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Multiscale lattice Boltzmann approach to modeling gas flows
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Exa Corporation, 55 Network Drive, Burlington, Massachusetts 01803, USA
(Dated: December 20, 2010)

For multiscale gas flows, kinetic-continuum hybrid method is usually used to balance the com-
putational accuracy and efficiency. However, the kinetic-continuum coupling is not straightforward
since the coupled methods are based on different theoretical frameworks. In particular, it is not
easy to recover the non-equilibrium information required by the kinetic method which is lost by the
continuum model at the coupling interface. Therefore, we present a multiscale lattice Boltzmann
(LB) method which deploys high-order LB models in highly rarefied flow regions and low-order ones
in less rarefied regions. Since this multiscale approach is based on the same theoretical framework,
the coupling precess becomes simple. The non-equilibrium information will not be lost at the inter-
face as low-order LB models can also retain this information. The simulation results confirm that
the present method can achieve modeling accuracy with reduced computational cost.

PACS numbers: 47.11.-j, 47.61.-k

I. INTRODUCTION

Many engineering problems involve multi-scale gas
flows, e.g. gas flows in micro/nano-fluidic devices [1].
Since the flow regions can be highly rarefied (non-
equilibrium), the conventional continuum theory be-
comes inappropriate. The rarefaction order of gas flows
can be classified by the non-dimensional Knudsen num-
ber, Kn, defined as the ratio of the mean free path and
the device characteristic length scale. The Navier Stokes
equations with no-velocity-slip wall boundary condition
are only appropriate in the hydrodynamic regime where
Kn < 0.001. In the slip flow regime (0.001 < Kn < 0.1),
or the transition flow regime (0.1 < Kn < 10), it is
necessary to use kinetic methods, e.g. direct simulation
Monte Carlo method (DSMC) method, to describe gas
flows. Although the kinetic methods including DSMC are
able to simulate flow in the continuum or near-continuum
regimes, the computational cost is often very expensive
especially for low speed flows[2]. Therefore, kinetic-
continuum hybrid methods are naturally employed to
deal with mixed flow regimes in typical microfluidic de-
vices operating with a range of Knudsen numbers in
different parts, i.e., numerically efficient continuum ap-
proach will be employed for the continuum regimes and
kinetic approach for the rarefied regimes(see Refs. [3-14]
and references therein). The two models are coupled by
exchanging information over the “hand-shaking”region
or across an interface.

However, the kinetic-continuum coupling is not
straightforward since two types of methods are based
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on different theoretical frameworks. While informa-
tion transferring from the kinetic model to the contin-
uum model is usually a well-defined process, the reverse
process is more problematic [13]. Tt is difficult to re-
cover non-equilibrium information lost by the continuum
solvers which is required by the kinetic method. Al-
though the kinetic model can provide necessary infor-
mation for the continuum model, it can be computation-
ally expensive [5]. The statistical noise associated with
the particle methods may also affect the accuracy and
stability of the hybrid solver [13]. To effectively model
mixed-Kn flows, we introduce a multiscale lattice Boltz-
mann (LB) method to utilize various order LB models.
Since this multiscale method is based on a same theoret-
ical framework, it has distinguished advantages, which
has also been demonstrated recently by the unified gas-
kinetic scheme[15].

The LB method has been proven to be able to sim-
ulate hydrodynamic flows with only minimal number of
discrete velocities (e.g., nine discrete velocities for a two-
dimensional problem) [16-20]. For continuum problems,
its applicability is ensured by the Chapman-Enskog ex-
pansion. Due to its kinetic nature, the LB model has its
advantages over other continuum computational meth-
ods, including easy implementation of multi-physical
mechanisms and the boundary conditions for fluid/wall
interactions[17, 28].

The LB method may also offer a flexible framework for
rarefied flows, which has recently been demonstrated ex-
tensively (see Refs.[19, 21-32] and references therein). It
was shown that the key to capturing the rarefaction ef-
fects is to choose appropriate discrete velocity sets. Gen-
erally, a high-order LB model with larger discrete ve-
locity set describes non-equilibrium effects better [29-
31, 33]. In particular, high-order models with modest
discrete velocity sets can already accurately capture non-
equilibrium effects in rarefied flows over a range of Knud-



sen numbers [29-31, 33].

Since the LB method offers a solution for simulating
gas flows ranging from continuum to rarefied, we can in-
troduce a multiscale method to couple models based on
the same LB framework. This can be accomplished by
employing higher-order LB models for non-equilibrium
flow regions and lower-order LB models for hydrody-
namic flow regions. Since the coupled LB models only
differ in the chosen discrete velocities without loss of ki-
netic information at the coupling interface, the informa-
tion exchange process can be simplified. In particular,
non-equilibrium information can be retained in lower-
order LB models, which resolves an obstacle associated
with kinetic-continuum hybrid methods. Meanwhile, the
LB model can still reserve some advantages of particle
method while eliminating the statistical noise.

II. LATTICE BOLTZMANN METHOD
A. Lattice Boltzmann equation

Historically, the LB method was developed from the
lattice gas cellular automata. The purpose was to mimic
the Navier-Stokes dynamics. However, it was revealed
that its applicability should not be limited to the hydro-
dynamic level [28, 29, 33-39]. There are different theoret-
ical frameworks for LB models e.g., entropic LB models
[38-42]. Here, to demonstrate multiscale methodology,
we will adopt commonly-used LB models based on the
Hermite expansion detailed in Refs.[28, 34-37, 43]. How-
ever, the proposed coupling approach can be equally ap-
plied to different LB models.

The original BGK equation is given as:

o e Vitg Vef=-L(f -, ()
"

where f denotes the distribution function, & the phase
velocity, p the pressure, g the body force and u the gas
viscosity. Using the well-known Chapman-Enskog expan-
sion, the collision frequency can be represented by the
ratio of pressure and gas viscosity, which is convenient
to obtain the Knudsen number definition consistent with
that of hydrodynamic models. Without losing generality,
one can define the following non-dimensional variables:
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where u is the macroscopic velocity, R the gas constant,
T the gas temperature, Ty the reference temperature, r
the spatial position and [y the characteristic length of the
flow system. The symbol hat, which denotes a dimen-
sionless value, will hereinafter be omitted. The Knudsen
number can be defined by using macroscopic properties

as below:
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Based on these non-dimensional variables, the non-
dimensional form of the BGK equation becomes

of
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where the Maxwell distribution in D-dimensional Carte-
sian coordinates can be written as
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For solving Eq.(4), the velocity space can be firstly
discretized by projecting the distribution function onto
a functional space spanned by the orthogonal Hermite
basis[28, 44]:

—a(”)(r, t)X(”) (8),
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where x(™ is the nth order Hermite polynomial, and
w(&) is the weight function, which are given by
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The equilibrium distribution should also be expanded
as[28]
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where the coefficient aét;) for the equilibrium distribution

is
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w, and &,, a = 1,--- ,d, are the weights and abscis-
sae of a Gauss-Hermite quadrature of degree > 2N re-
spectively. Therefore, the Maxwell distribution is ap-
proximated by up to N Hermite polynomials. The body
force term F'(r,€,t) = g- V¢f can also be approximated
as[28, 37
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It was shown that Eq.(4) with the first-order Hermite
expansion is sufficient to capture the rarefaction effects
for isothermal and incompressible flows[33]. On the other
hand, the second order expansion has been proven to
be able to model various Navier-Stokes level problems
[17, 19]. Therefore, the second order approximation of
the equilibrium distribution and the body force will be
used hereinafter, as given below:

U x w(€)p{1 &t [(€-w) —u + (T~ 1)(E - D)),
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where T should be unity for isothermal problems and p is
constant for incompressible problems. Since we will only
demonstrate the capability of our multiscale scheme for
isothermal problems here, the terms related to tempera-
ture will be omitted for convenience.

The discrete velocity set is revealed to be of upmost im-
portance in determining model accuracy for rarefaction
effects [33]. For the Navier-Stokes level problems, sev-
eral sets have been found to be applicable, e.g., the well
known D2Q9[45] model for two-dimensional flows. To
capture higher-order rarefaction effects, more discrete ve-
locities are required. Some modest discrete velocity sets
were shown (e.g., D2Q16 and D2Q36) to be able to cap-
ture non-equilibrium effects for flows over a broad range
of Knudsen numbers[29-31, 33]. Nevertheless, highly ac-
curate discrete velocity set is required for the flows with
large Knudsen number. Therefore, coupling high-order
and low-order LB models can save computational costs
without sacrificing simulation accuracy for gas flows with
mixed Knudsen numbers.

Discrete velocity sets can be obtained from several
ways, see Refs.[28, 39, 40, 43]. A direct method is
utilizing the roots of Hermite polynomials[28]. In one-
dimension, the discrete velocities &, are just the roots of
Hermite polynomials, and its corresponding weights are
determined by:

n!
[nx* 1 (&a)]?
For higher dimensions, the discrete velocity set can be
constructed by using the “production” formulae [28].

Once the discrete velocity set is chosen, Eq.(4) can be
discretized as
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%%t) Therefore, the LB equation, i.e. Eq.(16), is

w(é

now obtained by discretizing Eq.(4) in the velocity space.

Interface

High order LB model

— T [

iiiiiiiii Low order LB model
FIG. 1. Schematic illustration of interface treatment where
I is the grid on the interface while A and [ represent the
adjacent grids at the computational domains for high-order
and low-order LB models respectively.

B. Coupling scheme

The key to success of a coupling scheme is appropri-
ate bi-directional extraction and transfer of information
at the interface or “hand-shaking’region. Since only
LB models are used here, the extraction and transfer
of information is in principle seamless. Lower order LB
models, in their applicable capacity, can also retain non-
equilibrium information which is required by the higher-
order models. For instance, the D2Q16 model can al-
ready perform well for a range of Knudsen numbers [29-
31, 33]. The D2Q9 model, which has been used for
hydrodynamic simulations, may also capture some non-
equilibrium effects [29, 31]. This is very different from the
continuum methods in kinetic-continuum hybrid models
where non-equilibrium information is lost.

To correctly transfer information across the interface
between two LB models with different discrete veloci-
ties, the interface can be treated as a “virtual bound-
ary”. Since a properly determined interface should be
located at smooth regimes where lower-order models are
valid, the relevant information can be obtained by using
extrapolation and interpolation techniques. Firstly, the
related macroscopic quantities can be calculated by inter-
polation, so that the equilibrium part of “boundary con-
ditions”is able to be obtained by the Maxwell-Boltzmann
distribution. For the non-equilibrium part of informa-
tion, recall that not only higher-order but also lower-
order LB models can produce accurate non-equilibrium
information in the interface flow region. Moreover, the
information provided by two models should be com-
pletely same on the “boundary”. Therefore, the non-
equilibrium part of information on the “boundary”for the
low-order and high-order LB models can be obtained via
extrapolating information on the grids adjacent to the
“boundary”. It is interesting to note that similar tech-
niques have been used to construct the no-slip boundary
condition for continuum problems [46-48].

To illustrate the scheme clearly, it is convenient to
discuss in details for a one-dimensional example. How-
ever, the same methodology can be generalized for multi-
dimensional problems. The distribution function can
be decomposed into its equilibrium (f¢¢(1,¢)) and non-



equilibrium (f2¢4(I,t)) parts, i.e.,

fa(Ivt):fgq(lat)+fge(l7t)’ (17)

where the letter T denotes an interface grid (see Fig.1).
The velocity direction needs to be further classified since
different discrete velocity sets are used across the inter-
face. Hereinafter, the symbol + denotes the discrete ve-
locities (see Fig.1) pointing to the lower-order LB model
side, — to the higher-order LB model side. Firstly, the
macroscopic quantities related to the equilibrium distri-
bution can be obtained simply by the linear interpolation,
ie.,

+
pr = Pl . ph, (18)
wy = w, (19)

where [ and h are the interface neighboring grids (see
Fig.1). With these quantities, the equilibrium distribu-
tion can be written as

f;i(l’ t) ~ wa+p1{1+£a+'u1+% [(éoﬂr ~u1)2 - u?]}% (20)
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Note, €,—, €a+ and w,—, we4 belong to two different
discrete velocity sets. Based on the equilibrium distri-
bution functions, the required information can be trans-
ferred cross the interface. Meanwhile, a first order ex-
trapolation scheme is employed to supplement the infor-
mation for the non-equilibrium part, i.e.,

fgiq(Lt) = faJr(l?t) - fzi(ht)ﬂ (22)
[l (L, t) = fa-(h,t) = foL (R, 1) (23)

Therefore, the general process of the present multi-
scale LB simulation starts from initialization to get all
the necessary information, e.g., the velocity field by uti-
lizing either the lower-order or higher-order model. The
next step is to decompose the computational domain and
determine the coupling interface by choosing an appro-
priate switching criterion. The final step is to implement
the multiscale computation with lower-order models for
continuum or near-continuum regime, and higher-order
models for more rarefied regimes. Two models with dif-
ferent discrete velocity sets are coupled on the interface
as described above. The second and third steps are re-
peated until the converged solutions are obtained.

The determination of interface, i.e., choosing an ap-
propriate switching criterion (also called ‘breakdown pa-
rameters’), is important to any coupling/hybrid strategy.
Several parameters have been proposed in literature, e.g.,
the local Knudsen number based on the local spatial gra-

dients of hydrodynamic variables Kny, = % ’%’ (¢ is the

interested flow quantity, typically density, temperature
or pressure) [49], the ‘B’ parameter (B = max{|7;|, |¢|}

o oo
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i+1,j

> o, 0
X

FIG. 2. Schematic diagram of square lattices.

where 7;; is stress and ¢; is the heat flux[50]). These pa-
rameters are defined by macroscopic variables, and they
can be used in the present LB method. However, dif-
ferent parameters may give significantly different values.
Defining an appropriate switching criterion remains an
interesting problem in itself [3, 14]. Therefore, we do
not intend to investigate the switching criterion in detail
here. In the next section, we will focus on numerical test
of the present multiscale LB method.

IIT. NUMERICAL SIMULATIONS AND
DISCUSSION

A. Numerical scheme

To solve Eq.(16), various numerical schemes can be
used. For instance, if the first-order upwind finite differ-
ence scheme is chosen, one can obtain the standard form
of LB model, i.e., the stream-collision mechanism. How-
ever, for some high-order LB models, the discrete velocity
points do not coincide with the lattice points. Therefore,
one may choose a numerical scheme to break the tie be-
tween the time step and the lattice spacing used in the
standard LB simulation[51]. As some discontinuities may
occur at wall surface in the following simulations, we will
employ the forward Euler time-marching method and the
2nd TVD scheme for space discretization (see Fig.2) for
Eq.(16)[30, 52-54]. According to the characteristics of
problems, one can also choose any other appropriate nu-
merical method to solve Eq.(16).

Let fgf denote the distribution function value f, at
the nth time step in the node (z;, y;) (see Fig.2), the
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FIG. 3. Schematic illustration of wall boundary treatment.

scheme can be written as

n+1,7 n,j gax(st n,Jj n,J
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where 6, and ¢, are the uniform grid spacing, and d;
is the time step, £, and &,y denote the phase velocity
component at the x and y coordinates. The outgoing and
incoming fluxes in the node (i, j) (see Fig.2) are
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and the minmod flux limiter is
¥ (0) = max [0, min(1, ©)]. (31)

B. Diffuse reflection boundary conditions

Boundary treatment is of importance to correctly cap-
ture non-equilibrium effects, e.g. flow characteristics in

‘ Léyalak etal.
oo M-D2Q9-36
D2Q9

u/u,

FIG. 4. The velocity profile of Kramers’ problem. The sym-
bols are the data from Loyalka et al. [58]. Here, the velocity
is normalized by the reference velocity uo = —ogyA/p. The
space quantity is normalized by the mean free path. The data
in Ref.[58] were presented with the mean free path difined
by uv2RT /p. They are converted to be consistent with the
present definition.

the Knudsen layer. The simple diffuse reflection model,
which was developed by Maxwell in 1879 [55], has been
proved to be sufficiently accurate for flows over a broad
range of Knudsen numbers. The LB version of the
Maxwellian model has also been developed [56]. Its spe-
cific numerical implementation on LB simulations has
been discussed in Refs.[52, 57]. In this work, the Version
1 of boundary conditions in Ref.[52] will be employed.
For convenience, we assume

1
S%wa{l'i‘éa'u'f'i [(5&'“)2_1‘2]}» (32)
ie., f¢9 = pS. As the discretization is conducted along

a Cartesian coordinate system (see Fig.3), the treatment
of wall boundary can be described as

fae = pwiS(uwi) €a-n>0 (33)
& Z) 0 ‘ga : n‘ f(ik
amn)<
= , 34
(gun)>0

where the subscript W denotes the computational nodes
at the wall, py denotes the density on the wall nodes
k (see Fig.3), uwy, the velocity, m, the unity normal
vector to the wall. Here, the distribution function in the
ghost nodes are assumed to be identical to those on the
corresponding wall nodes.

C. Kramers’ problem

The classic Kramers’ problem is often used to assess
model capability in capturing the flow characteristics in
the Knudsen layer (up to a few mean free paths away



from the wall). In this problem, a gas fills the half-space
(y > 0) bounded by a plate at y = 0. A constant shear
rate is applied along the plate at y — oco. With this
special setup, one can investigate the nonlinear Knudsen
layer in detail. To correctly predict this Knudsen layer, a
kinetic method is required. However, for the flow region
far from the plate wall, a continuum method is sufficient.
Therefore, the problem is appropriate to test the coupling
approach described in Sec. 11 B.

In the simulations, the plate is fixed at y = 0 and
a constant shear rate is applied at y = 200A(\ denotes
the mean free path). The Maxwellian diffuse reflection
boundary condition is employed for the fixed wall. The
D2Q36 LB model is used for the region near the plate
(up to 10A from the wall) and the D2Q9 model for the
other region[59]. The results in Fig.4 show that the non-
linear velocity profile is captured well by the multiscale
LB method. It indicates that the coupling process can
effectively exchange information bi-directionally.

D. Steady Couette flow

With a simple geometrical configure, Couette flow rep-
resents many realistic shear dominant applications, e.g.
reader heads of a hard-disc driver, micro turbines and
gas bearings. Moreover, Couette flow is a theoretically
well defined problem. Therefore, it is generally used as a
benchmark problem. Particularly, its geometry is so sim-
ple that the coupling interface can be determined easily,
i.e., the flow regimes near the wall are highly rarefied
and the discontinuities occur at the wall. So we can
use higher-order LB models in the near-wall regions and
lower-order models in the middle.

In the following simulations, the lower-order LB model
will be employed for 70% of the computational region
in the middle and the higher-order model for the other
regions adjacent to the walls. The upper and lower plates
are set to be moving oppositely with the same velocity
magnitude, and the diffuse boundary condition is used
for gas/wall interactions.

In Fig.5, it is clear that the D2Q9 model is unable
to describe the Knudsen layer, which was also reported
previously [29-31], while the M-D2Q9-36 model can ob-
tain satisfactory results with the global Knudsen number
up to 0.5. When the global Knudsen number is larger
than 0.5, the multiscale method starts to deviate more
from the linearized BGK (LBGK) results. This is not
surprising since the Knudsen layers overlap and rarefac-
tion effect becomes important for the whole flow domain.
Note, a typical Navier-Stokes and DSMC hybrid model
usually become problematic when the Knudsen number
is over 0.1, e.g., see Fig.4 in Ref.[5]. To some extent, this
indicates the advantage of coupling the kinetic-based LB
models.

As has been shown[29-31, 33], various higher-order LB
models can satisfy different requirement on model accu-
racy in terms of capturing high-order rarefaction effects.

Therefore, it is possible to choose LB models with appro-
priate discrete velocity sets according to the requirements
of model accuracy and computational cost. For instance,
although the D2Q36 model is used for the regions near
the wall in the above simulations, the D2Q16 model may
also be able to perform well for Knudsen numbers up
to 0.4, see Fig.6. Therefore, there is some flexibility in
choosing various-order LB models for the present multi-
scale method.

E. Oscillatory Couette flow

The oscillatory Couette flows can mimic flows in many
microfluidic devices containing oscillating parts. Its
setup consists of a stationary plate at y = Iy and a mov-
ing plate at y = 0 which oscillates harmonically in the
lateral direction with velocity u = uyy sin(€2t). This flow
can be characterized by the Stokes number

PQL2
= 35
B u (35)

which represents the balance between the unsteady and
viscous effects. Similar to the steady case, 70% of the
computational domain is computed with the lower-order
LB model. The results will be compared to those of the
variance-reduced (VR) particle simulations and the VR
method is iscussed in the Ref.[60].

Fig.7 shows that both D2Q9 and M-D2Q9-36 models
are valid in the hydrodynamic regime when the Knudsen
number is low (Kn=0.0178). When the Knudsen number
increases and the flows are in the transition regime, Figs.8
and 9 show that the D2Q9 model along becomes inap-
propriate while the M-D2Q9-36 model still performs well.
This demonstrates that the present multiscale method
can work well for the flows with various degree of rarefac-
tion. The simulation results of the M-D2Q16-36 model
as presented in Fig.10 further indicates the flexibility in
choosing various-order LB models.

It is also interesting to investigate the computational
performance of the multiscale method. So we test the
computational performance of the D2Q9, D2Q36 and
multiscale models. For the M-D2Q9-36, 10% of the flow
region is computed by the D2Q36 model and the rest is
simulated by the D2Q9 model. The simulations are run
on a four-core PC (Intel Core 2 QuadQ6600Q2.4GHZ)
without parallelization (i.e., only one core is utilized).
The time required for each computational step is 0.114
ms for the M-D2Q9-36 model, 0.250 ms for D2Q36 model
and 0.097 ms for D2Q9 model respectively. Therefore,
the present multiscale approach can effectively reduce
the computational costs for mixed-Kn flows. Similar to
other hybrid methods, the performance of multiscale ap-
proach depends on how the computational domain is di-
vided and calculated by the lower and higher order LB
models. However, the LB framework can have some flex-
ibility since various discrete velocity sets can be chosen
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FIG. 7. Nondimensional dynamics velocity profiles for Oscillatory Couette flows where the velocity is normalized by the velocity
amplitude of oscillating plate, and ¢ denotes the period.
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FIG. 8. Nondimensional dynamics velocity profiles for oscillatory Couette flows where the velocity is normalized by the velocity
amplitude of oscillating plate, and ¢ denotes the period.
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FIG. 9. Nondimensional dynamical velocity profiles for oscillatory Couette flows where the velocity is normalized by the velocity
amplitude of the oscillating plate, and ¢ denotes the period.
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FIG. 10. Nondimensional dynamics velocity profiles for oscil-
latory Couette flows where the velocity is normalized by the
velocity amplitude of the oscillating plate, and ¢ denotes the
period.

to satisfy the requirement on model accuracy at the min-
imum computing cost. The details about how to choose
appropriate LB models can be found in many references
e.g., Refs.[28-31, 33, 40, 43]

As numerical stability may arise at the coupling inter-
face, we have tested different initial flow conditions with
random noises with the magnitude close to the moving
wall velocity for simple Couette flow (see Fig.11). For
this test case, we do not observe numerical stability prob-
lem. However, it may become an important issue for
complicated flows and high-order numerical schemes. In
this work, the first-order extrapolation scheme is used
in the interface for exchanging non-equilibrium informa-
tion. For more complicated flows, we may need to con-
sider higher-order scheme or coupling overlapping zone
to improve numerical accuracy. Finally, we have also
tested the coupling scheme for a pressure-driven 2D flow
in micro-channel. The Knudsen number is 0.03 at the
channel outlet, and the channel length L and hight H
are 100 and 1 respectively. The extrapolated bound-
ary conditions are used at the inlet and outlet. And the
densities at the inlet and outlet are renormalized to be
pin = 1.3 and pour = 1 (see Ref.[62] for detail). For M-
D2Q9-36 model, the coupling interface is a cross-sectional
line close to the inlet so that 8% of the channel length is
simulated by the D2Q9 model. This simple case demon-
strates that our multiscale model can obtain a velocity
profile in good agreement with the D2Q36 model while
the D2Q9 model has significant difference (see Fig.12).
More effort is required to extend the proposed multiscale
model for 2D and 3D complicated flows. In addition, a
dynamical scheme to determine model coupling interface
needs to be developed.

IV. CONCLUDING REMARKS

A multiscale LB method utilizing low-order and high-
order LB models has been developed for gas flow sim-

0.5 - 1

-0.5 - 1

-15 ¢ 1

0 01 02 03 04 05 06 07 08 09 1

t=10

FIG. 11. The evolution of velocity profile from a random
initial condition. The velocity is normalized by the velocity
difference between two plates.
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FIG. 12. The velocity profile at the outlet. The velocity is
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ulation. As a hierarchy of LB models with various dis-
crete velocity sets can be chosen, the multiscale method
offers flexibility in designing coupling strategy to strike

10

appropriate balance between model accuracy and com-
putational efficiency. The present coupling process is
simple by using interpolation and extrapolation pro-
cesses. Therefore, the difficulty associated with kinetic-
continuum hybrid models which couple two different
methods becomes amenable. Furthermore, the present
methodology can be extended to develop other kinetic-
kinetic hybrid models e.g. using discrete velocity models.
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[45] Notel, we follow the conventional terminology for the LB
models as first introduced in Ref.[61] dubbed as DnQm
model i.e. n dimensional model with m discrete velocities.
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order model respectively.
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