problem
but without the pruning (i.e., taking I∗ as domain). The results were not satisfying, even for much
larger budgets for the number of function calls. Figure 5 shows one example for N = 50, 000. The
reason is that in the beginning of the algorithm relatively large boxes have to be evaluated where
the fraction of the feasible set within these boxes are very small. Thus, it can easily happen that
‘good’ boxes—i.e., boxes containing a part of the Pareto set—are deleted by the algorithm. To
prevent this, a huge amount of function calls has to be spent, at least in the early stages of the
subdivision process. Thus, it is in this case the pruning which makes the subdivision algorithm
work properly and is hence crucial for the efficiency of the proposed optimisation process.
In 7 the trajectory plot is presented for the minimum mass solution, from the best Pareto front in
Fig.6. The minimum time solutions, for this specific case, corresponds to trajectories that are not
physically meaningful. Trajectories of this kind are possible in the model based on the exponential
sinusoid, in particular if no strict restrictions on the thrust level are imposed.

6.2 Sequence EVEJ

Next the three-phase sequence Earth – Venus – Earth – Jupiter (EVEJ) is considered. An
application of the LTGASP algorithm using the parameter values shown in Table 4 leads to the
candidate set which is shown in Fig. 8. Even in this case the arrival velocity at Jupiter is left
essentially free to allow for different possible arrival conditions. For this, 12 minutes had to be



15

700 800 900 1000 1100 1200 1300
800

1000

1200

1400

1600

1800

2000

2200

t
0

t 1

(a) Phase 1

800 1000 1200 1400 1600 1800 2000 2200
1000

1500

2000

2500

3000

3500

4000

t
1

t 2

(b) Phase 2

Figure 5. Numerical result of the LTGASP algorithm on the EVMe sequence.
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Figure 6. The circles represent a Pareto front for the EVMe sequence obtained by the subdivision
algorithm with a domain R which is a result of the pruning algorithm LTGASP. A solution of the

subdivision algorithm starting on the entire domain I∗ is given by the points.

spent which corresponds to approximately 3,000 function calls. The resulting box collection R
consists of eight boxes which have a total volume of 0.00006 percent of the volume of the entire
search space I∗. Starting with this collection, the Pareto front displayed in Fig. 9 was obtained
using N = 60, 000 function evaluations. Again, the function values along the obtained front differ
significantly—400 days in the transfer time and 55% in the mass fraction—leading to a large
variety for the decision maker.
For a comparison to other methods a random search procedure and the state-of-the-art
evolutionary algorithm NSGA-II (6) have been taken. For both approaches the entire search space
I∗ has been taken as domain (i.e., no pruning techniques have been applied) and a budget of
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Figure 7. Minimum mass solution, for the EVMe transfer, projected onto the ecliptic plane.

N = 100, 000 function evaluations has been given. Two representative results can be seen in Fig. 9.
Apparently, none of the two results can compete with the one coming from the combination of the
pruning and the subdivision. This is due to the fact that the fraction of the feasible set within I∗ is
tiny as the relatively small volume of R indicates. This might be also the reason that in this (very
rare) case the random search operator outperforms NSGA-II. In such a case, a global search
strategy seems to be more promising than any recombination strategy of inefficient or even useless
trajectories which are obtained with a high probability, at least in the beginning of the run of the
algorithm. This would change if R would be chosen as domain, but in that case it remains to define
a suitable cross-over operator as discussed above. The result indicates that the approach proposed
in this paper can cope—in contrast to existing ad hoc methods—efficiently with the given class of
problems.
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Figure 8. Numerical result of the LTGASP algorithm on the EVEJ sequence.

In 10 the trajectory plot for the minimum mass solution (Fig.10a) is represented, from the best
Pareto front in Fig.9, and the minimum time solution (Fig.10b).
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Figure 9. Different Pareto fronts for the EVEJ sequence. The crosses represent one solution
obtained by NSGA-II, the points a solution coming from random search, and the circles a result

obtained by pruning and subdivision.

7 Conclusions

In this work a bi-objective approach has been considered for the design of multi low-thrust gravity
assist trajectories (minimisation of flight time and fuel consumption). For this, a novel way to
tackle such problems, namely a combination of a space pruning technique with multilevel
subdivision techniques, has been presented. In this work, pruning technique for MGA problems
have been adapted and extended to the MLTGA case resulting into a deterministic algorithm
called LTGASP. The LTGASP algorithm scales quadratically in space and quintic in time with
respect to the number of gravity assist manoeuvres considered. The outcome set of the LTGASP
algorithm can easily be manipulated such that it serves as a domain for the subdivision techniques.
By doing so, the performance of this set oriented method increases significantly. The resulting
optimisation process—i.e., pruning and subdivision—is suited for such design problems and is
competitive to other approaches. This has been demonstrated with some numerical tests on two
interplanetary transfers.
The pruning technique presented in this paper was devised specifically to address a particular
MLTGA trajectory model. The accuracy of the solutions at reproducing an actual low-thrust
trajectory with multiple gravity assist manoeuvre strictly depends on the accuracy of the
trajectory model. Therefore, as for MGA trajectories modeled with Lambert’s arcs and powered
swing-bys, here it was demonstrated that for MLTGA trajectories modeled with exponential
sinusoids and powered swing-bys, an efficient pruning technique exists that improves the search for
Pareto optimal low-thrust transfers. Due to the shape-based transcription of the trajectory, each
low-thrust arc is not optimal in the sense of the optimal control theory. Nonetheless the solutions
presented in this paper are Pareto optimal with respect to the bi-objective optimisation problem
and the trajectory model presented here.
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9 Appendix 1: The Pruning Algorithms

This section gives the pseudocodes for all the different pruning techniques described in Section 3.2.

Algorithm 1 ∆V pruning

1: for all valid ti−1 ∈ D(I∗
i−1) do

2: for all valid ti ∈ D(I∗
i ) do

3: if ti − ti−1 ∈ Ii then
4: for all k2,i−1 ∈ D(Ik2,i−1

) do
5: if ∆Vi(T (ti−1, ti, k2,i)) > ∆V max

i then
6: mark T (ti−1, ti, k2,i) as not valid.
7: end if
8: end for
9: end if

10: end for
11: end for

Algorithm 2 Forward pruning

1: for all valid t̄i ∈ D(I∗
i ) do

2: If T (ti−1, t̄i, k2,i) is not valid for all
3: (ti−1, k2,i) ∈ D(I∗

i ) × D(Ik2,i
), mark t̄i as

4: not valid as well as all trajectories T (t̄i, ti+1, k2,i+1)
5: end for

Algorithm 3 Backward pruning

1: for all valid t̄i ∈ D(I∗
i ) do

2: If T (t̄i, ti+1, k2,i+1) is not valid for all (ti+1, k2,i+1) ∈ D(I∗
i+1) ×

D(Ik2,i+1
),

3: mark t̄i as not valid as well as all trajectories T (ti−1, t̄i, k2,i)
4: end for

10 Appendix 2: Details on the Numerical Results

This section shows the parameter settings and the running times for the different sequences
considered in Section 6.
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Algorithm 4 Gravity assist maximum thrust constraint pruning

1: for all valid t̄i ∈ D(I∗
i ) do

2: vf
min := min

ti−1,k2,i

V i
end(T (ti−1, t̄i, k2,i)) . forward

3: vf
max := max

ti−1,k2,i

V i
end(T (ti−1, t̄i, k2,i))

4: for all valid ti+1 ∈ D(I∗
i+1)) do

5: for all valid k2,i+1 ∈ D(I∗
k2,i+1

)) do

6: if V i+1
start(T (t̄i, ti+1, k2,i+1)) 6∈ [vf

min − Av − Lv, v
f
max + Av + Lv]

then
7: mark T (t̄i, ti+1, k2,i+1) as not valid.
8: end if
9: end for

10: end for
11: vb

min := min
ti+1,k2,i+1

V i+1
start(T (t̄i, ti+1, k2,i+1)) . backward

12: vb
max := max

ti+1,k2,i+1

V i+1
start(T (t̄i, ti+1, k2,i+1))

13: for all valid ti−1 ∈ D(I∗
i−1)) do

14: for all valid k2,i ∈ D(I∗
k2,i

)) do

15: if V i
end(T (ti−1, t̄i, k2,i)) 6∈ [vb

min−Av−Lv, v
b
max +Av +Lv] then

16: mark T (ti−1, t̄i, k2,i) as not valid.
17: end if
18: end for
19: end for
20: end for

Algorithm 5 Gravity assist angular constraint pruning

1: for all t̄i ∈ D(I∗i ) do
2: for all valid incoming trajectories T (ti−1, t̄i, k2,i) do
3: for all valid outgoing trajectories T (t̄i, ti+1, k2,i+1) do
4: if the swing-by for T (ti−1, t̄i, k2,i) and T (t̄i, ti+1, k2,i+1) is valid

then
5: mark T (ti−1, t̄i, k2,i) as valid
6: mark T (t̄i, ti+1, k2,i+1) as valid
7: end if
8: end for
9: end for

10: end for
11: Invalidate all trajectories not marked as valid
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Table 1. Parameter settings for the pruning of the EVMe sequence. The shaping parameters have been

fixed to k2,1 = 0.27 and k2,2 = 0.007

.

sequence : Earth – Venus – Mercury
launch window : [700, 1300] (days after 01.01.2000)
time of flight phase 1 : [100, 800] (days)
time of flight phase 2 : [500, 1500] (days)
|D(I∗

0 )| : 80
|D(I∗

1 )| : 80
|D(I∗

2 )| : 100
∆V max

1 : 5 (km/s)
∆V max

2 : 5 (km/s)
max. departure velocity : 10 (km/s)
max. terminal velocity : 30 (km/s)
rmin Venus : 6750 (km)

Table 2. Running times for sequence EVMe (see Section 6.1).

∆V pruning 1. phase : 185.64 sec.
∆V pruning 2. phase : 167.55 sec.
backward/forward pruning : 0.03 sec.
max. thrust pruning : 0.29 sec.
ang. constr. pruning : 26.05 sec.
2nd backward/forward pruning : 0.02 sec.
final backw./forw. pruning : 0.17 sec.
total running time : 379.75 sec.
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Figure 10. a) minimum mass solution, for the EVEJ transfer, projected onto the ecliptic plane, b)
minimum time solution, for the EVEJ transfer, projected onto the ecliptic plane.
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Table 3. Parameter settings for the pruning of the EVEJ sequence.

sequence : Earth – Venus – Earth – Jupiter
launch window : [3745, 6840] (days after 01.01.2000)
time of flight phase 1 : [100, 200] (days)
time of flight phase 2 : [300, 400] (days)
time of flight phase 3 : [1000, 2000] (days)
|D(I∗

0 )| : 80
|D(I∗

1 )| : 80
|D(I∗

2 )| : 100
|D(I∗

3 )| : 120
range of k2,i, i = 1, 2, 3 : [0.01, 2]
|D(Ik2,1

)| : 20
|D(Ik2,2

)| : 20
|D(Ik2,3

)| : 20
∆V max

1 : 5 (km/s)
∆V max

2 : 5 (km/s)
∆V max

3 : 5 (km/s)
max. departure velocity : 10 (km/s)
max. terminal velocity : 30 (km/s)
rmin Venus : 6750 (km)
rmin Earth : 6750 (km)

Table 4. Running times for sequence EVEJ (see Section 6.2).

∆V pruning 1. phase : 66.42 sec.
∆V pruning 2. phase : 38.88 sec.
backward/forward pruning : 0.06 sec.
max. thrust pruning : 1.48 sec.
ang. constr. pruning : 374.20 sec.
backward/forward pruning : 0.06 sec.
∆V pruning 3. phase : 180.63 sec.
backward/forward pruning : 0.09 sec.
max. thrust pruning : 1.26 sec.
ang. constr. pruning : 97.39 sec.
backward/forward pruning : 0.08 sec.
final backw./forw. pruning : 1.16 sec.
total running time : 761.72 sec.


