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Abstract 

Background A need for efficient quantification of tumour-infiltrating T and B 
lymphocytes (TIL) arose in designing a case-control study of breast cancer outcomes. 

Methods Ten adjacent x 40 digital images of 4μ sections immunostained for CD3, 
CD4, CD8, and CD20 were acquired for each of 16 randomly chosen carcinomas (640 
images total). 'Color range' and 'Histogram' tools in Adobe Photoshop 7 were used to 
count the number of pixels in each image matching a partition of Lab colour 
representing the diaminobenzidine reaction product. This number was converted to a 
cell count per square mm calibrated from one, two, three or all 10 available images 
for each case and antibody.  

Results Variation in the number of pixels per immunostained cell necessitated 
individual calibration for each antibody / case combination.  Calibration based on 
two fields containing the most labelled pixels gave a cell count minimally higher 
(+5.3%) than the count based on 10-field calibration, with 95% confidence limits -
14.7 to +25.3%. Median and interquartile range for cell counts per mm2 were 6280 
(490-14,200) for CD3; 5160 (1960-20,000) for CD4; 4280 (2997-9126) for CD8; and 
1860 (54-10031) for CD20. As TIL density varied ∼100-fold between different 
antibodies and cases, this accuracy and precision are adequate for the purpose.  

Conclusion The methodology described offers sufficient accuracy, precision and 
efficiency to quantify the density of TIL sub-populations in breast cancer using 
commonly available software, and lends itself to batch processing. 

 
Abbreviations 

DAB  Diaminobenzidine 
TIL   Tumour infiltrating lymphocytes 
Pi   Number of labelled pixels in image i (1≤i≤10) 
ΣPi  Number of labelled pixels in a set of 10 images 
pi   Number of labelled pixels in a calibration area in image i 
pm, pm', pm'' Number of labelled pixels in calibration areas of first three of a set of 10 

images ranked by the number of labelled pixels 
ci  Number of cells present in a calibration area (counted) in image i 
cm, cm’, cm’’  Number of labelled cells in calibration areas of first three of a set of 10 images 

ranked by the number of labelled pixels 
Ci   Number of cells in image i (counted or estimated) 
ΣCi,   Number of cells in a set of 10 images (estimated) 
Fn  Calibration factor calculated from n images (n = 1,2,3 or 10) 
RGB  Colour space defined by 8 bit red/green/blue colour axes 
Lab  Colour space defined by luminance (L), green/red and yellow/blue colour axes 

Keywords 

Breast cancer, Tumour infiltrating lymphocytes, Measurement, Colour image 
histogramming, Photoshop, Lab colour space, Semi-automated cell counting 
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Introduction 

Cytotoxic T cells, complement-mediated cell lysis and antibody-directed cellular 

cytotoxicity all have the potential to destroy neoplastic cells. As metastatic 

progression is responsible for most cancer deaths, immunological killing of cancer 

cells shed into blood or lymph could be important, but the extent to which such 

mechanisms do actually control growth and dissemination of spontaneous human 

cancers remains unclear (1,2).  

It is plausible, though, that the intensity and composition of the host immune 

response to a primary tumour could indicate the potential of immune surveillance to 

prevent metastatic cancer. To test this hypothesis requires measurement of tumour-

infiltrating lymphocyte populations. In designing a retrospective case-control study 

of  disease-free survival in breast cancer, we sought an efficient and objective method 

for measuring the density of lymphoid infiltrates in immunostained sections of 

formalin-fixed paraffin-embedded breast cancer tissue. Immunohistochemistry can 

identify different cell populations (T cell subsets, B cells etc) but qualitative or semi-

quantitative estimates of lymphocyte subsets may be poorly reproducible. We wished 

to employ a quantitative approach but manual counting is prohibitively laborious. 

This paper describes approaches to the automation of this task using digital images. 

What do we actually wish to measure? As cells are discrete, countable entities then an 

obvious measurement would be cells per mm3. However, this measurement requires 

3D stereological tools such as the ‘optical disector’ or ‘unbiased brick’ which may not 

be practicable for a large project, and may have their own biases (3,4).  Histological 

sections, being quasi-two dimensional, suggest that a more accessible measure might 

be cells per mm2. Other possibilities include the volume fraction Vv occupied by 

immune cells, which, by the principle of Delesse (5), could be estimated from the area 

fraction Aa of an infinitesimally thin section (approximated in reality by a histological 

section of conventional thickness). 

Point counting estimates the area fraction and therefore also the volume fraction, but 

if the volume fraction is small, the number of points which must be counted to 

estimate it with a specified degree of precision is relatively large. A subjective element 

may also influence the decision as to whether a sampling point falls on the object to 

be measured. 
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Binary thresholding of a digital image resembles ‘point counting’. Every pixel is 

treated as a sampling point, and its colour properties determine whether it is to be 

counted. This sounds easy but determining appropriate thresholds is not 

straightforward. For an immunoperoxidase signal visualised with diaminobenzidine 

and counterstained with haematoxylin, the problem is to decide which pixels are 

‘brown’ enough to represent signal to be counted and which are either blue 

(counterstained nuclei) or unstained, unlabelled background.  A variety of 

approaches have been proposed, from simple thresholding of colour channels to 

complex image deconvolutions (6-8). 

The approach adopted was based on the idea that relevant pixels would resemble 

each other in colour, and would therefore be grouped in an appropriate 3D colour 

space (9). In 24-bit RGB colour space 3 separate 8-bit (one byte) numbers plotted on 

mutually perpendicular red, green and blue colour axes define a colour cube 

composed of 256 x 256 x 256 individual elements specified by each possible RGB 

number triple. In Lab colour space, luminance (L) is plotted against mutually 

perpendicular chromaticity axes (green/red, a and yellow/blue, b).  Proximity of 

points within a perceptually uniform colour space(10) such as Lab space implies 

similarity of colour, and it appeared therefore that this proximity could be used to 

identify pixels representing the signal to be counted. We also wished to employ 

readily available software, so to begin with tools provided  in Adobe Photoshop 7 were 

used. 

Materials and methods 

Cases and immunostaining. Sixteen invasive breast cancers were chosen at random 

from archives at Glasgow Royal Infirmary. For each case four micron sections of one 

representative block were immunostained as a single batch using a standard 

immunoperoxidase methodology and primary antibodies against CD3, CD4, CD8, 

CD20 and CD35. [Antibody, procedure details required] For each immunostained 

slide ten consecutive adjacent digital images of fields located at the infiltrative edge of 

the carcinoma were acquired using a Fuji HC300Z digital camera and a Nikon Eclipse 

E600 microscope with a x40 apochromatic objective, and saved as uncompressed 24-

bit RGB TIFF files. Field size (measured by stage graticule) was 218 x 170 microns = 

0.03706 mm2 = 1/26.98 mm2 ≈1/27 mm2, so cell counts multiplied by 27 equal cell 

counts per mm2.  
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Measuring the immunostaining signal. Adobe Photoshop (version 7) allows the colour 

of any individual pixel to be sampled and set as the ‘foreground’ colour. The 

‘Select/Colour Range’ tools allow all pixels in the image having a colour similar to the 

foreground colour to be selected, which can then be counted using the ‘Histogram’ 

tool. How closely colours in the image must resemble the foreground colour is 

determined by setting a property known as ‘fuzziness’: a low value ensures that only 

pixels closely similar in colour will be selected, while a higher value broadens the 

selected colour range, making it possible to count the number of image pixels of a 

particular colour or colour range, narrowly or broadly defined. 

Even if the open image file is in RGB mode, the Photoshop ‘Colour Range’ tool 

operates in Lab colour space.  This can be demonstrated using the ‘LabMeter’ colour 

measurement software tool, available as a free download (www.curvemeister.com). 

This provides a square image representing all values on the green-red (a) and yellow-

blue (b) chromaticity axes of Lab colour space (i.e. the a,b colour plane), at a user-

specified luminance value. Setting the foreground colour in Photoshop to RGB 160, 

67, 23 (Lab 41,38,44) and ‘fuzziness’ = 100, the ‘Select/Colour Range’ command 

chooses a square portion of the LabMeter image for which a = 38±15 and b = 44±15, 

inclusive. Varying the luminance (L value) of the test image or a gradient image 

showed that a similar but slightly wider selection obtains on this axis, with L = 41±19 

inclusive being chosen.   Lab 41,38,44 is a brown corresponding to DAB staining of 

medium intensity.  Using fuzziness=100 includes weaker and stronger staining in the 

selected area. This value and range were chosen to select approximately 90% of the 

area of the section in which the DAB signal could be identified visually. One hundred 

per cent selection was not sought, to avoid identifying areas of the section lacking 

specific staining. Figure 1 illustrates an example of pixel selection in Photoshop with 

these parameters for an image of an immunostained section containing many labelled 

cells,  and one containing none. In all cases there was visual control of the selected 

area.   It is also instructive to examine a 3D histogram of the pixel distributions of 

these images in Lab colour space (Figure 2). The stained section includes pixels 

corresponding to the DAB signal while the image without labelled cells shows pixels 

corresponding to the background and nuclei only. In essence, we are counting a 

representative subset of these pixels. 
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Associating the measured signal with cell counts. The next step was to examine the 

relationship between the number of cells present in an image and signal strength 

measured by the number of pixels falling into a particular Lab colour range. A total of 

16 cases x 5 antibodies x 10 images = 800 images were collected on the same 

microscope, camera, and light setting, of slides stained in a single batch on an 

automated staining machine. These precautions were observed to maximise 

consistency of analysis without extraordinary measures. CD35 positive cells were 

present in significant numbers in very few of these images, and images of CD35 

staining were excluded from subsequent analysis.  

Each image was opened in Adobe Photoshop 7 with foreground colour set to R = 160, 

G = 67, B = 23 and ‘fuzziness’ set to 100. The ‘Select/Colour Range’ tool was used to 

select the labelled pixels; these  highlighted on screen so that labelled cells can be 

identified.  The number of selected pixels was recorded from the Image/Histogram 

dialogue. The file was then closed and the process repeated file by file until all files 

had been processed. 

If the number of labelled cells in an image was not too great, all were counted to 

calibrate for that particular image the relationship (labelled pixels per cell) between 

total signal and cell number. If there were too many cells to be counted easily, the 

‘Rectangular Marquee’ or ‘Lasso’ tool were used to define a representative subregion 

of the image within which all labelled cells could be counted and within which colour 

selection and pixel counting allowed a calibration (labelled pixels per cell) value to be 

calculated for that particular image. A complete field or field subset cell count with 

the corresponding pixel count was made for every image. To be certain that labelled 

cells were neither missed nor counted twice, the Eraser tool was used to place a spot 

of colour on each labelled cell as it was counted. This was quick and efficient.  

The expectation was that the number of labelled pixels, for a particular combination 

of case and antibody, would be proportional to the number of cells present in a field; 

and that once the system had been calibrated, it would not be necessary to count 

individual cells, but only the pixels using the semi-automated methodology described 

above. Particular interest was attached to variations in calibration from field to field, 

case to case and antibody to antibody. Batch-to-batch variation was not addressed, 

because if case-to-case variation in the relationship between pixel counts and cell 
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number is significant, then calibration will have to be undertaken in every case, which 

will control for batch-to-batch variation also. 

For any individual field i the data available are the number, Pi, of labelled pixels in 

the whole image; the number, pi, of labelled pixels and the number, ci, of cells present 

in the calibration area.  The estimated number of cells in a field is Ci = Pi/(pi/ci); in 

fields containing few enough cells to count them all, the formula is Ci = Pi / (Pi / Ci), 

which cancels to Ci = Ci, as expected. The best estimate of the number of cells, ΣCi, in 

all 10 fields is 

ΣCi  = P1(p1/c1)+…+ Pi(pi/ci)+…+ P10(p10/c10), 

and from this figure an estimate of the average calibration factor, F10, weighted in 

proportion to the number of cells present in individual fields can be derived as 

 F10 = ΣPi/ΣCi. 

We expected that it would be necessary to calibrate each case and antibody 

combination individually, on account of differences in fixation and processing 

between cases, and differing epitope robustness and antibody binding affinity. But is 

calibration for every field necessary, given that all ten fields were adjacent to each 

other on the same section, and had been exposed to identical handling, prosection, 

fixation, processing, storage and staining? We sought, therefore, to find the 

maximum number of fields which would have to be calibrated by cell counting to 

allow an acceptable estimate of the number of cells present, in comparison with the 

number of cells estimated by calibrating every field. 

Our data allow us to examine variations in the pixels/cell calibration factor on a field-

to field, case-by case and antibody-by antibody basis. Plotting all individual pi/ci 

measurements against Pi for all cases, antibodies and fields (CD3, CD4, CD8, CD20) 

allows one to see relationships between the calibration factors and the total labelling 

(figure 3). Where few labelled pixels are present in a field, there is wide variation in 

the calibration, but the estimates of the calibration factor derived from fields in which 

more labelled pixels are present fall within a narrower range. It appeared appropriate 

therefore to base the calibration on the fields containing the largest number of 

labelled pixels, to reduce noise associated with smaller cell and pixel counts. 

Accordingly, three different estimates were made for each case/antibody 

combination: the calibration factor (over all 10 fields) was calculated as described 
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above (F10); and estimated using calibration factors calculated from the field m 

containing the greatest number of labelled pixels as F1 = (pm/cm); from the sum of 

that field and the field m’ with the next largest number of labelled pixels as F2= 

(pm+pm’)/(cm+cm’) and from the sum of the three fields with the largest, second and 

third largest number of pixels as F3= (pm+pm’+pm’’/(cm+cm’+cm’’). 

In expressing actual cell counts, the number of cells per field has been multipled by 

27 to give the results in cells per mm2. 

Results 

Comparison of F10  against F1, F2 and F3. A scatter plot (figure 4) shows a greater 

degree of scatter for F1  against F10  than for F2 or F3  against F10 , as might have been 

expected. We can look more closely at the degree of agreement (following Bland and 

Altman (11)) by computing 100(F1 - F10) /0.5(F1+F10), 100(F2-F10) /0.5(F2+F10) and 

100(F3 –F10) /0.5(F3+F10) to express the degree of agreement between the different 

calibration factors as a percentage of their means. The mean difference and its 

standard deviation are: F1 v F10, 8.3% (17.4%); F2 v F10, 5.3% (10.2%) and F3 v F10,  

4.4 % (7.8%). Clearly, F3  agrees best with F10, but F2 is nearly as good and is less work 

to derive, requiring only two calibration measurements. 

The differences are normally distributed (judged by normal probability plots and 

Shapiro-Wilk W test), so these figures tell us that we can be 95% confident that a cell 

count using F1 will not be more than 42.5% greater and not more than 25.9% less 

than a cell count derived using F10. The 95% confidence limits for F2 are +25.3% and -

14.7% and for F3 are +19.6% and -10.9%. For many purposes these will be offer 

adequate accuracy and precision.  

Differences in calibration between antibodies and between cases. This section loooks 

at whether it is necessary to calibrate cell counting for different cases or different 

antibodies. Figure 5 plots the raw calibration data for CD3, CD4, CD8 and CD20.  The 

scatter of points is very similar for CD3 and CD8; for CD4 it tends to be lower, and 

higher for CD20. Another way of looking at this is to take mean F10 values for all cases 

for each antibody. For CD3 the mean F10 is 770 pixels/cell ± SEM 61; for CD4 it is 603 

± 53; for CD8 it is 896 ± 67; and for CD20, 1161 ± 103. Were one to take the mean of 

these values (857.5 pixels/cell) to represent them all, the number of CD20+ B cells 

and CD8+ T cells would be systematically overestimated by 35% and 4.5% and CD3 
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and CD4+ T cells would be underestimated by 10.2 % and 29.3%. These represent 

non-trivial biases which for many purposes would not be acceptable. 

Figure 6 looks at case to case variation. It plots normalised factors F10 for CD3, CD4, 

CD8 and CD20 and shows that that generally the calibration factors F10 lie in a range 

between about 75% and 140% of the average for the series. One case is clearly an 

outlier and may have been subjected to unusually lengthy fixation. Again, the 

differences in the relationship between the pixel counts and the cell counts which 

they imply suggest that this variation must be taken into account. 

Finally, it is worth taking a preliminary look at the range of densities of different TIL 

populations in breast cancer. This gives some indication of the kind of precision 

which must be achieved to detect biologically significant differences; if the range is 

very wide then greater precision may not be required in comparison to the situation 

which would obtain if the range of observed densities was small. 

Figure 7 and table 1 present this data in units of cells per square millimetre.  

 CD3 CD4 CD8 CD20 

Mean 
12,900 6,016 7,010 4,750 

SD 
15,700 5,570 6,600 5,850 

Median 
6,280 5,160 4,280 1,860 

Total Range 490-59,700 54-20,000 270-22,800 0-16,092 

IQ range 
3,969-14,158 1,958-8,330 2,997-9,126 54-10,031 

 

Table 1 

Cell count summary table 

The range of TIL densities is very wide; there are major differences between different 

cases in the intensity of the TIL response evoked, in keeping with subjective 

impressions of the situation. This is a pre-condition for significant differences in 

tumour behaviour to be related to TIL density, and makes the task of analysis easier.   

 

Discussion 

Immunostaining pixel counts made using a widely available tool (Adobe Photoshop) 

can be converted into cell counts per square mm for tumour infiltrating lymphocyte 
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subtypes. Likely errors associated with this conversion are small in comparison with 

the range of TIL densities in breast carcinomas in this preliminary study. 

A purpose of this study was to develop a methodology employable in larger-scale 

studies. Many studies published in the pathology literature are statistically 

underpowered. Our ongoing case/control study of outcomes in breast cancer is 

designed to examine 111 breast cancer patients (‘cases’) in which metastatic relapse 

occurred and 222 cancer patients (‘controls’) without relapse. Carcinomas are 

matched for size, grade, estrogen receptor and lymph node status, and the women are 

matched by age as a surrogate for menopausal status. Examining a core set of TIL 

subtypes (CD3, CD4, CD8 and CD20) will require measurement of 333 x 4 x 10 = 

13320 digital images. High-throughput approaches to the analysis of ≈ 40 gigabytes 

of image data are required. Manual processing of all images in Photoshop is a non-

starter. We view this enabling, preliminary study as a stepping stone to a more 

streamlined approach. 

Calibration of conversion from pixel to cell counts is required for each case/antibody 

combination. For a set of histological sections immunostained as a batch on 

automated staining equipment, identical colour selection parameters can be used on 

all sections in that batch; visual inspection showed satisfactory selection of areas 

identified visually as immunostained with DAB from field to field, case to case and 

antibody to antibody, all in the same batch. 

We studied 640 images in this pilot study. Pixel counts were made manually for all 

these images. We plan to automate this step and have begun work on the 

development of a program to do so, using batch processing of image files. The 

intention is to write the program in a programming language (C) for which compilers 

are readily available for different computer platforms (Windows, Apple, 

Unix/Linux...). We anticipate that the public domain image processing software  

‘ImageMagick’ (available at http://www.imagemagick.org) will be called by the 

program to convert different file types into a form suitable for the necessary image 

arithmetic for counting image pixels which meet the user-specified criteria for the 

signal.  

These criteria may be established within Photoshop. Photoshop does not offer a tool 

revealing the Lab ranges implied by specific ‘Colour Range’ and ‘Fuzziness’ settings; 

indeed there is no published algorithm detailing precisely how Photoshop performs 
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the image arithmetic behind these tools. Howevcr, these parameters can be 

established using the LabMeter tool (free from www.Curvemeister.com) to measure 

the a,b range and a suitable gradient image to define the L range being quantified. 

Other proprietary and public domain image analysis programs may also allow 

appropriate Lab parameters to be defined. 

Even in its present form the method could be used for studies in a small to medium 

scale. We do not think it will be possible to avoid the need to calibrate images 

manually, although histogram specification may be worth exploring to see how it 

performs in this context. This transforms each colour plane in a new image to have 

the same colour histogram as a reference image. This may be most relevant for 

staining/batch to batch variation.   

For some purposes calibration based on a single image from a set may define a 

conversion factor with adequate precision to be satisfactory in a particular 

application. For the application we have described we consider that two fields are 

sufficient. This represents an 80% reduction in the labour of counting, compared to 

10-field calibration. This brings the method within the range of what is practicable 

and will facilitate the use of objective histological cell counting in clinical and 

experimental tumour immunology. 
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Titles and legends to figures 

Figure 1. Top 

left: Immunoperoxidase staining shows many CD3+ tumour-infiltrating lymphocytes 

in this breast carcinoma. Top right: outlined areas selected in Photoshop using 

‘Select/Colour Range’ as described in materials and methods. Bottom left and right: 

No CD35+ cells are present in this field (left), and no pixels are selected by Photoshop 

(right) 
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Figure 2. 3D 

histograms of the images in figure 1. Left: CD3. Right: CD35. The difference in the 

colour distribution of coloured pixels between the two images as a consequence of the 

numerous CD3+ cells and the absence of CD35+ cells is obvious. These 3D 

histograms were generated using the ‘3D Color Inspector/Color Histogram’ plugin 

[Kai Uwe Barthel] for the public-domain image processing software Image J 

(available at http://rsb.info.nih.gov/ij/). Luminance is on the vertical axis and the 

chromaticity axes a and b are indicated on the base of the Lab colour cube. 
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Figure 3. Scatter plot of calibration factors pi/ci for all evaluable fields. The 

calibration factor is plotted on the x axis against the number of labelled pixels Pi  in 

the image which yielded that calibration factor for CD3 (triangle), CD4 (diamond), 

CD8 (grey diamond) and CD20 (circle). 
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Figure 4. Scatter plot of calibration factors (pixels per cell) derived from all evaluable 

fields. The calibration factor F10  is plotted on the x axis against the three calibration 

factors derived from available measurements for the single field with the most 

labelled pixels (F1 ; small Δ), the two fields with the most and second most labelled 

pixels (F2 ; ο), and the three fields with the three most labelled pixels (F3 ; larger grey 

Δ). One-field calibration shows considerably more scatter than two- or three-field 

calibration. 
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Figure 5. Scatter plot of calibration factors (pixels per cell) derived from all evaluable 

fields arranged by case and by antibody. Each vertical column of data points 

represents one case from 1 to 16 and the order of cases is the same for each antibody. 

Calibration factors are comparable for CD3 and CD8; those for CD4 tend to be lower 

and for CD 20, higher. 
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Figure 6. Scatter plot of calibration factors F10 for CD3, CD4, CD8 and CD20: CD3 

(triangle), CD4 (diamond), CD8 (grey diamond) and CD20 (circle). Data are 

normalised against mean F10 and ranked by mean normalised F10 value. This plot 

indicates that for the most part calibration factors F10 lie in a range between about 

75% and 140% of the average. The first case is clearly an outlier and may have been 

subjected to unusually lengthy fixation. '+' indicates mean normalised F10 values. 
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Figure 7. Scatter plot of cell counts for CD3, CD4, CD8 and CD20: CD3 (triangle), 

CD4 (diamond), CD8 (grey diamond) and CD20 (circle). There is a wide range of 

values for each lymphocyte sub-population. 
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