

Strathprints Institutional Repository

Khan, Khaula Naeem and Lamb, Wilson and Mcbride, Adam (2011) *Fractional calculus of periodic distributions.* Fractional Calculus and Applied Analysis, 14 (2). pp. 260-283.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Fractional Calculus of Periodic Distributions

K N Khan

National University of Science and Technology Islamabad Pakistan e-mail khaula_naeem@yahoo.com

W Lamb and A C McBride

Department of Mathematics and Statistics University of Strathclyde Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH, U.K. e-mails: wilson.lamb@strath.ac.uk; a.c.mcbride@strath.ac.uk

November 2010

Abstract

Two approaches for defining fractional derivatives of periodic distributions are presented. The first is a distributional version of the Weyl fractional derivative in which a derivative of arbitrary order of a periodic distribution is defined via Fourier series. The second is based on the Grünwald-Letnikov formula for defining a fractional derivative as a limit of a fractional difference quotient. The equivalence of the two approaches is established and an application to a fractional diffusion equation posed in a space of periodic distributions is also discussed.

AMS subject classifications: 26A33, 46F05, 47A70, 47D03

Abbreviated Title: Fractional Calculus.

Key words: Fractional derivatives; fractional integrals; distributions; semigroups of operators.

1 Introduction

It is generally regarded that the modern theory of fractional calculus began with the work of Riemann and Liouville. Motivated by the fact that $D^n(e^{ax}) = a^n e^{ax}$, n = 0, 1, 2, ..., Liouville, in 1832, defined the fractional derivative $D^{\alpha}\phi$ of the function

$$\phi(x) = \sum_{k=0}^{\infty} c_k e^{a_k x}$$

by

$$(D^{\alpha}\phi)(x) = \sum_{k=0}^{\infty} c_k a_k^{\alpha} e^{a_k x}, \qquad (1.1)$$

provided the series converges. Other pioneering ideas due to Liouville which influenced later work on fractional calculus include the fractional integration formula

$$(D^{-\alpha}\phi)(x) = \frac{1}{(-1)^{\alpha}\Gamma(\alpha)} \int_x^{\infty} (t-x)^{\alpha-1}\phi(t) dt, \qquad x \in \mathbb{R}, \, \alpha > 0, \tag{1.2}$$

and also the notion of a fractional derivative as a limit of a fractional difference quotient. In 1847 Riemann produced an alternative formula to (1.2) for a fractional integral of order α , namely

$$(L^{\alpha}\phi)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} \phi(t) \, dt, \qquad x > 0, \, \alpha > 0.$$
(1.3)

In modern terminology, (1.3) is referred to as the Riemann-Liouville fractional integral of order α , while (1.2) (with the factor $(-1)^{\alpha}$ omitted) is the Weyl fractional integral of order α .

Later, Grünwald (1867) and Letnikov (1868) pursued Liouville's earlier idea of obtaining a theory of fractional differentiation via the limit of some fractional difference quotient. Both used the formula

$$(D^{\alpha}\phi)(x) = \lim_{t \to 0} \frac{(\triangle_t^{\alpha}\phi)(x)}{t^{\alpha}}, \qquad (1.4)$$

where $riangle_t^{\alpha}$ is a fractional difference operator defined by

$$(\triangle_t^{\alpha}\phi)(x) = \sum_{j=0}^{\infty} (-1)^j \binom{\alpha}{j} \phi(x-tj), \quad \alpha > 0.$$
(1.5)

Liouville's first formula, (1.1), can also be regarded as the forerunner of a theory of fractional calculus introduced by Weyl in 1917. In this case, the α^{th} fractional integral and α^{th} fractional derivative of a 2π -periodic function ϕ are defined, respectively, by

$$(D^{-\alpha}\phi)(x) = \sum_{l=-\infty}^{\infty} (il)^{-\alpha}\hat{\phi}(l)e^{ilx}, \quad (D^{\alpha}\phi)(x) = \sum_{l=-\infty}^{\infty} (il)^{\alpha}\hat{\phi}(l)e^{ilx}, \tag{1.6}$$

where $\alpha > 0$ and

$$\hat{\phi}(l) = \frac{1}{2\pi} \int_0^{2\pi} e^{-ilt} \phi(t) dt, \qquad l = \pm 1, \pm 2, \dots, \quad \hat{\phi}(0) = 0.$$

This use of Fourier series, or, equivalently, the finite (or discrete) Fourier transform can be regarded as the most natural way of defining fractional integrals and derivatives of a periodic function ϕ . Moroever, if we consider formula (1.3) for the case when ϕ is a 2π -periodic function, and proceed formally, then we obtain

$$L^{\alpha}\phi \sim \sum_{l=-\infty}^{\infty} \hat{\phi}(l) L^{\alpha}\psi_l , \qquad (1.7)$$

where

$$\psi_l(x) = e^{ilx}.\tag{1.8}$$

From results in [2, pp.420-427], when $0 < \alpha < 1$ and the lower limit of integration in the definition of $L^{\alpha}\phi$ is replaced by $-\infty$, it can be shown that

$$L^{\alpha}\psi_{l} = (il)^{-\alpha}\psi_{l}, \quad \forall l \in \mathbb{Z} : l \neq 0.$$
(1.9)

Hence, if we define

 $\widehat{L^{\alpha}\phi}(0) = 0,$

then it follows that

$$L^{\alpha}\phi \sim \sum_{l\neq 0} (il)^{-\alpha} \hat{\phi}(l) \psi_{l}, \qquad (1.10)$$

showing that the definition of $D^{-\alpha}\phi$ given in (1.6) coincides with $L^{\alpha}\phi$ for $0 < \alpha < 1$. Thus the formulae in (1.6) emerge as the natural candidates for defining fractional derivatives and integrals of periodic functions for any $\alpha > 0$.

A rigorous treatment of the Weyl approach to fractional calculus, based on (1.6), can be carried out in the Banach spaces

$$L_{2\pi}^p := \{ \phi \text{ is } 2\pi \text{-periodic on } \mathbb{R} \text{ and } \|\phi\|_{L_{2\pi}^p} < \infty \}$$

$$(1.11)$$

where

$$\|\phi\|_{L^p_{2\pi}} := \left\{ \frac{1}{2\pi} \int_0^{2\pi} |\phi(x)|^p \, dx \right\}^{1/p}, \quad 1 \le p < \infty \,. \tag{1.12}$$

The factor $1/2\pi$ is convenient for Fourier analysis. As described in [3], formula (1.10) can be used to motivate an alternative definition of a fractional integral, $I^{\alpha}\phi$, expressed as a convolution integral, that will make sense for any $\alpha > 0$ and $\phi \in L^p_{2\pi}$. The key to obtaining a formula for I^{α} is to rewrite the right-hand side of (1.10) as

$$\sum_{l=-\infty}^{\infty} \widehat{\eta_{\alpha}}(l) \hat{\phi}(l) \psi_l \tag{1.13}$$

where

$$\widehat{\eta_{\alpha}}(l) = \begin{cases} (il)^{-\alpha} & \text{when } l \neq 0, \\ 0 & \text{when } l = 0. \end{cases}$$

The corresponding function η_{α} which has the above sequence $\{\widehat{\eta_{\alpha}}\}$ as its Fourier coefficients is given by

$$\eta_{\alpha}(x) := \sum_{l \neq 0} (il)^{-\alpha} e^{ilx}.$$
(1.14)

Since $\eta_{\alpha} \in L^{1}_{2\pi}$ for all $\alpha > 0$, it can be used as the kernel for an associated convolution integral operator, I^{α} , defined by

$$(I^{\alpha}\phi)(x) = (\eta_{\alpha} * \phi)(x) = \frac{1}{2\pi} \int_{0}^{2\pi} \eta_{\alpha}(x-u) \phi(u) \, du \,. \tag{1.15}$$

It follows from [2, pp.8-10] that I^{α} is a bounded linear operator on $L^{p}_{2\pi}$ for all $p \in [1, \infty)$ with

$$||I^{\alpha}\phi||_{L^{p}_{2\pi}} \le ||\eta_{\alpha}||_{L^{1}_{2\pi}} ||\phi||_{L^{p}_{2\pi}} \quad \forall \phi \in L^{p}_{2\pi}.$$

Moreover, from the convolution theorem for periodic functions [2, Theorem 4.1.3], we obtain

$$(\widehat{\eta_{\alpha}} \ast \widehat{\phi})(l) = \widehat{\eta_{\alpha}}(l)\widehat{\phi}(l) \quad \forall l \in \mathbb{Z}$$
$$= \begin{cases} (il)^{-\alpha}\widehat{\phi}(l) & \text{when } l \neq 0, \\ 0 & \text{when } l = 0. \end{cases}$$
(1.16)

On comparing this with (1.6) and (1.10), it follows that I^{α} can justifiably be regarded as a fractional integral operator on periodic functions and can be defined by

$$(I^{\alpha}\phi)(x) = \sum_{l\neq 0} (il)^{-\alpha} \hat{\phi}(l) \psi_l.$$

$$(1.17)$$

Although $I^{\alpha}\phi$ is well defined as a function in $L^p_{2\pi}$ for all $\phi \in L^p_{2\pi}$, the same cannot be said for the Weyl fractional derivative of order α , given by

$$D^{\alpha}\phi \sim \sum_{l=-\infty}^{\infty} (il)^{\alpha} \hat{\phi}(l) \psi_l, \quad \alpha > 0, \qquad (1.18)$$

where $(il)^{\alpha}$ is taken to be 0 when l = 0. For example, in the particular case p = 2, when we have the Hilbert space $L^2_{2\pi}$, Parseval's equation can be used to show that the maximal domain for the fractional differential operator in (1.18) is

$$Dom(D^{\alpha}) := \left\{ \phi \in L^2_{2\pi} : D^{\alpha}\phi \in L^2_{2\pi} \right\} = \left\{ \phi \in L^2_{2\pi} : \sum_{l=-\infty}^{\infty} l^{2\alpha} |\hat{\phi}(l)|^2 < \infty \right\}.$$
 (1.19)

As we shall establish later, one way of extending the class of functions on which D^{α} is defined is to work in a distributional setting.

The Banach spaces $L_{2\pi}^p$ were also used by Butzer and Westphal [3] in their investigations into the difference quotient approach to fractional derivatives, where a (strong) Liouville-Grünwald fractional derivative $D^{<\alpha>}$ of order α is defined by

$$D^{<\alpha>}\phi := s - \lim_{t \to 0^+} \frac{\triangle_t^{\alpha} \phi}{t^{\alpha}}, \qquad (1.20)$$

provided that the limit exists in $L_{2\pi}^p$. One of the main results obtained in [3] is the following theorem.

Theorem 1.1 The following statements are equivalent for $\phi \in L^p_{2\pi}$, $1 \le p < \infty$, and $\alpha > 0$.

- (i) $D^{<\alpha>}\phi \in L^p_{2\pi}$.
- (ii) There exists $\psi \in L^p_{2\pi}$ such that $\hat{\psi}(l) = (il)^{\alpha} \hat{\phi}(l), l \in \mathbb{Z}$.
- (iii) There exists $\psi \in L^p_{2\pi}$ such that $I^{\alpha}\psi = \phi \hat{\phi}(0)$ almost everywhere, where I^{α} is defined by (1.15).

If (i) is satisfied, then $D^{<\alpha>}\phi = \psi$, where $\psi \in L^p_{2\pi}$ is the function defined in (ii). Similarly if (ii) is satisfied then $D^{<\alpha>}\phi = \psi$.

Proof: See [3, Theorem 4.1].

Our main aim in this paper is to extend the work of Butzer and Westphal in [3] to the case of periodic distributions. Distributional versions of the Riemann-Liouville and Weyl fractional integrals (and the related Erdélyi-Kober operators) have been produced by Erdélyi [4] and McBride [7]. However, it appears that no attempt has been made to define fractional derivatives of distributions via fractional difference quotients. Here we adopt a strategy that we applied successfully in [6] to produce a distributional theory of the fractional Fourier transform on the space of tempered distributions. Hence we begin with an appropriate symmetric differential operator T with a complete orthonormal system of smooth eigenfunctions $\{\psi_j\}_{j\in J}$ in a Hilbert space H. We then follow the theory developed by Zemanian in [11, Chapter 9] to construct a space $\mathcal{A}'_{2\pi}$ of generalised functions in which all elements can be represented by Fourier expansions in terms of $\{\psi_j\}_{j\in\mathbb{Z}}$, with the series converging in the weak* topology.

In Section 2, we introduce the spaces of test-functions $\mathcal{A}_{2\pi}$ and distributions $\mathcal{A}'_{2\pi}$ and demonstrate that $\mathcal{A}'_{2\pi}$ can be identified with the space $P'_{2\pi}$ of -periodic distributions defined in [10, Chapter 11].

Sections 3 and 4 are concerned with the Fourier series-based approach and difference quotient approach to fractional calculus on $\mathcal{A}_{2\pi}$ and $\mathcal{A}'_{2\pi}$. By modifying the arguments presented in [3], we establish that both approaches lead to equivalent definitions of the α^{th} fractional derivative of a 2π -periodic distribution f. Finally, in Section 5, we consider fractional diffusion equations involving distributional initial conditions.

2 Spaces of Periodic Test-Functions and Distributions

In [11, Chapter 9], Zemanian discusses the convergence of orthonormal series of eigenfunctions in a complete multinormed space \mathcal{A} , constructed around a symmetric differential operator T in the Hilbert space $L^2(I)$, where $I \subseteq \mathbb{R}$ is an interval. We consider the case when

$$I = (0, 2\pi), T = -iD, \psi_l(x) = e^{ilx}, l \in \mathbb{Z}, \text{and } \lambda_l = l,$$
(2.1)

given in [11, Example 9.2-1]. Note that in [11, Example 9.2-1], a normalising factor of $1/\sqrt{2\pi}$ appears in the definition of ψ_l . This is unnecessary here as we choose to work with a weighted version, $L^2_{2\pi}(I)$, of the usual $L^2(I)$ space in which the inner product and norm are given by

$$(\phi,\psi)_{L^{2}_{2\pi}(I)} := \frac{1}{2\pi} \int_{0}^{2\pi} \phi(x)\overline{\psi(x)} \, dx, \quad \|\phi\|_{L^{2}_{2\pi}(I)} := \left[\frac{1}{2\pi} \int_{0}^{2\pi} |\phi(x)|^{2} \, dx\right]^{1/2}. \tag{2.2}$$

Note that

 $(\phi,\psi)_{L^2_{2\pi}(I)} = (\phi,\psi)_{L^2_{2\pi}}$ for all periodic functions $\phi, \psi \in L^2_{2\pi}$.

The domain, D(T), of the operator T is given by

$$D(T) := \left\{ \phi \in C^{\infty}(I) : T^{k} \phi \in L^{2}_{2\pi}(I), \ (T^{k} \phi, \psi_{l})_{L^{2}_{2\pi}(I)} = (\phi, T^{k} \psi_{l})_{L^{2}_{2\pi}(I)}, \forall \ k, l = 0, 1, \dots \right\}.$$
(2.3)

A Fréchet space, \mathcal{A} , is obtained from D(T) by imposing on D(T) the topology generated by the countable multinorm $\{\beta_k\}_{k=0}^{\infty}$, where

$$\beta_k(\phi) := \left(\frac{1}{2\pi} \int_0^{2\pi} |(-i)^k D^k \phi(x)|^2 dx\right)^{1/2} = \left(\frac{1}{2\pi} \int_0^{2\pi} |\phi^{(k)}(x)|^2 dx\right)^{1/2}.$$

We now define a space of periodic test-functions $\mathcal{A}_{2\pi}$ and corresponding space of periodic distributions $\mathcal{A}'_{2\pi}$ that are closely related to the spaces $P_{2\pi}$ and $P'_{2\pi}$ defined in [10, Chapter 11]. The space $P_{2\pi}$ consists of 2π -periodic test-functions, and is equipped with the topology generated by multinorms $\{\eta_k\}_{k=0}^{\infty}$, where

$$\eta_k(\phi) := \sup_{x \in \mathbb{R}} |(D^k \phi)(x)| = || D^k \phi ||_{\infty}, \qquad k \in \mathbb{N}_0, \ \phi \in C^{\infty}_{2\pi},$$

and $C_{2\pi}^{\infty}$ is the space of infinitely differentiable, 2π -periodic functions. As stated in [11, pp.256 - 257], each $\phi \in \mathcal{A}$ can be extended to a smooth periodic function $\phi^{per} \in P_{2\pi}$, via

$$\phi^{per}(x) := \phi(x), \quad 0 < x < 2\pi,$$
(2.4)

$$\phi^{per}(0) := \lim_{x \to 0^+} \phi(x), \quad \phi^{per}(2\pi) := \lim_{x \to 2\pi^-} \phi(x), \tag{2.5}$$

$$\phi^{per}(x+2\pi) := \phi^{per}(x), \quad -\infty < x < \infty.$$
 (2.6)

Also $\{\phi_n\}$ converges in \mathcal{A} if and only if $\{\phi_n^{per}\}$ converges in $P_{2\pi}$. Consequently, the test-function space \mathcal{A} can be identified through this extension with $P_{2\pi}$.

Motivated by the fact that each $\phi \in \mathcal{A}$ gives rise to an infinitely differentiable, periodic function on \mathbb{R} , we introduce the following "periodic version" of \mathcal{A} , denoted by $\mathcal{A}_{2\pi}$.

Definition 2.1 We define $\mathcal{A}_{2\pi}$ to be the vector space $C_{2\pi}^{\infty}$ equipped with the topology generated by the family of seminorms $\{\rho_k\}_{k=0}^{\infty}$, where

$$\rho_k(\varphi) := \| T^k \varphi \|_{L^2_{2\pi}} = \| D^k \varphi \|_{L^2_{2\pi}}, \ \phi \in \mathcal{A}_{2\pi}, \ T = -iD.$$
(2.7)

Clearly, if $\varphi \in \mathcal{A}_{2\pi}$ then the function φ restricted to the interval $[0, 2\pi]$, denoted by $\varphi_{|_{[0,2\pi]}}$ or φ^{res} , lies in \mathcal{A} . It is easy to show that the mapping $\mathcal{R} : \mathcal{A}_{2\pi} \to \mathcal{A}$, defined by $\mathcal{R}\varphi := \varphi^{res}$, is a homeomorphism from $\mathcal{A}_{2\pi}$ onto \mathcal{A} with inverse $\mathcal{R}^{-1} : \mathcal{A} \to \mathcal{A}_{2\pi}$ defined by $\mathcal{R}^{-1}\psi = \psi^{per}$. Consequently, the spaces \mathcal{A} and $\mathcal{A}_{2\pi}$ are homeomorphic and this means that all the properties we require of $\mathcal{A}_{2\pi}$ are inherited from \mathcal{A} . Therefore, from the results presented in [11, pp.253-254], $\mathcal{A}_{2\pi}$ is not only a Fréchet space but also a test-function space.

Lemma 2.2 The operators T^r and D^r are continuous linear operators from $\mathcal{A}_{2\pi}$ into $\mathcal{A}_{2\pi}$ for each $r \in \mathbb{N}$; i.e $T^r \in L(\mathcal{A}_{2\pi})$ and $D^r \in L(\mathcal{A}_{2\pi})$, where $L(\mathcal{A}_{2\pi})$ denotes the vector space of continuous liner operators from $\mathcal{A}_{2\pi}$ into $\mathcal{A}_{2\pi}$.

Proof: The proof follows from the fact that the restricted operators T^r and D^r are continuous on \mathcal{A} , as the topologies defined on \mathcal{A} and $\mathcal{A}_{2\pi}$ are defined via the same expressions.

Lemma 2.3 Let K be the convolution integral operator defined on $\mathcal{A}_{2\pi}$ by

$$(K\phi)(x) = \frac{1}{2\pi} \int_0^{2\pi} k(x-u)\phi(u) \ du = \frac{1}{2\pi} \int_0^{2\pi} k(u)\phi(x-u) \ du.$$
(2.8)

If $k \in L^1_{2\pi}$, then $K \in L(\mathcal{A}_{2\pi})$.

Proof: It can be shown that

$$D^r K \phi = K D^r \phi, \forall \phi \in \mathcal{A}_{2\pi} \text{ and } r = 0, 1, 2, \dots$$

Hence, by [2, pp.8-10],

$$\rho_r(K\phi) = \|KD^r\phi\|_{L^2_{2\pi}} \le \|k\|_{L^1_{2\pi}} \|D^r\phi\|_{L^2_{2\pi}} = \|k\|_{L^1_{2\pi}} \rho_r(\phi).$$

The following results on the summability of functions in $A_{2\pi}$ can be established by using the same arguments as for the theory presented in [11, pp.254-255].

Lemma 2.4

- (i) The functions $\{(\varphi, \psi_l)_{L^2_{2\pi}}\psi_l\}_{l\in\mathbb{Z}}$ are summable to φ in $\mathcal{A}_{2\pi}$ for each $\varphi \in \mathcal{A}_{2\pi}$.
- (ii) Let $\{a_l\}_{l\in\mathbb{Z}}$ be a family of scalars. Then the functions $\{a_l\psi_l\}_{l\in\mathbb{Z}}$ are summable to some function $\phi \in \mathcal{A}_{2\pi}$ if and only if $\sum_{l\in\mathbb{Z}} l^{2k} |a_l|^2 < \infty$ for each $k \in \mathbb{N}_0$.

We now turn to the space $\mathcal{A}'_{2\pi}$, the dual of $\mathcal{A}_{2\pi}$, and equip $\mathcal{A}'_{2\pi}$ with the weak* topology. Each $f \in \mathcal{A}'_{2\pi}$ assigns a unique complex number $\langle f, \phi \rangle$ to each $\phi \in \mathcal{A}_{2\pi}$. In the following, it is convenient to use the notation

$$2\pi(f,\phi) := < f, \phi >, \qquad f \in \mathcal{A}'_{2\pi}, \phi \in \mathcal{A}_{2\pi}.$$

Note that each $\varphi \in L^2_{2\pi}$ generates a regular generalised function $\widetilde{\varphi} \in \mathcal{A}'_{2\pi}$ defined by

$$<\widetilde{\varphi}, \overline{\phi}> = 2\pi(\widetilde{\varphi}, \phi) := 2\pi(\varphi, \phi)_{L^{2}_{2\pi}} = \int_{0}^{2\pi} \varphi(x)\overline{\phi(x)} \, dx.$$

$$(2.9)$$

Also $L_{2\pi}^2$ is continuously imbedded in $\mathcal{A}'_{2\pi}$. Since $\psi_l \in \mathcal{A}_{2\pi}$, $\{\widetilde{\psi}_l\}_{l \in \mathbb{Z}}$ is a sequence of regular generalised functions in $\mathcal{A}'_{2\pi}$. Consequently we can discuss the convergence in $\mathcal{A}'_{2\pi}$ of infinite series of the form $\sum_{l=1}^{\infty} b_l \widetilde{\psi}_l$.

 $l=-\infty$

Theorem 2.5

- (i) Each $f \in \mathcal{A}'_{2\pi}$ can be expressed as $f = \sum_{l \in \mathbb{Z}} (f, \psi_l) \widetilde{\psi}_l = \lim_{N \to \infty} \sum_{l=-N}^N (f, \psi_l) \widetilde{\psi}_l$ where the series converges in $\mathcal{A}'_{2\pi}$.
- (ii) Let $\{b_l\}_{l\in\mathbb{Z}} \subset \mathbb{C}$. Then $\sum_{n\in\mathbb{Z}} b_l \widetilde{\psi}_l = f$ in $\mathcal{A}'_{2\pi}$ if there exists $q \in \mathbb{N}_0$ such that $\sum_{l\neq 0} l^{-2q} |b_l|^2$ is convergent in \mathbb{R} .

Proof: The proof is analogous to that of [11, Theorem 9.6-1].

For \widetilde{T} to be an extension of T defined on $\mathcal{A}'_{2\pi}$, we require $\widetilde{T}\widetilde{\varphi} = \widetilde{T}\widetilde{\varphi}$, for all $\varphi \in D(T)$. Then

$$(\widetilde{T}\widetilde{\varphi},\phi) = (\widetilde{T}\varphi,\phi) = (T\varphi,\phi)_{L^2_{2\pi}} = (\varphi,T\phi)_{L^2_{2\pi}} = (\widetilde{\varphi},T\phi).$$

Therefore the operator \widetilde{T} on $\mathcal{A}'_{2\pi}$ is defined by

$$(\widetilde{T}f,\phi) := (f,T\phi) \quad f \in \mathcal{A}'_{2\pi}, \phi \in \mathcal{A}_{2\pi}.$$
(2.10)

Similarly, the generalised differential operator \widetilde{D} on $\mathcal{A}'_{2\pi}$ is defined via

$$(Df,\phi) := (f, -D\phi) \quad f \in \mathcal{A}'_{2\pi}, \phi \in \mathcal{A}_{2\pi}.$$
(2.11)

Theorem 2.6 For each $r \in \mathbb{N}$, $\widetilde{T}^r, \widetilde{D}^r \in L(\mathcal{A}'_{2\pi})$.

Proof: For each $r \in \mathbb{N}$, $\widetilde{T^r} = \widetilde{T}^r$ and $\widetilde{D^r} = \widetilde{D}^r$. It follows that \widetilde{T}^r and \widetilde{D}^r are the adjoints of T^r and $(-D)^r$ respectively. As T^r and $(-D)^r$ are in $L(\mathcal{A}_{2\pi})$, the result follows from [11, Theorem 1.10-1].

The above discussion enables us to develop a theory of fractional calculus on the spaces of testfunctions $\mathcal{A}_{2\pi}$ and of periodic distributions $\mathcal{A}'_{2\pi}$.

3 Fractional Calculus of Periodic Test Functions

In this section, we produce a general theory of fractional calculus operators defined on the space of test-functions $\mathcal{A}_{2\pi}$. By continuity of D^r on $\mathcal{A}_{2\pi}$ for each $r \in \mathbb{N}$, we have

$$D^{r}\phi = \sum_{l \in \mathbb{Z}} (\phi, \psi_{l})_{L^{2}_{2\pi}} D^{r}\psi_{l} = \sum_{l \in \mathbb{Z}} (\phi, \psi_{l})_{L^{2}_{2\pi}} (il)^{r}\psi_{l}, \quad \forall \ \phi \in \mathcal{A}_{2\pi}.$$
(3.1)

Motivated by (3.1), we define the fractional derivative D^{α} of order $\alpha > 0$ on $\mathcal{A}_{2\pi}$ by

$$D^{\alpha}\phi = \sum_{l \in \mathbb{Z}} (\phi, \psi_l)_{L^2_{2\pi}} (il)^{\alpha} \psi_l.$$
(3.2)

This definition is identical to the Weyl formula (1.18) for D^{α} on $L^2_{2\pi}$. In the following lemmas, we discuss the properties of D^{α} on the space $\mathcal{A}_{2\pi}$.

Theorem 3.1 For each $\alpha > 0$, $D^{\alpha} \in L(\mathcal{A}_{2\pi})$.

Proof: We can write $D^{\alpha}\phi = \sum_{l \in \mathbb{Z}} a_l \psi_l$, where $a_l = (\phi, \psi_l)_{L^2_{2\pi}} (il)^{\alpha}$. From Theorem 2.4, $\sum_{l \in \mathbb{Z}} a_l \psi_l$ converges in $\mathcal{A}_{2\pi}$ if and only if $\sum_{l \in \mathbb{Z}} |a_l|^2 |l|^{2k}$ converges for each $k \in \mathbb{N}_0$. Now, for each $\phi \in \mathcal{A}_{2\pi}$, $\sum_{l \in \mathbb{Z}} |(\phi, \psi_l)|^2 l^{2N}$ converges for any $N \in \mathbb{N}_0$. Suppose for any given $\alpha > 0$ and $k \in \mathbb{N}_0$, we choose N such that $(\alpha + k) < N$. Then

$$\sum_{l \in \mathbb{Z}} |(\phi, \psi_l)_{L^2_{2\pi}}|^2 l^{2(\alpha+k)} \le \sum_{l \in \mathbb{Z}} |(\phi, \psi_l)_{L^2_{2\pi}}|^2 l^{2N} < \infty.$$

Linearity of D^{α} on $\mathcal{A}_{2\pi}$ is clear from the definition. To prove continuity of D^{α} , we proceed as follows. Given $\alpha > 0$, there exists $N \in \mathbb{N}_0$ such that $\alpha \in (N, N + 1]$, and so

$$[\rho_k(D^{\alpha}\phi)]^2 = \|\sum_{l\in\mathbb{Z}} (\phi,\psi_l)_{L^2_{2\pi}} (il)^{\alpha+k} \psi_l\|_{L^2_{2\pi}}^2 \le \sum_{l\in\mathbb{Z}} |(\phi,\psi_l)_{L^2_{2\pi}}|^2 |l|^{2(N+1)+2k} = \|D^{k+N+1}\phi\|_{L^2_{2\pi}}^2.$$

Therefore

$$\rho_k(D^{\alpha}\phi) \le \rho_{k+N+1}(\phi),$$

and the result follows.

We now express I^{α} in the form of a Fourier series as

$$I^{\alpha}\phi := \sum_{l \neq 0} (il)^{-\alpha} (\phi, \psi_l)_{L^2_{2\pi}} \psi_l.$$
(3.3)

It is clear from Theorem 2.4 that for each $\phi \in \mathcal{A}_{2\pi}$, the series in (3.3) converges in $\mathcal{A}_{2\pi}$. The operator I^{α} can also be expressed as the convolution integral operator (1.15). From Lemma 2.3, we deduce that $I^{\alpha} \in L(\mathcal{A}_{2\pi})$. The following theorem shows that I^{α} and D^{α} satisfy the expected properties of fractional integral and differential operators on the space of test-functions $\mathcal{A}_{2\pi}$.

Theorem 3.2 For all α , $\beta > 0$ and $\phi \in \mathcal{A}_{2\pi}$

(i)
$$I^{\alpha}I^{\beta}\phi = I^{\alpha+\beta}\phi, \ D^{\alpha}D^{\beta}\phi = D^{\alpha+\beta}\phi,$$

(ii) $D^{\alpha}I^{\alpha}\phi = I^{\alpha}D^{\alpha}\phi = \phi - \hat{\phi}(0).$

Proof: The proof is similar to that of [3, Proposition 4.1].

The fact that D^{α} is defined as a continuous linear operator on the entire space $\mathcal{A}_{2\pi}$ is one advantage of working within this Fréchet space framework. Recall that in the $L^2_{2\pi}$ setting, D^{α} is not continuous and is not defined on all of $L^2_{2\pi}$. Unfortunately, to achieve these preferred properties of D^{α} , we have severely restricted the class of functions on which D^{α} acts. However, this drawback can be overcome by extending the theory to the generalised functions in $\mathcal{A}'_{2\pi}$. As we shall again use the adjoint method to define the distributional versions of the operators, we must first introduce the fractional differential operator $(-D)^{\alpha}$, given by

$$(-D)^{\alpha}\phi = \sum_{l\in\mathbb{Z}} (-il)^{\alpha} (\phi, \psi_l)_{L^2_{2\pi}} \psi_l, \quad \phi \in \mathcal{A}_{2\pi}.$$
(3.4)

An argument similar to that used in the proof of Theorem 3.1 shows that $(-D)^{\alpha} \in L(\mathcal{A}_{2\pi})$ for each $\alpha > 0$.

Similarly, we can define a fractional integral operator $(-I)^{\alpha}$ by

$$(-I)^{\alpha}\phi = \sum_{l\neq 0} (-il)^{-\alpha} (\phi, \psi_l)_{L^2_{2\pi}} \psi_l, \quad \phi \in \mathcal{A}_{2\pi}.$$
 (3.5)

It is straightforward to show that $(-I)^{\alpha}$ and $(-D)^{\alpha}$ satisfy the usual properties (analogous to those listed in Theorem 3.2) of fractional integral and differential operators on the space of test-functions $\mathcal{A}_{2\pi}$.

One of the key results obtained by Butzer and Westphal in [3] is a connection between (1.18) and (1.20). The first step towards this is an explicit formula for the each Fourier coefficient of the fractional difference $\Delta_t^{\alpha} \phi$, namely

$$(\triangle_t^{\alpha}\phi)\hat{}(l) := \frac{1}{2\pi} \int_0^{2\pi} \phi(x) e^{-ilx} \sum_{j=0}^{\infty} (-1)^j \binom{\alpha}{j} e^{-iltj} dx = (\frac{1-e^{-ilt}}{t})^{\alpha} \hat{\phi}(l), \ \phi \in L^p_{2\pi}, l \in \mathbb{Z}.$$
(3.6)

Consequently,

$$\lim_{t \to 0^+} \left(\frac{\Delta_t^{\alpha} \phi}{t^{\alpha}}\right) (l) = (il)^{\alpha} \hat{\phi}(l).$$
(3.7)

To establish the results stated in Theorem 1.1 for the strong Liouville-Grünwald fractional derivative defined on $L^p_{2\pi}(1 \le p < \infty)$ by (1.20), Butzer and Westphal made use of the function

$$p_{\alpha}(x) := \begin{cases} \frac{1}{\Gamma(\alpha)} \sum_{0 \le j < x} (-1)^{j} {\alpha \choose j} (x-j)^{\alpha-1}, & (0 < x < \infty) \\ 0 & (-\infty < x < 0) \end{cases}$$
(3.8)

where $\alpha > 0$. This function has the following properties for each $\alpha > 0$ (see [3, Proposition 3.1]):

$$p_{\alpha} \in L^{1}(-\infty,\infty), \quad \int_{-\infty}^{\infty} p_{\alpha}(u) \ du = 1,$$
(3.9)

and

$$(\mathcal{F}p_{\alpha})(v) = \begin{cases} (iv)^{-\alpha}(1-e^{-iv})^{\alpha}, & v \neq 0\\ 1 & v = 0, \end{cases}$$
(3.10)

where $\mathcal{F}p_{\alpha}$ denotes the Fourier transform of p_{α} . In addition, p_{α} can be used to construct a related function χ_{α} defined by

$$\chi_{\alpha}(x;t) = 2\pi \sum_{\substack{\frac{-x}{2\pi} < j < \infty}} \frac{p_{\alpha}(\frac{x+2\pi j}{t})}{t} \qquad (t>0).$$

Then, from [2] and [3, Lemma 3.1], for each $\alpha > 0$

$$\chi_{\alpha}(.;t) \in L^{1}_{2\pi}, \ \int_{0}^{2\pi} \chi_{\alpha}(u,t) \ du = 2\pi,$$

$$\widehat{\chi_{\alpha}(.;t)}(k) = \begin{cases} (ikt)^{-\alpha} (1-e^{-ikt})^{\alpha}, & k \neq 0\\ 1 & k = 0, \end{cases}$$
(3.11)

and

$$\chi_{\alpha}(x;t) = t^{-\alpha}(\triangle_{t}^{\alpha}\eta_{\alpha})(x) + 1 = t^{-\alpha}\sum_{j=0}^{\infty} (-1)^{j} \binom{\alpha}{j} \eta_{\alpha}(x-tj) + 1, \qquad (3.12)$$

where η_{α} is defined by (1.14). Moreover, on setting

$$(J_{t,\alpha}\phi)(x) := \frac{1}{2\pi} \int_0^{2\pi} \chi_{\alpha}(x-u;t)\phi(u) \ du,$$

we have

$$\lim_{t \to 0^+} \|J_{t,\alpha}\phi - \phi\|_{L^p_{2\pi}} = 0, \quad \forall \phi \in L^p_{2\pi}.$$
(3.13)

We now take a modified version of the Liouville-Grünwald fractional derivative $D^{\langle \alpha \rangle}$ in $\mathcal{A}_{2\pi}$, where the limit in (1.20) is with respect to the topology on $\mathcal{A}_{2\pi}$. Note that if $\Delta_t^{\alpha} \phi/t^{\alpha} \to \phi$ in $\mathcal{A}_{2\pi}$ as $t \to 0^+$ then $\Delta_t^{\alpha} \phi/t^{\alpha} \to \phi$ in $L_{2\pi}^2$ as $t \to 0^+$. Therefore, we can write

$$\lim_{t \to 0^+} \frac{\Delta_t^{\alpha} \phi}{t^{\alpha}} = D^{<\alpha>} \phi, \qquad \alpha > 0, \ \phi \in \mathcal{A}_{2\pi}$$

whenever the limit on the left-hand side exists in $\mathcal{A}_{2\pi}$.

In the subsequent discussion, we shall require the following extension of equation (3.13).

Lemma 3.3 If $\phi \in \mathcal{A}_{2\pi}$, then $\lim_{t \to 0^+} J_{t,\alpha}\phi = \phi$ in $\mathcal{A}_{2\pi}$.

Proof: Let $\phi \in \mathcal{A}_{2\pi}$. Then, from the definition of ρ_k , we obtain

$$\rho_k(J_{t,\alpha}\phi - \phi) = \|D^k(J_{t,\alpha}\phi) - D^k\phi\|_{L^2_{2\pi}} = \|J_{t,\alpha}(D^k\phi) - D^k\phi\|_{L^2_{2\pi}}.$$

Since $D^k \phi \in L^2_{2\pi}$ for all $k \in \mathbb{N}_0$, it follows from (3.13) that

$$\rho_k(J_{t,\alpha}\phi - \phi) \to 0 \quad \text{as } t \to 0^+.$$

The following theorem is analogous to Theorem 1.1.

Theorem 3.4 Let $\phi \in A_{2\pi}$, $\alpha > 0$. Then the following statements are equivalent.

- (i) $D^{<\alpha>}\phi \in \mathcal{A}_{2\pi}$.
- (ii) There exists $\psi \in \mathcal{A}_{2\pi}$ such that $\hat{\psi}(l) = (il)^{\alpha} \hat{\phi}(l), l \in \mathbb{Z}$.
- (iii) There exists $\psi \in \mathcal{A}_{2\pi}$ such that $(I^{\alpha}\psi)(x) = \phi(x) \hat{\phi}(0)$.

If (i) is satisfied, then $D^{<\alpha>}\phi = \psi$, where $\psi \in \mathcal{A}_{2\pi}$ is the function defined in (ii). Similarly if (ii) is satisfied then $D^{<\alpha>}\phi = \psi$.

Proof: Let $\phi \in \mathcal{A}_{2\pi}$ be such that $D^{<\alpha>}\phi = \psi$ in $\mathcal{A}_{2\pi}$. Then $D^{<\alpha>}\phi = \psi$ in $L^2_{2\pi}$ and so, as in Theorem 1.1,

$$\hat{\psi}(l) = (D^{<\alpha>}\phi)(l) = (il)^{\alpha}\hat{\phi}(l), \ l \in \mathbb{Z}.$$

Now we suppose that (ii) holds. Then $\psi \in \mathcal{A}_{2\pi}$ is such that

$$\hat{\psi}(l) = (il)^{\alpha} \hat{\phi}(l), \quad l \in \mathbb{Z}$$

Since $\psi, \phi \in L^2_{2\pi}$, it follows from Theorem 1.1 that $(I^{\alpha}\psi)(x) = \phi(x) - \hat{\phi}(0)$ almost everywhere. Let (iii) be true so that

$$(I^{\alpha}\psi)(x) = \phi(x) - \phi(0)$$
 a.e.

Since $(I^{\alpha}\psi)(0) = 0$, we can assume that $\hat{\psi}(0) = 0$. Then, as in the proof of Theorem 1.1, given in [3, Theorem 4.1],

$$\frac{\triangle_t^\alpha \phi}{t^\alpha} = J_{t,\alpha} \psi.$$

Hence from Lemma 3.3, it follows that

$$\lim_{t \to 0^+} \frac{\triangle_t^{\alpha} \phi}{t^{\alpha}} = \lim_{t \to 0^+} J_{t,\alpha} \psi = \psi$$

in $\mathcal{A}_{2\pi}$.

We now obtain the following result.

Theorem 3.5 Let $\phi \in \mathcal{A}_{2\pi}$. Then $D^{<\alpha>}\phi \in \mathcal{A}_{2\pi}$ for all $\alpha > 0$. Also $D^{\alpha}\phi = D^{<\alpha>}\phi$ and so $D^{<\alpha>} \in L(\mathcal{A}_{2\pi})$.

Proof: Let $\phi \in \mathcal{A}_{2\pi}$. Then

$$\sum_{l\in\mathbb{Z}} |\hat{\phi}(l)|^2 l^{2k} < \infty, \ k \in \mathbb{N}_0.$$

Therefore, for each $\alpha > 0$ and $k \in \mathbb{N}_0$,

$$\sum_{l\in\mathbb{Z}} |\hat{\phi}(l)|^2 \, l^{2\alpha+2k} < \infty.$$

Hence, by Theorem 2.4, $\sum_{l \in \mathbb{Z}} (il)^{\alpha} \hat{\phi}(l) \psi_l$ exists in $\mathcal{A}_{2\pi}$. Thus, it follows from Theorem 3.4 that $D^{<\alpha>\phi} \phi$ exists in $\mathcal{A}_{2\pi}$ and

$$D^{<\alpha>}\phi = \sum_{l\in\mathbb{Z}} (il)^{\alpha} \hat{\phi}(l)\psi_l = D^{\alpha}\phi \qquad (\text{from} \quad (3.2)).$$

For the distributional treatment of the Liouville-Grünwald fractional derivative, we also require properties of an operator that is closely related to $D^{<\alpha>}$, namely $(-D)^{<\alpha>}$. The latter is defined by

$$(-D)^{<\alpha>}\phi := \lim_{t \to 0^+} \frac{\Delta_{-t}^{\alpha}\phi}{t^{\alpha}}, \quad \phi \in \mathcal{A}_{2\pi},$$
(3.14)

where the limit is with respect to the topology on $\mathcal{A}_{2\pi}$ and

$$(\triangle_{-t}^{\alpha}\phi)(x) = \sum_{j=0}^{\infty} (-1)^j \binom{\alpha}{j} \phi(x+tj).$$
(3.15)

Then, following the analysis of $D^{<\alpha>}$ given in [3], we obtain

$$(\triangle_{-t}^{\alpha}\phi)\hat{}(l) = (1 - e^{ilt})^{\alpha}\hat{\phi}(l), \quad \phi \in \mathcal{A}_{2\pi}, l \in \mathbb{Z},$$

which gives

$$\lim_{t \to 0^+} \left(\frac{\Delta_{-t}^{\alpha} \phi}{t^{\alpha}}\right) (l) = \lim_{t \to 0^+} \left(\frac{1 - e^{ilt}}{t}\right)^{\alpha} \hat{\phi}(l) = (-il)^{\alpha} \hat{\phi}(l).$$
(3.16)

Let p_{α}^* be the function defined by

 $p_{\alpha}^*(u) := p_{\alpha}(-u),$

where p_{α} is given by (3.8), and define Λ_{α} by

$$\Lambda_{\alpha}(x;t) := 2\pi \sum_{j=-\infty}^{\infty} \frac{p_{\alpha}^*(\frac{x+2\pi j}{t})}{t}, \quad t > 0.$$

Then

$$\widehat{\Lambda_{\alpha}(.;t)}(l) = (\mathcal{F}p_{\alpha}^{*})(lt) = \begin{cases} (-ilt)^{-\alpha}(1-e^{ilt})^{\alpha}, & l \neq 0\\ 1 & l = 0, \end{cases}$$

and therefore

$$\Lambda_{\alpha}(x;t) = t^{-\alpha} (\Delta_{-t}^{\alpha} \eta_{\alpha}^*)(x) + 1, \qquad (3.17)$$

where

$$\eta^*_{\alpha}(x) = \overline{\eta_{\alpha}(-x)} = \sum_{l \neq 0} (-il)^{-\alpha} e^{ilx}.$$

We can now present the following result.

Theorem 3.6 The following statements are equivalent for $\phi \in \mathcal{A}_{2\pi}, \alpha > 0$.

- (i) $(-D)^{<\alpha>\phi} \in \mathcal{A}_{2\pi}.$
- (ii) There exists $\psi \in \mathcal{A}_{2\pi}$ such that $\hat{\psi}(l) = (-il)^{\alpha} \hat{\phi}(l), \forall l \in \mathbb{Z}$.
- (iii) There exists $\psi \in \mathcal{A}_{2\pi}$ such that $((-I)^{\alpha}\psi)(x) = \phi(x) \hat{\phi}(0)$ almost everywhere, where $(-I)^{\alpha}$ is defined by (3.5).

If (i) is satisfied, then $(-D)^{<\alpha>}\phi = \psi$, where $\psi \in \mathcal{A}_{2\pi}$ is the function defined in (ii). Similarly if (ii) is satisfied then $(-D)^{<\alpha>}\phi = \psi$.

Proof: The proof is similar to that of Theorem 3.4.

Lemma 3.7 Let $\phi \in \mathcal{A}_{2\pi}$. Then, $(-D)^{<\alpha>}\phi \in \mathcal{A}_{2\pi}$ for all $\alpha > 0$. Also $(-D)^{\alpha}\phi = (-D)^{<\alpha>}\phi$ and so $(-D)^{<\alpha>} \in L(\mathcal{A}_{2\pi})$.

Proof: The proof is a consequence of Theorem 3.6 and similar to that of Theorem 3.5 and hence is omitted. \Box

4 Fractional Calculus of Periodic Distributions

We now define an operator $\widetilde{D^{\alpha}}$ on $\mathcal{A}'_{2\pi}$ which can be interpreted as an extension of $D^{\alpha} \in L(\mathcal{A}_{2\pi})$ to the space of periodic distributions $\mathcal{A}'_{2\pi}$. For this purpose, we apply (2.11) to obtain

$$(\widetilde{D}^r f, \phi) = (f, (-D)^r \phi) \quad \forall r \in \mathbb{N}, f \in \mathcal{A}'_{2\pi}, \phi \in \mathcal{A}_{2\pi}.$$

This motivates us to define $\widetilde{D^{\alpha}}$, for $\alpha > 0$, as

$$(\widetilde{D}^{\alpha}f,\phi) := (f,(-D)^{\alpha}\phi), \tag{4.1}$$

where $(-D)^{\alpha}$ is defined by (3.4). Therefore, for $\phi \in \mathcal{A}_{2\pi}$, we have

$$(\widetilde{D}^{\alpha}f,\phi) := (f,(-D)^{\alpha}\phi) = (f,\sum_{l\in\mathbb{Z}}(-il)^{\alpha}(\phi,\psi_l)_{L^2_{2\pi}}\psi_l)$$
$$= \sum_{l\in\mathbb{Z}}(il)^{\alpha}(\widetilde{\psi}_l,\phi)(f,\psi_l) = \left(\sum_{l\in\mathbb{Z}}(il)^{\alpha}(f,\psi_l)\widetilde{\psi}_l,\phi\right).$$

Hence the generalised differential operator $\widetilde{D^{\alpha}}$ may also be represented by

$$\widetilde{D^{\alpha}}f := \sum_{l \in \mathbb{Z}} (il)^{\alpha} (f, \psi_l) \widetilde{\psi}_l, \quad \text{for all } f \in \mathcal{A}'_{2\pi},$$
(4.2)

where the infinite series converges in $\mathcal{A}'_{2\pi}$.

Lemma 4.1 The operator $\widetilde{D^{\alpha}}$ is a continuous linear mapping from $\mathcal{A}'_{2\pi}$ into $\mathcal{A}'_{2\pi}$.

Proof: It follows from (4.1) that $\widetilde{D^{\alpha}}$ is the adjoint operator of $(-D)^{\alpha}$. Since $(-D)^{\alpha}$ is a continuous linear operator from $\mathcal{A}_{2\pi}$ into $\mathcal{A}_{2\pi}$, $\widetilde{D^{\alpha}}$ is a continuous linear mapping from $\mathcal{A}'_{2\pi}$ to $\mathcal{A}'_{2\pi}$.

A generalised fractional integral operator $\widetilde{I^{\alpha}}$, an extension of I^{α} , can also be defined via

$$(I^{\alpha}f,\phi) := (f,(I^{\alpha})^*\phi) \tag{4.3}$$

where $(I^{\alpha})^*$ is given by

$$((I^{\alpha})^*\phi)(x) = (\eta^*_{\alpha} * \phi)(x) = \frac{1}{2\pi} \int_0^{2\pi} \eta^*_{\alpha}(x-u) \,\phi(u) \,du, \tag{4.4}$$

with

$$\eta_{\alpha}^*(x) := \sum_{l \neq 0} (-il)^{-\alpha} e^{ilx}.$$

Hence $(I^{\alpha})^* = (-I)^{\alpha}$. Therefore, we obtain

$$(\widetilde{I^{\alpha}}f,\phi) := (f,(-I)^{\alpha}\phi) = (f,\sum_{l\neq 0}(-il)^{-\alpha}(\phi,\psi_l)_{L^2_{2\pi}}\psi_l) = \left(\sum_{l\neq 0}(il)^{-\alpha}(f,\psi_l)\widetilde{\psi}_l,\phi\right).$$

It follows that $\widetilde{I^{\alpha}}$ may also be defined by

$$\widetilde{I^{\alpha}}f := \sum_{l \neq 0} (il)^{-\alpha} (f, \psi_l) \widetilde{\psi}_l \quad \text{for all } f \in \mathcal{A}'_{2\pi}.$$

$$(4.5)$$

Lemma 4.2 The operator $\widetilde{I^{\alpha}}$ is a continuous linear mapping from $\mathcal{A}'_{2\pi}$ into $\mathcal{A}'_{2\pi}$.

Proof: The integral operator $\widetilde{I^{\alpha}}$, being the adjoint of $(-I)^{\alpha} \in L(\mathcal{A}_{2\pi})$, is a continuous linear operator on $\mathcal{A}'_{2\pi}$.

Properties of these fractional differential and integral operators on $\mathcal{A}'_{2\pi}$ are summarised in the following theorem.

Theorem 4.3

(i)
$$\widetilde{D^{\alpha}}\widetilde{D^{\beta}}f = \widetilde{D^{\alpha+\beta}}f$$
, $\widetilde{I^{\alpha}}\widetilde{I^{\beta}}f = \widetilde{I^{\alpha+\beta}}f$ for all α , $\beta > 0$ and $f \in \mathcal{A}'_{2\pi}$.
(ii) $\widetilde{D^{\alpha}}\widetilde{I^{\alpha}}f = \widetilde{I^{\alpha}}\widetilde{D^{\alpha}}f = f - \hat{f}(0)$ for all $f \in \mathcal{A}'_{2\pi}$.
Note that $\hat{f}(l) = (f, \psi_l), \ l \in \mathbb{Z}$.

Proof: The proof for (i) follows directly from (4.1) and (4.3).

(ii) Let $f \in \mathcal{A}'_{2\pi}$. Then f can be expressed uniquely as $f = \sum_{l \in \mathbb{Z}} (f, \psi_l) \widetilde{\psi}_l$, where the series converges in $\mathcal{A}'_{2\pi}$. Similarly, since for all $\alpha > 0$, $g = \widetilde{D^{\alpha}} \widetilde{I^{\alpha}} f$ is also in $\mathcal{A}'_{2\pi}$, we can write

$$g = \sum_{l \in \mathbb{Z}} (\widetilde{D^{\alpha}} \widetilde{I^{\alpha}} f, \psi_l) \widetilde{\psi}_l.$$

Now, for each $n \in \mathbb{Z}$,

$$(\widetilde{D^{\alpha}}\widetilde{I^{\alpha}}f,\psi_l) = (f,(-I)^{\alpha}(-D)^{\alpha}\psi_l) = \begin{cases} (f,\psi_l) & l \neq 0\\ 0 & l = 0. \end{cases}$$

Hence

$$\widetilde{D^{\alpha}}\widetilde{I^{\alpha}}f = \sum_{l \in \mathbb{Z}} (f, \psi_l)\widetilde{\psi}_l - (f, \psi_0)\widetilde{\psi}_0 = f - \widehat{f}(0).$$

Similarly, it can be shown that

$$\widetilde{I^{\alpha}}\widetilde{D^{\alpha}}f = f - \widehat{f}(0).$$

Е		1
I.		

Now we extend $D^{<\alpha>}$ to a generalised operator $\widetilde{D^{<\alpha>}}$ on $\mathcal{A}'_{2\pi}$ by defining

$$(\widetilde{D^{<\alpha>}}f,\phi) := (f,(-D)^{<\alpha>}\phi) \quad \forall f \in \mathcal{A}'_{2\pi}, \phi \in \mathcal{A}_{2\pi},$$
(4.6)

where the operator $(-D)^{<\alpha>}$ is given by (3.14). Therefore, for $f \in \mathcal{A}'_{2\pi}$ and $\alpha > 0$, we obtain

$$\begin{split} \widetilde{(D^{<\alpha>}}f,\phi) &:= (f,(-D)^{<\alpha>}\phi) = (f,\lim_{t\to 0^+} \frac{\Delta_{-t}^{\alpha}\phi}{t^{\alpha}}) \\ &= (f,\sum_{l\in\mathbb{Z}}(-il)^{\alpha}(\phi,\psi_l)_2\psi_l) \quad (\text{from }(3.16)) \\ &= \sum_{l\in\mathbb{Z}}(il)^{\alpha}(\psi_l,\phi)_2(f,\psi_l) = \sum_{l\in\mathbb{Z}}(il)^{\alpha}(\tilde{\psi}_l,\phi)(f,\psi_l) \\ &= (\sum_{l\in\mathbb{Z}}(il)^{\alpha}(f,\psi_l)\tilde{\psi}_l,\phi) = (\widetilde{D^{\alpha}}f,\phi) \quad \forall \phi \in \mathcal{A}_{2\pi}. \end{split}$$

Note that an equivalent definition of $\widetilde{D^{<\alpha>}}f$ is given by the weak^{*} limit

$$\widetilde{D^{<\alpha>}}f := \lim_{t \to 0^+} \frac{\widetilde{\Delta}_t^{\alpha} f}{t^{\alpha}}, \ f \in \mathcal{A}'_{2\pi}, \ \alpha > 0,$$
(4.7)

where

$$\widetilde{\bigtriangleup_t^{\alpha}} f := \sum_{j=0}^{\infty} (-1)^j \binom{\alpha}{j} f(x-tj)$$

and f(x - tj) represents a translated version of the distribution f. This is a direct consequence of the fact that

$$(\triangle_t^{\alpha} f, \phi) = (f, \triangle_{-t}^{\alpha} \phi), \ \forall f \in \mathcal{A}'_{2\pi}, \ \phi \in \mathcal{A}_{2\pi}.$$

Since the generalised operators $\widetilde{D^{<\alpha>}}$ and $\widetilde{D^{\alpha}}$ coincide on $\mathcal{A}'_{2\pi}$, the following results can be deduced immediately from Theorem 4.3.

Theorem 4.4

(i)
$$\widetilde{D^{<\alpha>}}\widetilde{D^{<\beta>}}f = \widetilde{D^{<\alpha+\beta>}}f$$
, for all α , $\beta > 0$ and $f \in \mathcal{A}'_{2\pi}$.
(ii) $\widetilde{D^{<\alpha>}}\widetilde{I^{<\alpha>}}f = \widetilde{I^{<\alpha>}}\widetilde{D^{<\alpha>}}f = f - \widehat{f}(0)$ for all $f \in \mathcal{A}'_{2\pi}$.

5 Fractional Diffusion-Type Equations

As an application of the distributional theory of fractional differential operators developed above, we investigate a distributional version of a fractional diffusion-type equation. The classical formulation of this equation is

$$\frac{\partial u(x,t)}{\partial t} = \left(\frac{\partial}{\partial x}\right)^{(\alpha)} u(x,t), \quad 0 \le x \le 2\pi, \ t > 0, \ 1 < \alpha < 3, \tag{5.1}$$

with u also required to satisfy the periodic boundary conditions

$$\left(\frac{\partial}{\partial x}\right)^{(\alpha-2)}u(0,t) = \left(\frac{\partial}{\partial x}\right)^{(\alpha-2)}u(2\pi,t), \ \left(\frac{\partial}{\partial x}\right)^{(\alpha-1)}u(0,t) = \left(\frac{\partial}{\partial x}\right)^{(\alpha-1)}u(2\pi,t), \ t > 0, \tag{5.2}$$

and the initial condition

$$u(x,0) = u_0(x), \quad 0 \le x \le 2\pi.$$
 (5.3)

In [3, Section 9], (5, 1) - (5, 3) is interpreted as the abstract Cauchy problem (ACP)

$$\frac{du(t)}{dt} = D^{\alpha}u(t), \ 1 < \alpha < 3, \ t > 0; \quad u(0) = u_0,$$
(5.4)

posed in the space $L_{2\pi}^p$, where $D^{\alpha} = D^{\langle \alpha \rangle}$ is defined via (1.20). The existence and uniqueness of a solution u(x,t) to the ACP (5.4) is proved in [3], with u obtained explicitly in the form

$$u(x,t) = \sum_{l \in \mathbb{Z}} e^{(il)^{\alpha}t} \widehat{u_0}(l) e^{ilx} = \frac{1}{2\pi} \int_0^{2\pi} q_{\alpha}(y,t) u_0(x-y) \, dy,$$
(5.5)

where

$$q_{\alpha}(x,t) := \sum_{l \in \mathbb{Z}} e^{(il)^{\alpha}t} e^{ilx}.$$

The function u defined by (5.5) is actually a continuous 2π -periodic function of x for each fixed t > 0 and any $u_0 \in L^p_{2\pi}$, and is a solution of (5.4), not only for $1 < \alpha < 3$, but also for $4j + 1 < \alpha < 4j + 3$, $j = 0, 1, 2, \ldots$

Formula (5.5) can also be used to define a family of operators $\{G_{\alpha}(t)\}_{t\geq 0}$ on $L_{2\pi}^p$ for each $p \in [1, \infty)$ and $4j + 1 < \alpha < 4j + 3$, $j = 0, 1, 2, \ldots$ As before, we shall concentrate on the case when p = 2and, for simplicity, will take $1 < \alpha < 3$. For each such α and $t \geq 0$, we define

$$G_{\alpha}(t)\phi := \sum_{l \in \mathbb{Z}} e^{(il)^{\alpha}t} (\phi, \psi_l)_{L^2_{2\pi}} \psi_l, \quad \phi \in L^2_{2\pi}.$$
(5.6)

Theorem 5.1 Let $G_{\alpha}(t)$ be defined by (5.6). Then, for each $\alpha \in (1,3)$, $\{G_{\alpha}(t)\}_{t\geq 0}$ is a strongly continuous semigroup of operators on $L^2_{2\pi}$. Moreover, the infinitesimal generator of $\{G_{\alpha}(t)\}_{t\geq 0}$ is D^{α} defined on the domain given by (1.19).

Proof: For each $\phi \in L^2_{2\pi}$, we have

$$\sum_{l \in \mathbb{Z}} |e^{(il)^{\alpha}t}(\phi, \psi_l)_{L^2_{2\pi}}|^2 = \sum_{l \in \mathbb{Z}} \left(e^{|l|^{\alpha}t \cos(\alpha\pi/2)} \right)^2 \left| (\phi, \psi_l)_{L^2_{2\pi}} \right|^2, \quad t \ge 0.$$

Consequently

$$\|G_{\alpha}(t)\phi\|_{L^{2}_{2\pi}} \leq \|\phi\|_{L^{2}_{2\pi}}, \quad 1 < \alpha < 3,$$

showing that $G_{\alpha}(t)$ is a bounded linear operator on $L^2_{2\pi}$ for each $t \ge 0$.

It follows from (5.6), that the operators $\{G_{\alpha}(t)\}_{t\geq 0}$ satisfy the algebraic properties of a semigroup, that is $G_{\alpha}(0) = I$, and $G_{\alpha}(s)G_{\alpha}(t) = G_{\alpha}(s+t) = G_{\alpha}(t)G_{\alpha}(s)$, for all $s, t \geq 0, 1 < \alpha < 3$. Also, for each $\phi \in L^2_{2\pi}$,

$$||G_{\alpha}(t)\phi - \phi||_{L^{2}_{2\pi}}^{2} = \sum_{l \in \mathbb{Z}} |(e^{(il)^{\alpha}t} - 1)|^{2}|(\phi, \psi_{l})_{L^{2}_{2\pi}}|^{2}.$$

Clearly $|(e^{(il)^{\alpha}t}-1)|^2|(\phi,\psi_l)_{L^2_{2\pi}}|^2 \to 0$ as $t \to 0^+$ for all l. Moreover, the restriction that $\alpha \in (1,3)$ means that

$$(Ae^{i|l|^{\alpha}t\sin(\alpha\pi/2)} - 1)(Ae^{-i|l|^{\alpha}t\sin(\alpha\pi/2)} - 1) = A^{2} + 1 - 2A\cos(|l|^{\alpha}t\sin(\alpha\pi/2)) \le 4,$$

where $A = e^{|l|^{\alpha} t \cos(\alpha \pi/2)}$, and so we have

$$|e^{(il)^{\alpha}} - 1|^{2} |(\phi, \psi_{l})_{L^{2}_{2\pi}}|^{2} \le 4 |(\phi, \psi_{l})_{L^{2}_{2\pi}}|^{2}.$$

Therefore it follows from Weierstrass M-test [1, p.438] that

$$||G_{\alpha}(t)\phi - \phi||_{L^{2}_{2\pi}} \to 0 \text{ as } t \to 0^{+}.$$

Hence $\{G_{\alpha}(t)\}_{t\geq 0}$ is a strongly continuous semigroup of operators on $L^2_{2\pi}$. Likewise, it can be verified using the same arguments as in [6, Theorem 2.2], that D^{α} is the infinitesimal generator of $\{G_{\alpha}(t)\}_{t\geq 0}$ since, for all $\phi \in Dom(D^{\alpha})$, where the latter is given by (1.19), we have

$$\lim_{t \to 0^+} \left\| \frac{G_{\alpha}(t)\phi - \phi}{t} - D^{\alpha}\phi \right\|_{L^2_{2\pi}} = 0.$$

It follows that, when p = 2, the strong solution of (5.4) is given by $u(t) = G_{\alpha}(t)u_0$ provided that $u_0 \in Dom(D^{\alpha})$.

To enable us to cater for a larger class of initial data, including cases when u_0 is a non-classical function, we now examine a generalised version of the fractional diffusion ACP (5.4) posed in the

space $\mathcal{A}'_{2\pi}$. Our aim is to establish that a unique solution $u : [0, \infty) \to \mathcal{A}'_{2\pi}$ can always be found in the form $u(t) = \widetilde{G_{\alpha}(t)}u_0$ for any $u_0 \in \mathcal{A}'_{2\pi}$, where $\widetilde{G_{\alpha}(t)}$ is an appropriately defined extension of the operator $G_{\alpha}(t)$ to $\mathcal{A}'_{2\pi}$. As a first step towards this, we consider the operators $\{G_{\alpha}(t)\}_{t\geq 0}$ defined via (5.6), but now restricted to the space of test-functions $\mathcal{A}_{2\pi}$.

Theorem 5.2 The family of operators $\{G_{\alpha}(t)\}_{t\geq 0}$ is an equicontinuous semigroup on $\mathcal{A}_{2\pi}$ for each fixed $\alpha \in (1,3)$.

Proof: We first establish that $G_{\alpha}(t) \in L(\mathcal{A}_{2\pi})$. For each $\phi \in \mathcal{A}_{2\pi}$,

$$\begin{split} \sum_{l} |l|^{2k} |e^{(il)^{\alpha}}(\phi, \psi_{l})_{L_{2\pi}^{2}}|^{2} &= \sum_{l} |l|^{2k} \left(e^{|l|^{\alpha}t \cos(\alpha\pi/2)} \right)^{2} \left| (\phi, \psi_{l})_{L_{2\pi}^{2}} \right|^{2} \\ &\leq \sum_{l} |l|^{2k} |(\phi, \psi_{l})_{L_{2\pi}^{2}}|^{2} < \infty \quad \forall \ k = 0, 1, 2, \dots \ (\text{ since } 1 < \alpha < 3), \end{split}$$

and therefore, from Lemma 2.4, $G_{\alpha}(t)\phi \in \mathcal{A}_{2\pi}$. Also, for each $\phi \in \mathcal{A}_{2\pi}$ and $k = 0, 1, \ldots$,

$$\begin{split} \rho_k(G_{\alpha}(t)\phi) &= \|D^k G_{\alpha}(t)\phi\|_{L^2_{2\pi}} = \|G_{\alpha}(t)D^k\phi\|_{L^2_{2\pi}} \quad \text{(from the linearity and continuity of } D^k \text{ on } \mathcal{A}_{2\pi})\\ &\leq \|D^k\phi\|_{L^2_{2\pi}} \quad \text{(from Theorem 5.1, since } D^k\phi \in L^2_{2\pi} \text{)}\\ &= \rho_k(\phi). \end{split}$$

This shows that $G_{\alpha}(t) \in L(\mathcal{A}_{2\pi})$. Next, it is clear from Theorem 5.1 that $\{G_{\alpha}(t)\}_{t\geq 0}$ satisfies the algebraic properties of a semigroup because $\mathcal{A}_{2\pi} \subseteq L^2_{2\pi}$. Also, by arguing as above, we obtain

$$\rho_k(G_\alpha(t)\phi - \phi) = \|G_\alpha(t)(D^k\phi) - D^k\phi\|_{L^2_{2\pi}} \to 0 \text{ as } t \to 0^+ \text{ (from Theorem 5.1)}.$$

Finally, equicontinuity follows directly from the fact that

$$\rho_k(G_\alpha(t)\phi) \le \rho_k(\phi), \quad \text{for all } \phi \in \mathcal{A}_{2\pi}, t \ge 0 \text{ and } k = 0, 1, \dots$$

The infinitesimal generator of the semigroup $\{G_{\alpha}(t)\}_{t\geq 0}$ on $\mathcal{A}_{2\pi}$ is the operator $D^{\alpha} \in L(\mathcal{A}_{2\pi})$ defined by (3.2) (or, equivalently, from Theorem 3.5, $D^{<\alpha>} \in L(\mathcal{A}_{2\pi})$). To establish this, let $\phi \in \mathcal{A}_{2\pi}$ so that $\sum_{l} |\lambda_{l}|^{2k} |(\phi, \psi_{l})_{L^{2}_{2\pi}}|^{2} < \infty$ for each $k = 0, 1, 2, \ldots$ Then

$$\begin{aligned} [\rho_k (\frac{G_\alpha(t)\phi - \phi}{t} - D^\alpha \phi)]^2 &= \left\| D^k \left(\frac{G_\alpha(t)\phi - \phi}{t} \right) - D^k D^\alpha \phi \right\|_{L^2_{2\pi}}^2 \\ &= \left\| \frac{G_\alpha(t)(D^k\phi) - D^k\phi}{t} - D^\alpha(D^k\phi) \right\|_{L^2_{2\pi}}^2 \to 0 \quad \text{as} \ t \to 0^+. \end{aligned}$$

Since this holds for each $k = 0, 1, 2, \ldots$, it follows that

$$D^{\alpha}\phi = \lim_{t \to 0^+} \frac{G_{\alpha}(t)\phi - \phi}{t}.$$

Our next task is to extend the operators $\{G_{\alpha}(t)\}_{t\geq 0}$ to a family of generalised operators $\{G_{\alpha}(t)\}_{t\geq 0}$ defined on $\mathcal{A}'_{2\pi}$. This will be achieved through the adjoint-based approach that was used in [6]. Let $\varphi \in L^2_{2\pi}$ and $\phi \in \mathcal{A}_{2\pi}$. Then both φ and $G_{\alpha}(t)\varphi$ generate regular generalised functions $\widetilde{\varphi}$ and $\widetilde{G_{\alpha}(t)}\varphi$ in $\mathcal{A}'_{2\pi}$ via formula (2.9). For $\widetilde{G_{\alpha}(t)}$ to be an extension of $G_{\alpha}(t)$, we require $\widetilde{G_{\alpha}(t)}\widetilde{\varphi} = \widetilde{G_{\alpha}(t)}\varphi$. This will be true provided that

$$<\widetilde{G_{\alpha}(t)}\widetilde{\varphi}, \overline{\phi}>=2\pi(\widetilde{G_{\alpha}(t)}\widetilde{\varphi}, \phi)=2\pi(G_{\alpha}(t)\varphi, \phi)_{L^{2}_{2\pi}}=2\pi(\widetilde{\varphi}, G^{*}_{\alpha}(t)\phi)=<\widetilde{\varphi}, \overline{G^{*}_{\alpha}(t)\phi}>,$$

where $G^*_{\alpha}(t)$, the Hilbert space adjoint of $G_{\alpha}(t)$, is given by

$$G_{\alpha}^{*}(t)\phi = \sum_{l \in \mathbb{Z}} e^{(-il)^{\alpha}t}(\phi, \psi_{l})_{L^{2}_{2\pi}}\psi_{l}.$$
(5.7)

Motivated by this, we define the generalised operator $G_{\alpha}(t)$ by

$$(\widetilde{G_{\alpha}(t)}f,\phi) := (f, G_{\alpha}^{*}(t)\phi) \quad f \in \mathcal{A}'_{2\pi}, \phi \in \mathcal{A}_{2\pi}.$$
(5.8)

Then $\widetilde{G_{\alpha}(t)} = (G_{\alpha}^*(t))'$, the $\mathcal{A}_{2\pi} - \mathcal{A}'_{2\pi}$ adjoint of $G_{\alpha}^*(t)$. Now suppose that $f \in \mathcal{A}'_{2\pi}$. Then

$$\widetilde{(G_{\alpha}(t)f,\phi)} = (f, G_{\alpha}^{*}(t)\phi) = (f, \sum_{l} e^{(-il)^{\alpha}t}(\phi, \psi_{l})_{L_{2\pi}^{2}}\psi_{l}) = \sum_{l} e^{(il)^{\alpha}t}(f, \psi_{l})(\widetilde{\psi}_{l}, \phi).$$

Since the series on the right-hand side converges for each $\phi \in \mathcal{A}_{2\pi}$, we obtain

$$\widetilde{G_{\alpha}(t)}f = \sum_{l} e^{(il)^{\alpha}t}(f,\psi_{l})\widetilde{\psi}_{l}, \ f \in \mathcal{A}_{2\pi}',$$

where the series is weak*-convergent in $\mathcal{A}'_{2\pi}$.

Theorem 5.3 The family of operators $\{\widetilde{G_{\alpha}(t)}\}_{t\geq 0}$, defined on $\mathcal{A}'_{2\pi}$ by (5.8), is a weak*-continuous semigroup of linear operators on $\mathcal{A}'_{2\pi}$ for each $\alpha \in (1,3)$. Moreover the infinitesimal generator of $\{\widetilde{G_{\alpha}(t)}\}_{t\geq 0}$ is the operator $\widetilde{D^{\alpha}} \in L(\mathcal{A}'_{2\pi})$ defined by (4.2) (or equivalently, $\widetilde{D^{<\alpha>}} \in L(\mathcal{A}'_{2\pi})$ defined by (4.6)).

Proof: It follows from (5.7) and Theorem 5.2 that, for each $\alpha \in (1,3)$, $\{G_{\alpha}^{*}(t)\}_{t\geq 0}$ is an equicontinuous semigroup on $\mathcal{A}_{2\pi}$ with infinitesimal generator $(-D)^{\alpha}$, where $(-D)^{\alpha}$ is defined by (3.4). From, [5, pp.262-263], it follows that $\{\widetilde{G_{\alpha}(t)}\}_{t\geq 0} = \{[G_{\alpha}^{*}(t)]'\}_{t\geq 0}$ is a weak*-continuous semigroup on $\mathcal{A}'_{2\pi}$ with infinitesimal generator $[(-D)^{\alpha}]'$. Since

$$(\widetilde{D^{\alpha}}f,\phi) = \sum_{l} (il)^{\alpha}(f,\psi_{l})(\widetilde{\psi}_{l},\phi) = (f,\sum_{l} (-il)^{\alpha}(\phi,\psi_{l})_{L^{2}_{2\pi}}\psi_{l}) = (f,(-D)^{\alpha}\phi),$$

for all $f \in \mathcal{A}'_{2\pi}$ and $\phi \in \mathcal{A}_{2\pi}$, we deduce that the generator is $\widetilde{D^{\alpha}}$.

An immediate consequence of the above theorem is that the abstract Cauchy problem associated with \widetilde{D}^{α} , namely

$$\frac{du(t)}{dt} = \widetilde{D^{\alpha}}u(t), \ 1 < \alpha < 3, t > 0, \quad u(0) = f \in \mathcal{A}'_{2\pi},$$
(5.9)

has a unique weak*-solution given by,

$$u(t) = \widetilde{G_{\alpha}(t)}f = \sum_{l \in \mathbb{Z}} e^{(il)^{\alpha}t} (f, \psi_l) \widetilde{\psi_l}, \ t \ge 0,$$
(5.10)

for each $\alpha \in (1,3)$. We conclude this section with the remark that the series (5.10) converges with respect to the weak*-topology in $\mathcal{A}'_{2\pi}$ for any α with $4k + 1 < \alpha < 4k + 3, k = 0, 1, \ldots$ Hence the distributional diffusion equation has the solution (5.10), not only for the fractional order $1 < \alpha < 3$, but also for $\alpha \in (4k + 1, 4k + 3)$ for any $k = 0, 1, 2, \ldots$

6 Conclusion

Functionals such as the Dirac delta cannot be treated in a mathematically rigorous manner as classical functions. Consequently, to study problems involving such entities, generalised functions and distributions are required. In this paper we have constructed $\mathcal{A}'_{2\pi}$, the dual of the Fréchet space $\mathcal{A}_{2\pi}$, to study distributional versions of fractional differential and integral operators. This theory allows us to work with a larger class of "functions." The fractional differential operator is well defined on these distributions and can be considered either as Weyl's fractional derivative or as Liouville-Grünwald fractional derivative. As an application, a fractional diffusion equation is examined in the space of periodic distributions $\mathcal{A}'_{2\pi}$ where we obtain a weak*-solution of this equation.

References

- [1] T.M. Apostol, *Mathematical Analysis*, Addison Wesley, Massachusetts, 1958.
- [2] P.L. Butzer and R.J. Nessel, Fourier Analysis and Approximation, Vol. I, Academic Press, New York and Birkhauser, Basel, 1971.
- [3] P.L. Butzer and U. Westphal," An Access to Fractional Differentiation via Fractional Difference Quotients," *Fractional Calculus and Its Applications*, B. Ross (editor), Springer-Verlag, Berlin, pp.116-146, 1975.
- [4] A. Erdélyi, Operational Calculus and Generalised Functions, Holt, Rinehart and Winston, New York, 1962.
- [5] T. Kōmura, "Semigroups of Operators in Convex Spaces," J.Funct. Anal, 2, pp. 258-296, 1968.
- [6] K. N. Khan, W. Lamb, A. C. McBride, "Fractional Transformations of Generalised Functions" in *Integral Transforms and Special Functions*, 2009.
- [7] A.C. McBride, Fractional Calculus and Integral Transforms of Generalised Functions, Pitman Publishing, London, 1979.
- [8] J.D. Pryce, Basic Methods of Linear Functional Analysis, Hutchinson, London, 1973.
- [9] K.R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, California, 1981.
- [10] A.H. Zemanian, Distributional Theory and Transform Analysis, McGraw-Hill, New York, 1965.
- [11] A.H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.