University of
Strathclyde
Glasgow

Strathprints Institutional Repository

Adcock, Jonathan Paul and Gibson, Colin and Huggan, Judith and Suckling, Colin (2011) Diversity oriented synthesis : substitution at C5 in unreactive pyrimidines by Claisen rearrangement and reactivity in nucleophilic substitution at C2 and C4 in pteridines and pyrido[2,3-d]pyrimidines. Tetrahedron, 67 (18). pp. 3226-3237. ISSN 0040-4020

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright (c) and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Diversity oriented synthesis: substitution at C5 in unreactive pyrimidines by Claisen rearrangement and reactivity in nucleophilic substitution at C2 and C4 in pteridines and pyrido[2,3-d]pyrimidines

Jonathan Adcock, Colin L. Gibson, Judith K. Huggan, and Colin J Suckling*

Corresponding author:
Professor Colin J. Suckling
WestCHEM,
Department of Pure \& Applied Chemistry,
University of Strathclyde,
295 Cathedral Street,
Glasgow, G1 1XL,
Scotland
Tel: 441415482271
E-mail: c.j.suckling@strath.ac.uk

Diversity oriented synthesis: substitution at C5 in unreactive pyrimidines by Claisen rearrangement and reactivity in nucleophilic substitution at C2 and C4 in pteridines and pyrido $[2,3-d]$ pyrimidines

Jonathan Adcock, Colin L. Gibson, Judith K. Huggan, and Colin J Suckling*

WestCHEM, Department of Pure \& Applied Chemistry, University of Strathclyde, Glasgow, Scotland.

Diversity oriented synthesis of fused pyrimidines leads to scaffolds with many biological activities. In the case of the preparation of pyrido[2,3-d]pyrimidines from 2alkylthiopyrimidines, the formation of a new carbon-carbon bond at C 5 is required, a reaction that is very limited in scope. However Claisen type rearrangement of simple 4-allylic ethers affords C5 substituted pyrimidines readily; in cases with an ester substituent, rearrangement occurs at room temperature. Subsequent cyclisation to afford 6-methylpyrido[2,3$d]$ pyrimidin- $7(8 H)$-ones was achieved in high yield. Using allylic ethers derived from 3-chloromethyl-4-arylbut-3-en-2-ones as substrates, a new titanium[IV]chloride catalysed reaction affording 6 -arylmethyl-7-methylpyrido $[2,3-d]$ pyrimidines was discovered. In contrast, 2-alkylthiopteridines are readily available. In both cases, substitution at C 2 and C 4 to generate diversity has been carried out and the reactivity compared; yields of substitution products were generally higher with pteridine substrates. In biological assays unexpected hits were found for activity against the Gram positive bacterium, Nocardia farcinia, and against the parasite Trypanosoma brucei brucei, illustrating the value of diversity oriented synthesis in the discovery of biologically active compounds.

Keywords: pyrimidines, Claisen allyl rearrangement, pyridopyrimidines, pteridines, diversity oriented synthesis, antiparasitic activity.

1. Introduction

Whilst the synthesis of pteridines and related bicyclic nitrogen heterocycles is established, ${ }^{1}$ the synthesis of their deaza analogues requires further development because most methods for the synthesis of such compounds have not been designed with the intention of creating highly diverse libraries of compounds as is required for modern medicinal chemistry in which multiple biological targets may be relevant. With emphasis on diversity oriented synthesis in our own studies, we have identified active compounds with respect to GTP cyclohydrolase $1,{ }^{2}$ dihydropterin diphosphokinase, ${ }^{3}$ dihydrofolate reductase, ${ }^{4}$ pteridine reductase 1^{5} and nitric oxide synthase. ${ }^{6}$ Several of these targets are significant clinically and the optimisation of activity requires the availability of more diverse libraries within the same basic structural skeleton. Our recent work, therefore, has emphasised maximising the number of easily variable sites, so that at least three variations are readily available from one synthetic stream. At the centre of these developments has been the alkylthio substituent, either at C 2 or C 4 of a pyrimidine and we have established a prototype solid phase synthesis of pteridines using this linker which proceeds through C5 nitrosation of the alkylthiopyrimidine. ${ }^{7}$ Extension of this chemistry to pyrido $[2,3-d]$ pyrimidines and pyrrolo $[2,3-d]$ pyrimidines requires carbon substitution to take place at C5 of the pyrimidine. Although a 2- or 4-alkylthio substituent gives access to diversity, via oxidation and nucleophilic displacement, the presence of the alkylthio substituent significantly reduces the reactivity of C5 to electrophiles compared with the more common 2-amino substituent such that carbon electrophiles, do not react. A significant exception is that when certain Michael acceptors are used, C5 substitution occurs in reduced yield ${ }^{8}$ and this chemistry has been developed to provide compounds with significant activity against Trypanosoma brucei. ${ }^{5}$ A further example of a successful C5 substitution of a 2-alkylthiopyrimidine is found in nucleoside analogue synthesis and involves Vilsmeier formylation. ${ }^{9}$ In contrast, halogen electrophiles substitute 2-alkylthiopyrimidines in high yield and provide suitable precursors for C 5 carbon substitution. ${ }^{10}$ In view of the low reactivity of these intermolecular substitution reactions, we hypothesised that intramolecular C5 substitution might be successful and that suitable precursours for the Claisen allyl rearrangement would be available from O 4 allyl ethers. Allyl rearrangements have been used in the synthesis of many natural products. ${ }^{11}$ The Claisen rearrangement was first described in the pyrimidine series in 1961 but the reactions lacked functional groups for further transformations leading to fused pyrimidines. ${ }^{12}$

2. Results and discussion

2.1 Claisen rearrangement

To investigate further the Claisen rearrangement approach, ${ }^{12}$ pyrimidine $\mathbf{1}$ was treated with allyl bromide in DMF in the presence of solid potassium carbonate to afford a mixture of the O 4 and N 3 allyl pyrimidines 2 (62%) and 3 (9%), which were separable by column chromatography. The O 4 allylated pyrimidine 2 underwent quantitative Claisen rearrangement to afford 4 at $200{ }^{\circ} \mathrm{C}$ in the melt (Scheme 1); in previous work, reactions took place in high boiling solvents and gave only 20% yield.

Scheme 1. Substitution by Claisen rearrangement. Reagents and conditions: i. $\mathrm{DMF}, \mathrm{K}_{2} \mathrm{CO}_{3}$, $100^{\circ} \mathrm{C}, 20 \mathrm{~h}$; ii. $200^{\circ} \mathrm{C}, 24 \mathrm{~h}$

Cyclisation of 4 to either a pyrido[2,3-d]- or a pyrrolo[2,3-d]-pyrimidine proved unsuccessful using palladium catalysis. ${ }^{10}$ However, this cyclisation reaction was not a priority because the products of cyclisation of 4 would lack substituents in the newly formed ring, an outcome inappropriate for a diversity oriented synthesis; substituted allylic groups are necessary for library synthesis. In electrocyclic reactions, it is often found that the introduction of an electron withdrawing group to an alkene greatly increases the reaction rate. ${ }^{11}$ By using ethyl bromomethylacrylate as the alkylating agent and pyrimidine 1, two surprising results were obtained. Firstly, alkylation of the anion of $\mathbf{1}$ with ethyl bromomethylacrylate led directly to the disubstituted pyrimidine, $\mathbf{5}$ (Scheme 2); such a product could arise if rearrangement was exceptionally rapid and was followed by a subsequent O-alkylation. The structure of 5 was confirmed by X-ray crystallography. ${ }^{13}$

Scheme 2. Preparation of dialkylated pyrimidine 5 Reagents and conditions: i. DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}, 55^{\circ} \mathrm{C}, 24 \mathrm{~h}$

This reaction suggested that both allyl ether formation and rearrangement surprisingly had taken place at room temperature. Pyrimidine 1 was therefore treated slowly over a period of days with ethyl bromomethylacrylate at room temperature in the absence of added base to afford the rearranged C5 alkylated product 6a (46\%). Similar reactions occurred between 1 and bromomethylacrylic acid to give $\mathbf{6 b}$ (30%), as well as on the 2 -aminopyrimidine 7 a to give $\mathbf{6 c}$ and $\mathbf{6 d}$ in 83 and 53% yield respectively (Scheme 3). A set of 6-N-alkylpyrimidines (7b, 7c, 7d) was also prepared in a similar manner. As planned, the C 5 alkylated products were cyclised with nonnucleophilic base to afford a set of pyrido[2,3-d]pyrimidine-7($8 H$)-ones ($\mathbf{6 f}-\mathbf{6 g}$). Optimisation of the cyclisation conditions of the C5 alkylated Claisen rearrangement products 6 showed that triazabicyclodecane (TBD) was more effective than diazabicycloundecane (DBU) and yields of $>80 \%$ were reproducibly obtained leading to a series of 2-alkylthiopyrido[2,3- $d]-3(4 H), 7(8 H)$-diones (Scheme 3) from which a library of compounds through C2 substitution was generated ($\mathbf{8 a}-\mathbf{8 e}$).

$1 \mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{H}$
$7 a R^{1}=N H_{2}, R^{2}=H$
7b $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{Me}$
7c $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}$
7d $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CHCH}_{2}$

6a $R^{1}=S B n, R^{2}=H, R^{3}=E t, 46 \%$
6b $R^{1}=S B n, R^{2}=H, R^{3}=H, 30 \%$
6c $R^{1}=N H_{2}, R^{2}=H, R^{3}=E t, 83 \%$
6d $R^{1}=N H_{2}, R^{2}=H, R^{3}=H 53 \%$
6e $R^{1}=S B n, R^{2}=M e, R^{3}=E t, 33 \%$
$6 f R^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Et}, 33 \%$
6 g $R^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CHCH}_{2}, \mathrm{R}^{3}=\mathrm{Et}, 33 \%$

8a $R^{1}=S B n, R^{2}=H, 98 \%$
8b $R^{1}=N H_{2}, R^{2}=H, 81 \%$
8c $R^{1}=S B n, R^{2}=\mathrm{Me}, 96 \%$
8d $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}, 96 \%$
$8 \mathrm{e} \mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CHCH}_{2}, 96 \%$
Scheme 3. Reagents and conditions: i. DMF, r.t, 7 d; ii. TBD or DBU, MW, $100^{\circ} \mathrm{C}, 30$ min

2.2 Lewis acid catalysed rearrangement and cyclisation

In principle, the bromomethylacrylate substitution and Claisen rearrangement leads to pyrido $[2,3-d]$ pyrimidindiones with diversity at two positions and efforts were made to extend the reaction using more highly substituted acrylates without success. However the Claisen rearrangement route has further potential for the synthesis of diverse pyrido[2,3d]pyrimidines if ketones are used in place of esters. β-Halomethyl arylidene ketones are readily available through the Baylis-Hillman reaction using methyl vinyl ketone and the appropriately substituted aldehyde. ${ }^{14}$ Such compounds $\mathbf{9 a}, \mathbf{9 b}$ were found to react readily with the benzylthiopyrimidinone 1 in the presence of cesium carbonate to afford the O alkyl products 10a, 10b in $60-70 \%$ yield. Unlike the previous examples, these compounds are stable at room temperature and do not rearrange cleanly on thermolysis. Base catalysis via an N6 anion formed using sodium hydride or DBU did not promote any reaction. Many metal complexes have been used to accelerate electrocyclic reactions including the Claisen rearrangement. ${ }^{11,15}$ Several Lewis acids were tested for their ability to promote rearrangement of the arylallyl ethers, 10; boron trifluoride, magnesium dibromide, stannic chloride, and zinc chloride failed but titanium tetrachloride (10 $\mathrm{mol})^{16,17}$ induced both a rearrangement and concomitant cyclisation to afford the 6-
arylmethylpyrido $[2,3-d$]pyrimidines 11a, 11b in modest yield (Scheme 4). It is notable that these are not the expected products of Claisen rearrangement and subsequent cyclisation, which would be 5 -aryl-6,7-dimethylpyrido[2,3-d]pyrimidines. Titanium tetrachloride catalysis has therefore caused the reaction to follow another course; the proposed mechanism for the reaction is shown in Scheme 5.

Scheme 4. Reagents and conditions: i. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, KI, r.t., 24 h ; ii. $\mathrm{TiCl}_{4} .2 \mathrm{THF}$, THF, reflux, 3 d

Scheme 5. Proposed mechanism for the synthesis of derivatives 11. Ti was introduced as TiCl_{4}.2THF in THF solution.

Increasing the molar proportion of titanium tetrachloride up to $50 \mathrm{~mol} . \%$ also failed to improve yields. Indeed the major product under conditions of higher concentration of titanium tetrachloride was the precursor Baylis-Hillman chloroketone, 9. The occurrence of these competing reactions can be rationalised by a mechanism in which titanium tetrachloride generates an electrophile from the allyl ether, possibly with coordination also of the ketone carbonyl group to maintain an essentially intramolecular reaction. The initial coordination of titanium tetrachloride to the pyrimidyl ether would liberate chloride which, at the higher concentrations, traps the intermediate delocalised allylic cation 12 reverting to the starting material 9 . Nevertheless, two new pyrido[2,3$d]$ pyrimidines 11 were obtained for investigation of the introduction of diversity by modifications at C 2 and C 4 .

2.3 Diversification

Having established ring syntheses of pyrido[2,3-d]pyrimidines $\mathbf{1 1}$ from allyl ethers it was necessary to demonstrate diversification of these compounds at the 2-position. Two reactions were investigated, firstly oxidation of benzylthio substituents followed by nucleophilic substitution and secondly conversion of a 4-oxo substituent into a 4 aminoalkyl substitutent using BOP (benzotriazole-1-yl-
oxytris(dimethylamino)phosphonium hexafluorophosphate) and the corresponding amine. ${ }^{18}$ The oxidation/substitution sequence is successful and in high yield (typically 85 -95%) with pteridines and other compounds with electron deficient rings fused to pyrimidines. ${ }^{19-21}$ In many cases with pteridines as substrates, oxidation was not required before nucleophilic substitution of the alkylthio group. In this study, the range of examples has been extended to 4 -aminoalkyl pteridines as substrates, the latter being available through BOP chemistry as noted above. ${ }^{18}$

At the other extreme of reactivity, pyrrolo[2,3-d]pyrimidines underwent substitution only after oxidation, under vigorous conditions and in much lower yields. ${ }^{5}$ It would be reasonable to expect that the reactivity of pyrido[2,3- d] pyrimidines to nucleophilic substitution after oxidation would lie between these two extremes and this indeed proved to be the case. The 7-oxopyrido[2,3-d]pyrimidines $\mathbf{8 d}$ and $\mathbf{8 e}$ gave 13a-13d in yields typically of $50-60 \%$, somewhat greater than those for the pyrido[2,3-d]pyrimidines $\mathbf{1 1 b}$ lacking the 7 -oxo group, which afforded typically $35-55 \%$ yields of $\mathbf{1 4 a}-\mathbf{1 4 d}$ under the same conditions.

13a

15a $\mathrm{R}=\mathrm{NHCH}_{2} \mathrm{Ph}, 65 \%$
15b $R=$ pyrrolidin-1-yl, 58\%

Scheme 6. Diversification reactions for pyridopyrimdines. Reagents and conditions: i.
DMF, m-CPBA, r.t., 3 h ; ii, appropriate amine, MW, $110^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, BOP, CHCN, r.t., $10 \mathrm{~min} ; i v, \mathrm{DBU}$, appropriate amine, r.t., 48 h .

A further reaction of value in the diversification of oxo-heterocycles has been demonstrated by scientists from Wyeth who showed that oxo substituents in 4- and 7positions especially could be converted into aminoalkyl substituents by treatment with BOP and the required amine. ${ }^{18}$ This reaction was successful with 13a as a representative pyridopyrimidine substrate affording pentasubstituted pyrido[2,3-d]pyrimidines 15a and 15b in satisfactory yield (55-65\%, Scheme 6).

In the pteridine series, both oxidative substitution and BOP-activated substitution were successful; the former gave a series of 2-alkylamino-4-oxopteridines ($\mathbf{1 7 a} \mathbf{- h}$) in good yield and the latter, 4-aminoalkyl pteridines $(\mathbf{1 8 a}-\mathbf{f})$ in acceptable to good yields (65 80%) (Scheme 7). That the order of substitution at C2 and C4 was not critical was shown by the successful oxidative substitution of the new 4-alkylaminopteridines by a variety of amines to give 19a-e although yields were poorer for the BOP-mediated substitution (\sim 30\%).

18a $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=n-\mathrm{C}_{4} \mathrm{H}_{\mathrm{g}} \mathrm{NH}, 78 \%$
$18 b \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, 87 \%$
18c $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ pyrrolidin-1-yl, 81%
18d $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhNH}, 65 \%$
18e $R^{1}=$ Me, $R^{2}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 71 \%$
$18 f R^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{Et}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 71 \%$

$i v, v \searrow$

19a $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, \quad \mathrm{R}^{3}=$ pyrrolidin-1-yl, 40\%
19b $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ pyrrolidin-1-yl, $\mathrm{R}^{3}=$ pyrrolidin- 1 - $\mathrm{y}, 36 \%$
19c $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}, \mathrm{R}^{3}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 70 \%$
19d $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, \mathrm{R}^{3}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 83 \%$
19e $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=$ pyrrolidin-1-yl, $\mathrm{R}^{3}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 80 \%$

Scheme 7. Diversification reactions for pteridines. Reagents and conditions: i, $\mathrm{HNO}_{2} ; i i$, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$; $i i i$, EtOH, reflux; $i v$, DMF, m-CPBA, r.t., 3 h ; v, appropriate amine, MW, $110{ }^{\circ} \mathrm{C}, 1$ h; vi, BOP, $\mathrm{CH}_{3} \mathrm{CN}$, r.t., 10 min ; vii, DBU, appropriate amine, r.t., 48 h .

As a third example of a class of compounds for diversification, two pyrimido-oxazines, 20 and 21 were substituted directly with benzylamine without oxidative alkylation. In addition to substitution at C 2 , in the case of $\mathbf{2 1}$, the C 6 ester substituent underwent condensation affording the 6-benzylcarboxamide, 23 (Scheme 8). Direct substitution of methylthio groups in related pterins in moderate yield has been reported previously. ${ }^{21}$

20, 35\%

23, 30\%

21, 30\%

22, 37\%

Scheme 8. Diversification for pyrimidooxazines. Reagents and conditions: $i, \mathrm{HNO}_{2} ; i i$, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$; iii, aq. EtOH, NaOAc, reflux; i iv $\mathrm{PhCH}_{2} \mathrm{NH}_{2}, \mathrm{MW}, 110^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

2.4 Conclusions and Biological activity

In summary, we find that of the fused pyrimidines we have examined in this and in previous work, alkylthiopteridines undergo nucleophilic substitution most readily. ${ }^{19,22}$ Thus in pteridines, substitution after oxidation of the alkylthio group occurred at room temperature in $30-60 \%$ yield with water, azide, primary and secondary amines as nucleophiles. Pyrido[2,3-d]pyrimidines, as described above, are somewhat less reactive, requiring higher temperature and concentration of nucleophile to obtain a good yield. To a small extent, the 7-oxo group, which can assist in the delocalisation of charge in the intermediate in nucleophilic substitution, appears to give better yields. Pyrrolo[2,3$d]$ pyrimidines were the least reactive substrates requiring the use of neat amine as nucleophile and temperatures above $130^{\circ} \mathrm{C}$ to effect substitution; ${ }^{5}{ }^{53}$ this behaviour is consistent with the more electron rich pyrrole fused to the pyrimidine ring. In the pteridine series, substitution at C 2 and C 4 can be undertaken in either order using
oxidation/substitution or BOP activation/substitution chemistry. Taken together, all of these methods provide access to a wide range of fused pyrimidines diversely substituted at a late stage in the pyrimidine ring.

We have described elsewhere how this approach has led to compounds with significant biological activity, especially in antiparasitic applications. ${ }^{53}$ The biological activity of the compounds prepared in this study has been assessed in screens for antibacterial and antiparasitic properties. None of the pyrimido-oxazines was found to be active in any assay used. There was no significant antibacterial activity observed against Staphylococcus aureus, or Escherichia coli, but two of the 4 -oxopteridines, $\mathbf{1 7 g}$ and $\mathbf{1 7 h}$ had weak but measurable activity against the Gram positive bacterium, Nocardia farcinia (MIC $=50$ and $100 \mu \mathrm{M}$ respectively). On the other hand, several 4-amino substituted compounds were hits in a cell based assay against the parasite Trypanosoma brucei brucei. In the pteridine series, both 2-alkylamino and 2-thiobenzyl compounds were active (18a, MIC $=25 \mu \mathrm{M}$; 18c, 12.5; 18d, 25; 18e, 12.5; 18f, 12.5 ; 19c, 3.1; 19d, 3.1; 19e, 6.3); the most active compounds were the 2,4-dialkylamino compounds, 19c-e. The pyridopyrimidin-2,4-dione $\mathbf{1 4 d}$ was a also modest hit with a MIC of $25 \mu \mathrm{M}$. All of these compounds are, however, inferior as antiparasitic compounds to the pyrrolopyrimidines we have already described ${ }^{23}$ because they have unacceptably high values of clogP (67). Nevertheless, the results reported here serve to illustrate the value of diversity oriented synthesis on heterocyclic templates in the discovery of biologically active compounds.

3. Experimental

3.1 Instrumentation and general methods

NMR spectra were recorded on a Bruker Spectrospin spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ spectra and 100 MHz for ${ }^{13} \mathrm{C}$ spectra. The following abbreviations were used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Coupling constants (J) are quoted in Hz . Chemical shifts are reported as ppm relative to the residual protio solvent resonance. spectra were determined using a Mattson 1000 FT spectrometer or a Nicolet Impact 400D FT spectrometer as a KBr disc. Mass spectra were measured on a JEOL JMS AX505 spectrometer at the University of Strathclyde using electrospray (ES), or chemical ionisation (CI) methods. Accurate mass were recorded at the University of Glasgow on Jeol JMS-7 MStation high resolution magnetic sector using electron impact (EI) or fast atom bombardment (FAB) ionisation. Melting points, where measurable, were determined on a Reichert hot stage apparatus and are uncorrected. Microanalysis is typically unreliable in
polyazabicyclic compounds due to poor combustion even in the presence of a catalyst $\left(\mathrm{WO}_{3}\right)$; microanalytical data is reported where satisfactory and $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra are included in the Electronic Supplementary Information \dagger. TLC was carried out on silica (Merck $0.25 \mathrm{~mm}_{60} \mathrm{~F}_{254}$) visualising the plates with either aqueous potassium permanganate solution or UV; whilst suitable for monitoring reactions and product purity, with these highly polar compounds, R_{f} values vary from run to run and have therefore not been given. Column chromatography was carried out using silica gel (230-400 mesh; 40-60 mm). All reagents were bought from Aldrich (Gillingham, Dorset, U.K.). Microwave reactions were carried out on a Biotage Initiator 2.0. HPLC was carried out on a Waters machine equipped with a 1525 binary HPLC pump, Waters 2487 dual λ absorbance detector, and Breeze software using Vydac protein and peptide C18 column, $\lambda=254 \mathrm{~nm}$. Gradient elution was with water/acetonitrile with or without trifluoroacetic acid.

3.2 Experimental procedures

3.2.1 6-Amino-2-(benzylthio)pyrimidin-4(3H)-one $\mathbf{1}^{19}$ was prepared as previously

 described.
3.2.2 6-(Allyloxy)-2-(benzylthio)-pyrimidin-4-amine 2 and 3-allyl-6-amino-2-(benzylthio) pyrimidin-4(3H)-one 3 :

To 6-amino-2-(benzylsulfanyl)pyrimidin-4(3H)-one $\mathbf{1}(1.790 \mathrm{~g}, 7.67 \mathrm{mmol})$ in anhydrous DMF (20 mL) was added allyl bromide ($700 \mu \mathrm{l}, 0.980 \mathrm{~g}, 8.03 \mathrm{mmol}, 1.05 \mathrm{eq}$.) and potassium carbonate ($1.24 \mathrm{~g}, 8.98 \mathrm{mmol}, 1.17 \mathrm{eq}$.). The reaction mixture was left stirring at $100^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was cooled to room temperature, filtered under vacuum and the solvent evaporated under reduced pressure. The residue was dissolved in water (20 mL) and extracted with $\mathrm{DCM}(50 \mathrm{~mL})$. The organic layers were combined, dried over MgSO_{4} and concentrated under reduced pressure to give a pale yellow solid. The crude product was purified by column chromatography using ethyl acetate (100\%) as eluant to give 6-(allyloxy)-2-(benzylthio)-pyrimidin-4-amine $\mathbf{2}$ as a pale yellow crystalline solid ($0.924 \mathrm{~g}, 3.38 \mathrm{mmol}$, 62%) and 3-allyl-6-amino-2-(benzylthio)pyrimidin-4(3H)-one 3 as a white crystalline solid $(0.127 \mathrm{~g}, 0.464 \mathrm{mmol}, 9 \%)$.

Characterisation of 2: m.p. $80-82^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}): 3477,3302,3143,1642,1549,1469$, 1430, 1336, 1205, 984, 933, 815, 716, 696, $592 \mathrm{~cm}^{-1} ; \delta_{\text {H }}$ (DMSO-d d_{6}) $4.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right)$, $4.73\left(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.20\left(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.33(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CH} H), 5.45(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.94-6.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.75\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.21-$ $7.31\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.39-7.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 33.8,66.0,81.9,117.4,126.9$,
128.3, 128.8, 133.6, 138.6, 165.2, 168.3, 168.8. HRMS (EI): M^{+}, found 273.0936.
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ requires 273.0936.
Characterisation of 3: m.p. $167-174{ }^{\circ} \mathrm{C}$ (slow decomposition). $v_{\max }(\mathrm{KBr}): 3391,3316$, $3186,1644,1620,1508,1453,1424,1289,1253,1197,1127,1025,913,800,635 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO-d d_{6} : $4.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.01(1 \mathrm{H}, \mathrm{d}, J=17.6$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH} H), 5.12\left(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.70-5.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.57(2 \mathrm{H}$, br s, NH_{2}), $7.24-7.33\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.44-7.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 35.1,44.3$, 80.7, 116.8, 127.4, 128.4, 129.3, 132.1, 137.0, 160.5, 161.2 (x2). HRMS (EI): M ${ }^{+}$, found 273.0936. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ requires 273.0936.

3.2.3 5-Allyl-6-amino-2-(benzylthio)-4(3H)-pyrimidinone 4

6-(Allyloxy)-2-(benzylsulfanyl)-4-pyrimidinylamine $2(0.310 \mathrm{~g}, 1.13 \mathrm{mmol})$ was heated to $200^{\circ} \mathrm{C}$ under nitrogen for 24 h using a sand bath. The resulting brown solid was dissolved in methanol (15 mL) and filtered. The excess solvent was removed under reduced pressure and the resulting solid was purified by flash chromatography to yield the title compound $\mathbf{4}$ as a white solid ($0.290 \mathrm{~g}, 1.06 \mathrm{mmol}, 92 \%$), m.p. $152-154{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3400,3925,1625$, 1610, 1582, 1470, 1410, 1305, 1206, 1046, 934, 815, 717, 637, $593 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO-d d_{6}): $2.50\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right), 4.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.94\left(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.05\left(1 \mathrm{H}, \mathrm{d}, J=16.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.67-5.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.26\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.18$ $-7.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.37-7.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 26.4$, 33.1, 90.6, 114.2, 127.1, 128.3, 129.1, 135.4, 137.9. HRMS (EI): M^{+}, found 273.0939. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ requires 273.0936.

3.2.4 Ethyl 2-[(4-amino-2-(benzylsulfanyl)-6-\{[2-(ethoxycarbonyl)-2-propenyl]oxy\}5pyrimidinyl)methyl]acrylate 5

6-Amino-2-(benzylthio)pyrimidin-4(3H)-one $\mathbf{1}(0.690 \mathrm{~g}, 2.95 \mathrm{mmol})$ was dissolved in DMF (12 mL , anhydrous) at room temperature under nitrogen. Ethyl 2-(bromomethyl)acrylate ($610 \mu \mathrm{l}, 4.40 \mathrm{mmol}, 1.50 \mathrm{eq}$.) and potassium carbonate ($0.500 \mathrm{~g}, 3.62 \mathrm{mmol}, 1.23 \mathrm{eq}$.) were added and the reaction mixture was stirred at $55^{\circ} \mathrm{C}$ for 24 h . Once the reaction was complete (confirmed by TLC), the mixture was cooled to room temperature and the solvent evaporated under reduced pressure. The subsequent yellow oil was dissolved in DCM, the organics were extracted with brine and dried over MgSO_{4} and concentrated under reduced pressure to give a yellow oil. Purification of the crude product was achieved using column chromatography using ethyl acetate:hexane ($1: 1$) as eluant. The title compound $\mathbf{5}$ was isolated as a white solid $(0.114 \mathrm{~g}, 0.249 \mathrm{mmol}, 8 \%)$, m.p. $110-112{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3407,3323,3191,2991,1707$, 1652, 1572, 1493, 1474, 1444, 1401, 1376, 1316, 1264, 1158, 1050, 956, 855, 776, $563 \mathrm{~cm}^{-1}$;
$\delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.15-1.26\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 2\right), 3.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CO}_{2}{\left.\mathrm{Et}) \mathrm{CH}_{2}\right), 4.09-4.20}^{2}\right.\right.$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{x} 2\right), 4.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.98\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 5.14(1 \mathrm{H}, \mathrm{s},=\mathrm{CHH}), 5.75(1 \mathrm{H}, \mathrm{s}$, $=\mathrm{CH} H), 5.99(1 \mathrm{H}, \mathrm{s},=\mathrm{CH} H), 6.19(1 \mathrm{H}, \mathrm{s},=\mathrm{CH} H), 6.19\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.19-7.31(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.39-7.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 13.9,14.0,24.4,33.8,60.3,60.5,63.5,90.7$, $123.1,126.1,126.8,128.3,128.8,136.3,137.0,138.7,163.4,164.8,165.4,166.2,166.2$, 166.4. $\mathrm{HRMS}(\mathrm{ES})$: $\mathrm{M}+\mathrm{H}^{+}$, found $458.1650 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$ requires 458.1671 .

3.2.5 Ethyl 2-\{[4-amino-2-(benzylsulfanyl)-1,6-dihydro-6-oxopyrimidin-5-yl)methyl\} acrylate 6a

6-Amino-2-(benzylthio)pyrimidin-4(3H)-one $1(0.520 \mathrm{~g}, 2.22 \mathrm{mmol}$) was dissolved in DMF (10 mL , anhydrous) to which ethyl 2-(bromomethyl)acrylate ($310 \mu \mathrm{l}, 2.24 \mathrm{mmol}$) was added. The reaction mixture was then stirred under nitrogen for 7 d at room temperature prior to the concentration of excess solvent under reduced pressure. The resulting residue was purified by flash column chromatography using hexane/ethyl acetate (2:1) as eluant. The title compound $\mathbf{6 a}$ was obtained as a white crystalline solid $(0.340 \mathrm{~g}, 0.998 \mathrm{mmol}, 44 \%)$, m.p. $160-162{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3483,3368,1693,1614$, $1475,1438,1333,11260,1187,1152,1029,953,693 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.27(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\right), 4.19\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz} . \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.34(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 5.22\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.97\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 6.34\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.21-7.34(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.43-7.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 14.1,24.7$, $33.1,60.2,89.2,122.7,127.1,128.4,129.2,137.3,137.8,160.4,163.0,166.8$ (x 2). HRMS (EI): M^{+}, found $345.1149 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires 345.1147.

Similarly prepared were:

3.2.6 2-\{[4-Amino-2-(benzylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidinyl]methyl\}acrylic acid 6b

From 6-amino-2-(benzylthio)pyrimidin-4(3H)-one 1 and 2-(bromomethyl)acrylic acid using 2 eq. of the latter added over 2 d and a further 5 d reaction in 30% yield, m.p. $157-159{ }^{\circ} \mathrm{C}$. $v_{\max }(\mathrm{KBr}): 3444,3003,1705,1642,1552,1320,1207,1017,929,843,710 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(\mathrm{DMSO}-$ $\left.\mathrm{d}_{6}\right): 3.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{C}=\right), 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 5.91\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 6.33(1 \mathrm{H}, \mathrm{br}$ s, $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 6.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.20-7.40\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.41-7.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 12.01(1 \mathrm{H}$, br s, NH); $\delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 34.0,79.6,124.7,128.1,128.6,129.5,137.5,138.7,158.3,164.6$, 166.2, 172.6. HRMS (EI): M^{+}, found 317.0831. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ S requires 317.0834.

3.2.7 Ethyl 2-[(2,4-diamino-6-oxo-1,6-dihydro-5-pyrimidinyl) methyl] acrylate 6c

From 2,6-diamino-4(3H)-pyrimidinone 7a and ethyl 2-(bromomethyl)acrylate reacting for 3 d in 83% yield, m.p. $120-122^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3455,3341,3176,1698,1629,1500,1446,1372$, 1260, 1151, 1023, 779, $647 \mathrm{~cm}^{-1}$; δ_{H} (DMSO-d d_{6} : $1.24\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.05(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2}-\mathrm{C}=\right), 4.14\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.26\left(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 5.67(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 5.94\left(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 6.02\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 9.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(\mathrm{DMSO}-$ d_{6}): 14.2, 25.1, 60.2, 83.4, 122.6, 137.4, 152.3, 157.7, 161.8, 166.7. HRMS (EI): M^{+}, found 238.1070. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires 238.1066.

3.2.8 2-((2,4-Diamino-1,6-dihydro-6-oxopyrimidin-5-yl)methyl)acrylic acid 6d

From 2,6-diaminopyrimidin-4(3 H)-one 7 a and 2 -(bromomethyl)acrylic acid using 2 eq of the latter added over 2 d and a further 5 d reaction in 53% yield, m.p. $>230^{\circ} \mathrm{C}$. $v_{\text {max }}(\mathrm{KBr})$: 3378, 3199, 2972, 2758, 1707, 1647, 1604, 1511, 1419, 1282, 1237, 1193, 1116, 1091, 958, $808,617,550 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): 2.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{C}=\right), 5.28\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.90(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CH}_{2}$), $6.13\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 7.08\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 10.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 11.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{H}$); $\delta_{\mathrm{C}}\left(\right.$ DMSO-d $\left._{6}\right): 24.2,84.3,122.7,138.1,152.0,162.1,162.3,168.5$. HRMS (EI): M^{+}, found 211.0832. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires 211.0831.

3.2.9 Ethyl 2-\{[2-(benzylsulfanyl)-4-(methylamino)-6-oxo-1,6-dihydro-5pyrimidinyl]methyl\}acrylate 6e

From 2-(benzylsulfanyl)-6-(methylamino)-4(3H)-pyrimidinone $\mathbf{7 b}$ and ethyl 2(bromomethyl)acrylate with a reaction time of 4 d in 33% yield, m.p. $171-173^{\circ} \mathrm{C} . v_{\text {max }}$ (KBr): $3503,3367,1670,1618,1483,1452,1370,1181,707 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.24(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NHCH}_{3}\right), 3.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\right), 4.14(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 5.85\left(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 5.95\left(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{CH}_{2}=\right)$, $6.12(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.18-7.33\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 12.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 14.2,24.5$, 28.7, 34.5, 61.1, 92.7, 127.4, 127.7, 128.6, 128.9, 137.0, 137.6, 158.2, 160.1, 164.2, 169.0. HRMS (EI): M^{+}, found 359.1303. requires $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S} 359.1304$.

3.2.10 Ethyl 2-\{[4-(benzylamino)-2-(benzylsulfanyl)-6-oxo-1,6-dihydro-5pyrimidinyl]methyl\}acrylate $6 f$

From 2-(benzylsulfanyl)-6-(benzylamino)-4(3 H)-pyrimidinone 7c and ethyl 2(bromomethyl)acrylate with 4 reaction in 33% yield, m.p. $168-171^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3478$, $3165,1774,1661,1559,1534,1459,1205,986 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.32(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 3.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{C}=\right), 4.11\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.25(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 4.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 5.95\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 6.04\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\right)$, $6.15\left(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right), 7.47-7.22\left(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{C}_{6} \mathrm{H}_{5}\right), 12.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 436.1694. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires 436.1695.

3.2.11 Ethyl 2-\{[4-(allylamino)-2-(benzylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidinyl]

 methyl\} acrylate 6 g as a pale yellow solid in 33% yield, $\mathrm{mp} 165-168^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3503$, $3367,1670,1618,1483,1452,1370,1181,707 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 1.31(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 3.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{C}=\right), 4.08-4.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.22\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 5.12\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 5.16\left(1 \mathrm{H}, \mathrm{d} J=1.5 \mathrm{~Hz}, \mathrm{CH}_{2}=\right), 5.85-$ $5.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.04(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 6.09(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{NHCH} 2)$, $6.21(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 7.24-7.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 13.04(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right): 13.2,23.4,33.5,43.0,60.1,91.9,114.5,126.4,126.7,127.6,127.9,134.4,135.8$, 136.5, 157.3, 158.3, 163.5, 167.9. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 386.1534. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ requires 386.1538 .
3.2.12 2-(Benzylsulfanyl)-6-(methylamino)-4(3H)-pyrimidinone 7b

2-(Benzylsulfanyl)-6-chloro-4(3H)-pyrimidinone ($500 \mathrm{mg}, 1.98 \mathrm{mmol}$) was dissolved in 2.0 M methylamine solution in THF ($4.95 \mathrm{~mL}, 5 \mathrm{eq}$). The solution was heated to $80^{\circ} \mathrm{C}$ in a sealed tube and stirred for 48 hours. The excess solvent was removed under reduced pressure and the residue was taken up in ethyl acetate. The solvent layer was washed with water (2 x 15 mL) and then saturated aqueous sodium bicarbonate solution $(15 \mathrm{~mL})$. The organic layer was then dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by flash chromatography to yield the title product as a fine white powder (186 $\mathrm{mg}, 0.0752 \mathrm{mmol}, 38 \%$), m.p: $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3214,3059,1637,1618,1421,1302$, $1256,1207,1097,978,792,711,570 \mathrm{~cm}^{-1} . \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.35(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 4.81(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.96\left(1 \mathrm{H}, \mathrm{bd},-\mathrm{NHCH}_{3}\right), 7.23-7.44\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.55(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 27.8,33.1,127.1,128.4,129.0,137.9,162.8,164.0$ HRMS (EI): M^{+}, found 247.0776. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$ requires 247.0779.

Similarly prepared were:
3.2.13 6-(Benzylamino)-2-(benzylsulfanyl)-4(3H)-pyrimidinone 7c as a white solid in 38\% yield, m.p: $230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3450,3000,2906,2818,1884,1807,1650,1554,1466,1351$, 1222, 1097, 984, 937, 829, 712, $552 \mathrm{~cm}^{-1} \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 4.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.47(2 \mathrm{H}, \mathrm{s}$, $\left.\left.\mathrm{CH}_{2} \mathrm{~S}\right), 4.90(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) 7.22-7.45\left(11 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2 \text { and } \mathrm{NHCH}\right)_{2}\right), 11.54(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ (DMSO-d d $_{6}$: $34.3,44.5,126.8,127.0,127.1,127.9,128.3,137.6,138.2,159.3,162.4,163.8$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 324.1174. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$ requires 324.1171
3.2.14 6-(Allylamino)-2-(benzylsulfanyl)-4(3H)-pyrimidinone 7d as a white solid in 37% yield, m.p: $>230^{\circ} \mathrm{C} ; \quad v_{\max }(\mathrm{KBr}): 3214,3059,1637,1618,1421,1302,1256,1207,1097,978$, $792,711,570 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 3.88\left(2 \mathrm{H}, \mathrm{m},-\mathrm{NH}-\mathrm{CH}_{2}\right), 4.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.89(1 \mathrm{H}, \mathrm{s}$,

H-5), $5.10\left(1 \mathrm{H}, \mathrm{d}, J=1.5,-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.17\left(1 \mathrm{H}, \mathrm{d}, J=17.5,-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.80(1 \mathrm{H}$, $\left.\mathrm{m},-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 7.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) 7.42-7.23\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.54(1 \mathrm{H}, \mathrm{s},-\mathrm{NH}) ; \delta_{\mathrm{C}}$ (DMSO-d ${ }_{6}$): 33.2, 42.4, 115.4, 115.6, 127.1, 128.4, 129.0, 134.4, 137.9, 159.2, 162.2, 163.3.

3.2.15 2-(Benzylsulfanyl)-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 8a

Ethyl 2-\{[4-amino-2-(benzylsulfanyl)-6-oxo-1,6-dihydro-5-pyrimidinyl]methyl\} acrylate 6a $(0.100 \mathrm{~g}, 0.289 \mathrm{mmol})$ was dissolved in DMF (3 mL , anhydrous) to which $1,3,4,6,7,8$ -hexahydro-2H-pyrimido[1,2-a]pyrimidine ($0.089 \mathrm{~g}, 0.597 \mathrm{mmol}, 2.2 \mathrm{eq}$.$) was added. The$ reaction solution was then irradiated in the microwave apparatus at $100^{\circ} \mathrm{C}$ for 30 min . The excess solvent was removed under reduced pressure and the resulting residue was dissolved in de-ionised water $(10 \mathrm{~mL})$. The reaction solution was adjusted to $\mathrm{pH} 6-7$ using dil. acetic acid, which caused a white precipitate to form. The precipitate was filtered off and washed with ether ($2 \times 10 \mathrm{~mL}$) to yield the title compound $\mathbf{8 a}$ as a white solid $(0.085 \mathrm{~g}, 0.0283 \mathrm{mmol}$, 98%), m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3450,3027,2890,1953,1807,1626,1590,1394,1271,959$, 922, 790, 719, $571 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.23-7.33$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.53-7.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.68(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 12.27(1 \mathrm{H}, \mathrm{br}$ s NH$), 12.73(1 \mathrm{H}$, br s, NH); δ_{C} (TFA): 14.1, 35.3, 102.9, 127.3, 127.8, 128.4, 128.7, 134.2, 137.6, 151.5, 164.2, 166.5. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 300.0816. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2}$ S requires 300.0807.

Similarly prepared were:
3.2.16 2-Amino-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 8 Bb as a highly insoluble beige solid in 81% yield, m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3443,3413,3141,1698,1673$, $1458,1351,1112,841 . \delta_{\mathrm{H}}(\mathrm{TFA}): 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 8.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) ; \delta_{\mathrm{C}}(\mathrm{TFA}): 16.4$, 100.2, 130.1, 138.6, 145.5, 153.3, 161.3, 167.8.
3.2.17 2-(Benzylsulfanyl)-6,8-dimethylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 8c as a white solid in 96% yield, m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 2854,1642,1537,1492,1453,1281$, 1152, $988,789,701,570 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.53$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.26-7.48\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 12.97(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(\mathrm{DMSO}-$ d_{6} : $14.1,35.3,102.9,127.3,127.8,128.4,128.7,134.2,137.6,151.5,164.2,166.5$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 314.0962. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}$ S requires 314.0963 .

3.2.18 8-Benzyl-2-(benzylsulfanyl)-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione

$\mathbf{8 d}$ as a white solid in 96% yield, m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3452,3183,1642,1629,1588$, $1465,1264,1098,964,951 \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 5.35(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 7.21-7.36\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 7.71(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 12.98(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}(\mathrm{DMSO}-$ d_{6}): 16.6, $33.8,43.9,99.4,120.6,127.0,127.3,127.6,128.0,128.1,128.3,132.7,138.1$,
152.2, 160.8, 161.1, 165.3. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$ found 390.1276. $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires 390.1276 .
3.2.19 8-Allyl-2-(benzylsulfanyl)-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 8e as a white solid in 96% yield, m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 2854,1642,1537,1492,1453$, 1281, 1152, 988, 789, 701, $570 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO- d_{6}): $2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right)$, $4.91\left(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}=\right), 4.95(1 \mathrm{H}, \mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.07(1 \mathrm{H}, \mathrm{dd}$, $J=10.3,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 5.86-5.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.25-7.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.75$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 12.99 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right)$: 16.8, 33.8, 43.4, 99.8, 116.3, 125.1, 127.4, 128.6, 128.8, 131.3, 133.0, 136.8, 151.8, 160.5, 161.3, 162.2. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 340.1119. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires 340.1120 .

3.2.20 3-(\{[6-Amino-2-(benzylsulfanyl)-4-pyrimidinyl]oxy\}methyl)-4-phenyl-3-buten-2one 10a

6-Amino-2-(benzylsulfanyl)pyrimidin-4 $(3 \mathrm{H})$-one $\mathbf{1}(0.250 \mathrm{~g}, 1.07 \mathrm{mmol})$ was dissolved in DMF (15 mL , anhydrous) to which cesium carbonate ($0.348 \mathrm{~g}, 1.07 \mathrm{mmol}, 1.0$ eq.), 3-(chloromethyl)-4-phenyl-3-buten-2-one ${ }^{15}(0.250 \mathrm{~g}, 1.28 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and potassium iodide$ ($0.035 \mathrm{~g}, 0.214 \mathrm{mmol}, 0.2 \mathrm{eq}$.) was added. The reaction mixture was stirred at room temperature for 24 h . The reaction mixture was then filtered and partitioned between water and ethyl acetate. The ethyl acetate layer was then dried over MgSO_{4}, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography to yield the title compound $\mathbf{1 0 a}$ as a pale yellow solid ($0.273 \mathrm{~g}, 0.70 \mathrm{mmol}$, 65%), m.p. $146-148^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3476,3350,3230,1964,1643,1626,1514,1425,1396$, $1300,1270,1196,1035,803,759,700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.32(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 4.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 5.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 7.17-7.44(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 7.82(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 27.0,34.7,60.4,82.8,135.3,136.0,139.5,146.0$, 166.1, 169.2, 169.7, 199.4. HRMS (EI): M^{+}, found 391.1356. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires 391.1354.

3.2.21 3-(\{[6-Amino-2-(benzylsulfanyl)-4-pyrimidinyl]oxy\}methyl)-4-[4-(trifluoromethyl)phenyl]-3-buten-2-one 10b

6-Amino 2-(benzylsulfanyl)pyrimidin-4 $(3 \mathrm{H})$-one $\mathbf{1}(250 \mathrm{mg}, 1.07 \mathrm{mmol})$ was dissolved in DMF (15 mL , anhydrous) to which cesium carbonate ($0.348 \mathrm{~g}, 1.07 \mathrm{mmol}, 1.0$ eq. $)$, 3-(chloromethyl)-4-(4-trifluoromethylphenyl)-3-buten-2-one ${ }^{15}(0.267 \mathrm{~g}, 1.28 \mathrm{mmol}, 1.2$ eq.) and potassium iodide ($0.035 \mathrm{~g}, 0.214 \mathrm{mmol}, 0.2 \mathrm{eq}$.) was added. The reaction mixture was stirred at room temperature for 24 h . The reaction mixture was then filtered and partitioned between water and ethyl acetate. The ethyl acetate layer was dried over MgSO_{4}, the solvent
was removed under reduced pressure and the residue was purified by flash column chromatography to yield the title compound $\mathbf{1 0 b}$ as a white powder ($0.340 \mathrm{~g}, 0.074 \mathrm{mmol}$, 69%), m.p. $145-147^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3477,3366,1651,1625,1578,1454,1424,1325,1300$, 1195, 1123, 1069, $704 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) 4.31\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.72(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 5.51(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 7.18-7.66\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.78(1 \mathrm{H}$, $\mathrm{s}, \mathrm{C}=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 26.4,35.0,60.1,83.4,125.7,125.7\left(\mathrm{CF}_{3}\right), 127.0,128.3,128.8,129.7$, 137.5, 137.9, 138.0, 142.5, 164.1, 169.0, 170.5, 198.2. HRMS (EI): M ${ }^{+}$, found 459.1232. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires 459.1228.

3.2.22 6-Benzyl-2-(benzylsulfanyl)-7-methylpyrido[2,3-d]pyrimidin-4(3H)-one trifluoroacetate salt 11a

3-(\{[6-Amino-2-(benzylsulfanyl)-4-pyrimidinyl]oxy\}methyl)-4-phenyl-3-buten-2-one 10a ($0.250 \mathrm{~g}, 0.639 \mathrm{mmol}$) was dissolved in THF (20 mL , anhydrous) to which titanium tetrachloride complex 1:2 THF ($0.021 \mathrm{~g}, 0.0628 \mathrm{mmol}$) was added. The reaction was refluxed for 3 d under nitrogen. The excess solvent was removed under reduced pressure and the resulting residue was washed with saturated aqueous NaHCO_{3} solution $(2 \times 10 \mathrm{~mL})$ and de-ionised water ($2 \times 10 \mathrm{~mL}$). The organic layer was dried over MgSO_{4}, filtered under reduced pressure and the solvent was removed under reduced pressure. The resulting residue was purified by HPLC to yield the title compound 11a as a white solid ($0.042 \mathrm{~g}, 0.112 \mathrm{mmol}$, 18%), m.p. $181-183{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3437,1709,1662,1638,1541,1186,797,700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right): 2.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{2}\right), 4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2}\right) 7.53-7.12\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ x 2), 8.23 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), $10.00(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 19.9,35.7,37.7,114.4,127.4,127.9$, 128.6, 128.6, 129.3, 129.3, 134.3, 135.1, 136.5, 141.2, 152.8, 160.1, 162.3, 165.5. HRMS (EI): M^{+}, found 374.1330. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{OS}$ requires 374.1327.

3.2.23 2-(Benzylsulfany)-7-methyl-6-[4-(trifluoromethyl)benzyl] pyrido[2,3-d]pyrimidin-4(3H)-one 11b

3-(\{[6-Amino-2-(benzylsulfanyl)-4-pyrimidinyl]oxy\}methyl)-4-[4-(trifluoromethyl) phenyl]-3-buten-2-one 10b ($0.250 \mathrm{~g}, 0.544 \mathrm{mmol}$) was dissolved in THF (20 mL , anhydrous) to which titanium tetrachloride complex 1:2 THF ($0.018 \mathrm{~g}, 0.054 \mathrm{mmol}$) was added. The reaction was refluxed for 3 d under nitrogen. The excess solvent was removed under reduced pressure and was washed with saturated aqueous NaHCO_{3} solution. The reaction mixture was filtered and partitioned between water and ethyl acetate. The ethyl acetate layer was dried over MgSO_{4}, filtered under reduced pressure and the solvent was removed under reduced pressure. The title compound 11b was re-crystallised from methanol as a white solid ($0.055 \mathrm{~g}, 0.0125$ mmol, 23\%), m.p. $195-198{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3027,2922,1682,1570,1411,1325,1164,1066$, $805,699 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 2.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\right), 4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.23-$
$7.58\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.26(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 11.57(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 23.7,35.5$, 38.4, 113.2, 125.4, 125.8, 127.9, 128.8, 128.9, 129.3, 128.8, 132.1, 136.6, 142.4, 157.2, 159.0, 163.2, 166.0. HRMS (EI): M^{+}, found 441.1126. $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS}$ requires 441.1123.
3.2.24 8-Benzyl-2-(benzylamino)-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 13a 8-Benzyl-2-(benzylsulfanyl)-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 8d (0.050 $\mathrm{g}, 0.128 \mathrm{mmol}$) was dissolved in DMF (3 mL , anhydrous) to which m-CPBA $(0.066 \mathrm{~g}, 0.39$ mmol, 3 eq.) was added and the mixture was stirred under nitrogen for 3 h at room temperature. The excess solvent was removed under reduced pressure and the residue was dissolved in benzylamine ($2.0 \mathrm{~mL}, 18.31 \mathrm{mmol}$) and heated in the microwave at $110^{\circ} \mathrm{C}$ for 1 h. The excess solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography to yield the title compound 13a as a pale yellow solid $(0.033 \mathrm{~g}, 0.088 \mathrm{mmol}, 68 \%), \mathrm{m} . \mathrm{p} .>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3351,3316,2987,1677,1648,1589$, 1176, 1049, $949 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{\mathrm{d}}\right): 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.51\left(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{NHCH}_{2}\right)$, $5.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 7.18-7.24\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 7.18-7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.66(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 5), 11.44 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); δ_{C} (DMSO-d d_{6} : $14.5,43.7,44.0,95.7,120.1,126.7,126.9,127.2$, 127.6, 128.1, 132.0, 137.8, 138.9, 153.4, 154.6, 161.0, 163.1. HRMS (FAB): M ${ }^{+}+\mathrm{H}$, found 373.1662. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 373.1665.

Similarly prepared were:
3.2.25 8-Benzyl-6-methyl-2-(1-pyrrolidinyl)pyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione $\mathbf{1 3 b}$ as a beige solid in 59% yield, m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3342,2987,2852,1668,1652$, 1441, 1216, 1062, $925 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO- d_{6}): $1.89\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.46$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N} x 2\right), 5.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 7.18-7.33\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.67(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 11.16$ (1H, s, NH); $\delta_{\mathrm{C}}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right): 16.6,24.7,44.0,46.2,94.6,119.6,126.8,127.8,128.1,132.2$, 138.1, 150.7, 154.3, 161.1, 163.3. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 337.1667. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 367.1659 .

3.2.26 8-Allyl-2-(benzylamino)-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 13c

 as a beige solid in 62% yield, m.p. $>230^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(\right.$ DMSO-d $\left.\mathrm{d}_{6}\right): 1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.53(2 \mathrm{H}, \mathrm{d}, J$ $\left.=5.9, \mathrm{CH}_{2} \mathrm{NH}\right), 4.75\left(2 \mathrm{H}, \mathrm{d}, J=5.9, \mathrm{CH}_{2}-\mathrm{CH}=\right), 4.94(1 \mathrm{H}, \mathrm{dd}, J=17.2,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H)$, $4.95(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 5.75-5.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.24-7.34(5 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{5}$), $7.63(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 11.11(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 16.5,43.1,43.9,95.5,116.6$, $120.2,127.0,128.3,131.7,133.0,138.8,152.8,154.3,160.3,162.7$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$ found 323.1510. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 323.1508 .3.2.27 8-Allyl-6-methyl-2-(1-pyrrolidinyl)pyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 13d as a beige solid 64% yield, m.p. $>230^{\circ} \mathrm{C}$. $v_{\text {max }}(\mathrm{KBr}): 3161,2962,1683,1652,1605,1547$, 1524, 1378, 1205, $986 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO- d_{6}): $1.92\left(4 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $1.99(3 \mathrm{H}, \mathrm{d}, J$ $\left.=1.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.50\left(4 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N} x 2\right), 4.81\left(2 \mathrm{H}, \mathrm{dd}, J=7.0,1.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CH}=\right)$, $5.06(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.09(1 \mathrm{H}, \mathrm{dd}, J=12.0,1.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C} H \mathrm{H}), 5.85-5.95$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.63(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{H}-5), 11.02(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 16.5$, $24.7,43.0,46.8,95.4,116.8,119.5,132.0,133.1,150.6,154.1,161.1,162.9$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$ found 287.1505. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 287.1508.

3.2.28 2-(Benzylamino)-7-methyl-6-[4-(trifluoromethyl)benzyl]pyrido[2,3-d]pyrimidin-4(3H)-one 14a

2-(Benzylsulfanyl)-7-methyl-6-[4-(trifluoromethyl)benzyl]pyrido [2,3-d]pyrimidin-4(3H)-one 11b $(0.050 \mathrm{~g}, 0.113 \mathrm{mmol})$ was dissolved in THF (3 mL , anhydrous) to which m-CPBA ($0.059 \mathrm{~g}, 0.342 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature for 3 h under nitrogen. The excess solvent was removed and the residue was dissolved in benzylamine ($2 \mathrm{~mL}, 18.31 \mathrm{mmol}$) and the solution was heated in a microwave at $110^{\circ} \mathrm{C}$ for 1 h. The excess solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate (10 mL) and washed with saturated aqueous NaHCO_{3} solution $(2 \times 5 \mathrm{~mL})$ and water ($2 \times 5 \mathrm{~mL}$). The organic layer way then dried over MgSO_{4} and was purified by HPLC to yield the title compound 14 a as a white solid ($0.021 \mathrm{~g}, 0.0495 \mathrm{mmol}, 44 \%$), m.p. 201-203 ${ }^{\circ} \mathrm{C}$. $v_{\text {max }}(\mathrm{KBr}): 3335,3193,1672,1561,1523,1493,1351,1292,1131,1039,964 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO-d d_{6}): $2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\right), 4.66\left(2 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.26-$ $7.70\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.01(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 8.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 11.96(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ (DMSO-d d_{6}): 26.2, $35.6,43.8,99.5,123.4,125.5,125.5,127.2,127.2,128.5,129.5,130.4$, 138.2, 143.7, 154.3, 158.0, 158.2, 158.4, 172.9. HRMS (FAB): M ${ }^{+}+\mathrm{H}, 425.1588$.
$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$ requires 425.1589 .

3.2.29 7-Methyl-2-(1-pyrrolidinyl)-6-[4-(trifluoromethyl)benzyl] pyrido[2,3-d]pyrimidin-4(3H)-one 14b

2-(Benzylsulfanyl)-7-methyl-6-[4-(trifluoromethyl)benzyl]pyrido [2,3-d]pyrimidin-4(3H)-one 11b ($0.050 \mathrm{~g}, 0.113 \mathrm{mmol}$) was dissolved in THF (3 mL , anhydrous) to which m-CPBA $(0.059 \mathrm{~g}, 0.342 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for 3 h under nitrogen. The excess solvent was removed and the residue was dissolved in pyrrolidine ($2.0 \mathrm{~mL}, 23.96 \mathrm{mmol}$) and the solution was heated in a microwave at $110^{\circ} \mathrm{C}$ for 1 h. The excess solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate $(10 \mathrm{~mL})$ and washed with saturated aqueous NaHCO_{3} solution $(2 \times 5 \mathrm{~mL})$ and water ($2 \times 5 \mathrm{~mL}$). The organic layer way then dried over MgSO_{4} and purified by HPLC to
yield the title compound $\mathbf{1 4 b}$ as a white solid ($0.022 \mathrm{~g}, 0.0574 \mathrm{mmol}, 51 \%$), m.p. 205-207 ${ }^{\circ} \mathrm{C}$. $v_{\max }(\mathrm{KBr}): 3177,3061,1720,1621,1553,1414,1328,1217,1042,921 \mathrm{~cm}^{-1} ; \delta_{H}\left(\mathrm{DMSO}_{6}\right)$: $1.90\left(4 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.50\left(4 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right.$ x 2$), 4.12$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\right), 7.40(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 2,6-\mathrm{CH}$ of Ar$), 7.67\left(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 3,5-\mathrm{CH}_{2}\right.$ of Ar), $7.88(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 11.20(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 23.6,25.4,38.2,47.0,108.9,125.6$, 127.6, 128.8, 129.0, 136.1, 143.1, 150.2, 159.6, 164.3, 165.7. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 389.1584. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$ requires 389.1589 .

3.2.30 2-Anilino-7-methyl-6-[4-(trifluoromethyl)benzyl]pyrido[2,3-d]pyrimidin-4(3H)one trifluoroacetate salt 14c

2-(Benzylsulfanyl)-7-methyl-6-[4-(trifluoromethyl)benzyl]pyrido[2,3- d]pyrimidin-4(3H)-one 11b ($0.050 \mathrm{~g}, 0.113 \mathrm{mmol}$) was dissolved in THF (3 mL , anhydrous) to which m-CPBA ($0.059 \mathrm{~g}, 0.342 \mathrm{mmol}, 3 \mathrm{eq}$.) was added. The reaction mixture was stirred at room temperature under nitrogen for 3 h . Aniline ($2.0 \mathrm{~mL}, 21.95 \mathrm{mmol}$) was then added to the solution and heated in the microwave at $110{ }^{\circ} \mathrm{C}$ for 1 h . The excess solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate $(10 \mathrm{~mL})$ and washed with saturated aqueous NaHCO_{3} solution $(2 \times 5 \mathrm{~mL})$ and water $(2 \times 5 \mathrm{~mL})$. The organic layer way then dried over MgSO_{4} and purified by HPLC to yield the title compound $\mathbf{1 4 c}$ as a white solid ($0.017 \mathrm{~g}, 0.0414 \mathrm{mmol}, 37 \%$), m.p. $199-201^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3288,3020,2934,1643$, $1578,1462,1381,1320,1215,990,739 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.22(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{C}\right), 7.14-7.23\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.37(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 9.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 11.54(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 20.1,35.9,100.0,121.2,123.4,124.2,125.2,125.5,127.1,127.3$, $128.9,129.3,129.5,137.6,143.7,151.5,158.3,158.5$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 411.1429. $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$ requires 411.1433 .

3.2.31 7-Methyl-6-[4-(trifluoromethyl)benzyl]pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione trifluoroacetate salt 14d

2-(Benzylsulfanyl)-7-methyl-6-[4-(trifluoromethyl)benzyl]pyrido[2,3- d]pyrimidin-4(3H)-one 11b ($0.050 \mathrm{~g}, 0.113 \mathrm{mmol}$) was dissolved in THF (3 mL , anhydrous) to which m-CPBA ($0.059 \mathrm{~g}, 0.342 \mathrm{mmol}, 3 \mathrm{eq}$.) was added. The reaction mixture was stirred under nitrogen for 24 h at room temperature. The excess solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate $(10 \mathrm{~mL})$ and washed with saturated aqueous NaHCO_{3} solution $(2 \times 5 \mathrm{~mL})$ and water ($2 \times 5 \mathrm{~mL}$). The organic layer was then dried over MgSO_{4} and purified by HPLC to yield the title compound $\mathbf{1 4 d}$ as a white solid $(0.018 \mathrm{mg}, 0.0401 \mathrm{mmol}$, 35%), m.p. $210-212^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3318,2931,1661,1621,1567,1506,1465,1298,941$, $767 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\right), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 2,6-$ CH of Ar$), 7.68(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, 3,5-\mathrm{CH}$ of Ar$), 7.97(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 11.35(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$,
$11.54(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 22.6,36.5,99.5,107.63,125.4,129.0,129.5,136.5,144.3$, $150.4,150.5,162.4,163.4$. HRMS (FAB): $\mathrm{M}^{+}+1$, found 336.0966. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires 336.0960 .

3.2.32 8-Benzyl-2,4-bis(benzylamino)-6-methylpyrido[2,3-d]pyrimidin-7(8H)-one 15a

8-Benzyl-2-(benzylsulfanyl)-6-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione 13a (0.050 $\mathrm{g}, 0.134 \mathrm{mmol}$) and BOP ($77 \mathrm{mg}, 0.174 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were suspended in acetonitrile (10 mL , anhydrous) at room temperature. DBU ($31 \mu \mathrm{l}, 0.201 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added dropwise and the reaction solution became heterogeneous. After stirring for 10 min at room temperature, benzylamine ($22 \mu \mathrm{l}, 0.201 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and the solution was stirred for a further 48 h . The excess solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography to yield the title compound 15a as a pale yellow ($0.040 \mathrm{~g}, 0.0867 \mathrm{mmol}, 65 \%$), m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3348,3288,3041$, 2992, 1643, 1612, 1591, 1211, 1151, $989,761 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.03(3 \mathrm{H}, \mathrm{d}, J=0.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 4.64\left(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 4.79\left(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 5.51(2 \mathrm{H}, \mathrm{br}$ s, NH x 2), $7.16-7.36\left(15 H, m, C_{6} H_{5} \times 3\right), 7.85(1 H, s, H-5) ; \delta_{C}\left(\mathrm{DMSO}_{6}\right): 16.2,44.3,44.6,91.1$, $126.6,126.8,127.4,127.6,127.9,128.2,128.2,128.9,138.6,139.5,140.4,155.3$. HRMS $(\mathrm{FAB}): \mathrm{M}^{+}+\mathrm{H}$, found $462.2290 . \mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}$ requires 462.2294 .

3.2.33 8-Benzyl-2-(benzylamino)-6-methyl-4-(1-pyrrolidinyl)pyrido[2,3-d]pyrimidin-7(8H)-one 15b

8-Benzyl-2-(benzylsulfanyl)-6-methylpyrido[2,3- d]pyrimidine-4, $7(3 H, 8 H)$-dione 13a (0.150 $\mathrm{g}, 0.134 \mathrm{mmol}$) and BOP ($77 \mathrm{mg}, 0.174 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were suspended in acetonitrile (10 mL , anhydrous) at room temperature. DBU ($31 \mu \mathrm{l}, 0.201 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added dropwise and the reaction solution became heterogeneous. After stirring for 10 min at room temperature pyrrolidine ($17 \mu \mathrm{l}, 1.5 \mathrm{eq}$) was added and the solution was stirred for a further 48 h at room temperature. The excess solvent was removed under reduced pressure and the resulting residue was purified by flash column chromatography to yield the title compound $\mathbf{1 5 b}$ as an orange solid $(0.033 \mathrm{~g}, 0.0775 \mathrm{mmol}, 58 \%)$, m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3348,3128$, 1682, 1557, 1458, 1435, 1388, 1329, 1213, $977 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 2.01-$ $1.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.73\left(2 \mathrm{H}, \mathrm{t}, J=6.5, \mathrm{CH}_{2} \mathrm{~N}\right), 4.24(2 \mathrm{H}, \mathrm{t}, J=6.5$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.80\left(2 \mathrm{H}, \mathrm{d}, J=5.8, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}\right), 5.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N} 8\right), 7.17-7.27(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 7.17-7.27(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 17.1,25.5,44.2,44.9$, $50.6,93.1,118.7,126.8,126.9,127.7,128.2,128.4,128.5,133.1,138.9,141.2,157.0,160.0$, 162.9. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 426.2296. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}$ requires 426.2294.

3.2.34 2-(Benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone 16a

To a solution of 5,6-diamino-2-(benzylsulfanyl)-4(3H)-pyrimidinone ($500 \mathrm{mg}, 2.11 \mathrm{mmol}$) in ethanol (20 mL) was added biacetyl ($353 \mu \mathrm{l}, 4.02 \mathrm{mmol}, 2 \mathrm{eq}$) dropwise at room temperature. The reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 24 hours. The excess solvent was removed under reduced pressure and the resulting yellow solid was triturated with diethyl ether to yield the title compound 16 a as a pale yellow solid ($511 \mathrm{mg}, 1.71 \mathrm{mmol}, 85 \%$) m.p. $>230^{\circ} \mathrm{C}$. $v_{\text {max }}$ (KBr): 2993, 2866, 1675, 1579, 1543, 1445, 1386, 1264, 1163, 959, 821, 717, 639, $516 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right)$: $2.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.26-7.47(5 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{5}$), $12.95(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\right.$ DMSO- $\left._{6}\right): 21.8,22.6,33.8,127.4,128.5,128.6,129.1,136.8$, 152.6, 152.6, 158.8, 159.2, 160.4. HRMS (FAB): M ${ }^{+}+\mathrm{H}$, found 299.0971. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}$ requires 299.0967.

3.2.35 2-(Benzylsulfanyl)-6,7-diphenyl-4(3H)-pteridinone 16b

To a solution of 5,6-diamino-2-(benzylsulfanyl)-4(3H)-pyrimidinone ($1000 \mathrm{mg}, 4.03 \mathrm{mmol}$) in ethanol (20 mL) was added benzil ($1270 \mathrm{mg}, 6.04 \mathrm{mmol}, 1.5 \mathrm{eq}$) at room temperature. The reaction mixture was heated at $85^{\circ} \mathrm{C}$ for 24 hours. The excess solvent was removed under reduced pressure and the resulting yellow solid was triturated with diethyl ether (10 mL) to yield the title compound $\mathbf{1 6 b}$ as a pale yellow solid $(1.498 \mathrm{~g}, 3.25 \mathrm{mmol}, 88 \%) \mathrm{m} . \mathrm{p} .>230^{\circ} \mathrm{C}$. $v_{\max }(\mathrm{KBr}): 3165,2988,1664,1573,1559,1423,1378,1167,976,723 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$: $4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.26-7.51\left(15 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3\right), 13.17(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 34.0$, 127.4, 128.1, 128.2, 128.6, 128.7, 129.1, 129.4, 129.6, 129.7, 129.8, 136.7, 137.8, 138.0, 150.4, 152.4, 156.8, 160.4, 160.8. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 423.1282. $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$ requires 423.1280 .

3.2.36 2-(Benzylamino)-6,7-dimethyl-4(3H)-pteridinone 17a

2-(Benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone 16a ($100 \mathrm{mg}, 0.335 \mathrm{mmol}$) was dissolved in dry DMF (3.0 mL). To this solution was added m-CPBA ($3.0 \mathrm{eq}, 1.01 \mathrm{mmol}, 174 \mathrm{mg}$) and was stirred under nitrogen for 3 hours at room temperature. The solvent was then removed under reduced pressure and the resulting solid was dissolved in benzylamine ($2.0 \mathrm{~mL}, 18.31$ $\mathrm{mmol})$ and heated in the microwave at $110^{\circ} \mathrm{C}$ for 1 hour. The excess solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography to yield the title compound 17 a as a yellow solid ($89 \mathrm{mg}, 0.316 \mathrm{mmol}, 94 \%$) m.p. $>230^{\circ} \mathrm{C} . v_{\max }$ (KBr): 3413, 2925, 1666, 1590, 1535, 1447, 1414, 1268, 1036, $727 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO-d d_{6}): 2.47 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.59\left(2 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.23-7.40\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.60\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N} H\right), 9.59(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 21.3,22.5,43.6,126.1,126.8$, 127.1, 128.3, 139.3, 146.8, 153.1, 155.1, 158.0, 162.2. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 282.1353. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires 282.1355.

Similarly prepared were:

3.2.38 6,7-Dimethyl-2-(1-pyrrolidinyl)-4(3H)-pteridinone 17b:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone and pyrrolidine in 90% yield, m.p. $>230{ }^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3442,3197,2964,1685,1611,1558,1518,392,1270,976 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO_{6}): $1.91\left(4 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.50$ $\left(4 \mathrm{H}, \mathrm{t}, J=6.1, \mathrm{CH}_{2} \mathrm{~N} \times 2\right), 11.34(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 21.3,22.5,24.8,46.9,115.6$, 129.0, 147.0, 150.3, 154.7, 162.3. HRMS (FAB): found 246.1351. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$ requires 246.1355

3.2.39 2-Anilino-6,7-dimethyl-4(3H)-pteridinone 17c:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone and aniline in 54% yield, m.p. >230 ${ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}): 3318,3013,2922,1663,1590,1454,1405,1323,1232,986,741 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO-d ${ }_{6}$): $2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.06-7.74\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.92(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NHC}_{6} \mathrm{H}_{5}\right) 11.12(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 21.4,22.5,99.5,119.9,123.1,126.9,128.8$, 138.3, 148.5, 149.1, 154.3, 158.7. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 268.1201. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$ requires 268.1198

3.2.40 2-(Allylamino)-6,7-dimethyl-4(3H)-pteridinone 17d:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone and allylamine in 86% yield, m.p. $>230{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}): 3278,2934,1688,1621,1546,1498,1312,1225,1064 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$
(DMSO-d $)_{6}$: $2.50\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.02(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.6 \mathrm{~Hz})$, $5.15(1 \mathrm{H}, \mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}), 5.93-5.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\right), 12.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{Na}$, found 254.1020. $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{ONa}$ requires 254.1018;

3.2.41 2-(Benzylamino)-6,7-diphenyl-4(3H)-pteridinone 17e:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone and benzylamine in 83% yield, m.p. $>230^{\circ} \mathrm{C}$; $v_{\max }$ (KBr): 3422, 3260, 3019, 1686, 1622, 1560, 1535, 1490, 1451, 1357, 1277, 1036, $727 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 4.66\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.23-7.42\left(16 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3\right.$ and NH), $11.46(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 43.8,127.0,127.2,127.4,128.0,128.1,128.4$, 129.0, 129.6, 138.2, 138.4, 138.8, 146.8, 152.8, 155.2, 156.5, 160.7. HRMS (FAB): M ${ }^{+}+\mathrm{H}$, found 406.1665. $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ requires 406.1668 .

3.2.42 6,7-Diphenyl-2-(1-pyrrolidinyl)-4(3H)-pteridinone 17f:

From 2-(benzylsulfanyl)-6,7-dimethyl- $4(3 H)$-pteridinone and pyrrolidine in 83% yield m.p. $>230{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}): 3421,3201,2971,1681,1610,1556,1516,1453,1287,980,765 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.95\left(4 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.57\left(4 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 7.30-7.43$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.13(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 24.8,47.1,126.3,127.9,128.0,129.0$,
129.4, 129.6, 131.1, 138.4, 138.5, 146.1, 151.3, 154.7, 156.5, 162.0. HRMS (FAB): M ${ }^{+}+\mathrm{H}$, found $370.1672 . \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ requires 370.1668 .

3.2.43 2-Anilino-6,7-diphenyl-4(3H)-pteridinone 17 g :

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone and aniline in 61% yield, m.p. >230 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}$ (KBr): $3423,3089,2924,1729,1641,1539,1492,1313,1185,836,781 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO-d d_{6} : $7.10-7.81\left(15 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3\right), 9.29\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NHCH}_{2}\right), 11.29(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ (DMSO- d_{6}): 120.3, 123.4, 128.0, 128.1, 128.2, 128.3, 128.8, 129.1, 129.5, 129.6, 138.2, 138.3, 147.8, 150.5, 154.5, 156.7. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 392.1509. $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ requires 392.1511 .

3.2.44 2-(Allylamino)-6,7-diphenyl-4(3H)-pteridinone 17h:

From 2-(benzylsulfanyl)-6,7-diphenyl-4(3H)-pteridinone and allylamine in 79% yield, m.p. $>230^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}): 3288,2931,1685,1623,1563,1496,1287,1095,765 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}($ DMSO$\left.\mathrm{d}_{6}\right): 4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}-\mathrm{CH}=\right), 5.15(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.25(1 \mathrm{H}, \mathrm{dd}, J=$ $17.2,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 5.94-5.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}=\right), 6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.30-7.43(10 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2$), 11.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); $\delta_{\mathrm{C}}\left(\mathrm{DMSO}_{\mathrm{d}}\right.$) : 42.5, 115.6, 127.3, 128.0, 128.0, 129.1, 129.4, 129.6, 134.8, 138.2, 146.7, 152.6, 155.2, 156.5, 160.6. HRMS (FAB): M ${ }^{+}+$H, found 356.1510. $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ requires 356.1511 .

3.2.45 2-(Benzylsulfanyl)- N -butyl-6,7-dimethyl-4-pteridinamine 18a:

2-(Benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone 16a ($100 \mathrm{mg}, 0.335 \mathrm{mmol}$) and BOP (196 $\mathrm{mg}, 0.443 \mathrm{mmol}, 1.3 \mathrm{eq}$) were suspended in dry acetonitrile (10 mL). DBU ($76 \mu \mathrm{l}, 0.493$ $\mathrm{mmol}, 1.5 \mathrm{eq}$) was then added dropwise and the reaction mixture became homogeneous. After stirring for 10 min at room temperature, butylamine ($50 \mu 1,0.502 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added dropwise and the solution was stirred for a further 48 hours. The excess solvent was removed under reduced pressure and the resulting residue was partitioned between ethyl acetate and water. The organic layer was dried over MgSO_{4} and purified by flash chromatography to yield the title compound 18 a as pale yellow solid ($92 \mathrm{mg}, 78 \%$), m.p. $>230^{\circ} \mathrm{C} . v_{\text {max }}(\mathrm{KBr})$: $3423,3027,2928,1676,1602,1495,1454,1388,750 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right): 0.98(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.40-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.66-1.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.71(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.63(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}), 4.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 6.93(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}) 7.22-7.48(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right): 11.8,20.1,22.3,23.3,31.4,35.9,40.7,122.2,127.0,128.4,128.4,128.5$, 129.2, 137.6, 150.1, 152.2, 159.1, 159.9, 171.6. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{Na}$, found 376.1573 . $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{SNa}$ requires 376.1572.

Similarly prepared were

3.2.46 N-Benzyl-2-(benzylsulfanyl)-6,7-dimethyl-4-pteridinamine 18b:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone and benzylamine in 87% yield, m.p. $>230^{\circ} \mathrm{C}$; $v_{\text {max }}$ (KBr): $3403,3084,2981,1684,1621,1574,1448,1223,909 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSOd_{6}): $2.63\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \times 2\right), 4.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.71\left(2 \mathrm{H}, \mathrm{d}, J=6.2, \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.19-7.44$ $\left(10 \mathrm{H}, \mathrm{m}_{\mathrm{C}} \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right), 9.10\left(1 \mathrm{H}, \mathrm{t}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH} H\right) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 22.0,23.0,34.4,43.6$, 121.6, 126.9, 127.3, 128.3, 128.4, 128.6, 128.7, 138.3, 138.9, 150.8, 151.7, 159.0, 160.3, 169.4. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 388.1593. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}$ requires 388.1596 .

3.2.47 2-(Benzylsulfanyl)-6,7-dimethyl-4-(1-pyrrolidinyl)pteridine 18c:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3 H)-pteridinone and pyrrolidine in 81% yield, m.p. $>230^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}): 3368,3121,2963,1644,1568,1553,1450,1378,1262,820,724 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 2.02-1.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.67(2 \mathrm{H}$, $\left.\mathrm{t}, J=6.6, \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.21\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.21-7.45(5 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{5}$); δ_{C} (DMSO- d_{6}): 22.1, 22.7, 23.1, 26.4, 34.4, 49.8, 50.9, 123.5, 126.9, 128.4, 128.7, $138.5,148.8,153.3,156.7,158.4,168.3$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 352.1599. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}$ requires 352.1596 .

3.2.48 2-(Benzylsulfanyl)-6,7-dimethyl-N-phenyl-4-pteridinamine 18d:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-pteridinone and aniline in 65% yield, m.p. >230 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}): 3451,3096,1681,1574,1541,1483,1241,1090,828,741 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSOd_{6}): $2.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.45-7.21\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 2\right)$, $10.09(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{\mathrm{d}}\right)$) 22.0, 23.0, 34.5, 121.6, 122.0, 124.2, 126.9, 128.4, 128.5, $128.8,138.0,151.5,152.0,157.0,160.8,169.2$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 374.1436. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{~S}$ requires 374.1439 .

3.2.49 2-(Benzylsulfanyl)-6,7-dimethyl-N-(4-methylphenyl)-4-pteridinamine 18e:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3 H)-pteridinone and p-toluidine in 71% yield, m.p. $>230^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}): 3430,3030,2845,1683,1539,1478,1234,1025,697 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}($ DMSO$\left.\mathrm{d}_{6}\right): 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.17-$ $7.77\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 10.03(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}$ (DMSO- d_{6}): 20.5, 22.0, 23.0, 34.4, 121.6, 122.0, 127.0, 128.4, 128.8, 128.9, 133.3, 135.6, 138.0, 151.4, 152.0, 156.9, 160.6, 169.2. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 388.1597 . $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{~S}$ requires 388.1596 .

3.2.50 2-(Benzylsulfanyl)-N-(4-ethylphenyl)-6,7-dimethyl-4-pteridinamine 18f:

From 2-(benzylsulfanyl)-6,7-dimethyl-4(3H)-and 4-ethylaniline in 71% yield, m.p. $>230^{\circ} \mathrm{C}$. $v_{\text {max }}(\mathrm{KBr}): 3424,3026,2942,2853,1678,1513,1495,1392,1259,1012,744 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO_{6}): $1.18\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.59\left(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$,
$2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.20-7.80\left(9 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 10.03(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 15.6,22.0,23.0,27.6,34.5,121.6,122.1,126.9,127.7,128.4,128.8$, $135.8,138.0,139.8,151.4,152.0,156.9,160.7,169.2$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 402.1756. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{~S}$ requires 402.1752 .

3.2.51 N-Benzyl-6,7-dimethyl-4-(1-pyrrolidinyl)-2-pteridinamine 19a

2-(Benzylsulfanyl)-6,7-dimethyl-4-(1-pyrrolidinyl)pteridine $\mathbf{1 8 c}(100 \mathrm{mg}, 0.285 \mathrm{mmol})$ was dissolved in dry DMF $(3.0 \mathrm{~mL})$. To this was added m-CPBA ($147 \mathrm{mg}, 0.852 \mathrm{mmol}, 3.0 \mathrm{eq}$) at room temperature and the reaction was stirred for 3 hours under nitrogen. The excess solvent was removed and the residue was dissolved in benzylamine $(2.0 \mathrm{~mL}, 18.31 \mathrm{mmol})$ and the solution was heated in a microwave for 1 hour at $110^{\circ} \mathrm{C}$. The excess solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography to yield the title compound 19a as a yellow solid ($40 \mathrm{mg}, 0.120 \mathrm{mmol}, 42 \%$), m.p. $>230{ }^{\circ} \mathrm{C} . v_{\max }$ (KBr): 3297, 2975, 1659, 1542, 1364, 1295, $981 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.93\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.95\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.58\left(2 \mathrm{H}, \mathrm{d}, J=4.8, \mathrm{CH}_{2} \mathrm{NH}\right)$, $6.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.18-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 21.8,22.5,45.0,50.2,122.9$, $126.8,127.7,128.5,141.5,144.0,156.3,157.3,158.9,161.1$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 335.1987. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{6}$ requires 335.1984 .

Similarly prepared was

3.2.52 6,7-Dimethyl-2,4-di(1-pyrrolidinyl)pteridine 19b

From 2-(benzylsulfanyl)-6,7-dimethyl-4-(1-pyrrolidinyl)pteridine 18 c and pyrrolidine in 86\% yield, m.p. $>230{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}): 3098,2975,1683,1620,1467,1346,1234,1082,830 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.90\left(8 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CH}_{2} \times 2\right), 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.51(4 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{~N} \times 2\right), 3.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 21.8,22.8,25.4,46.8$, 50.1, 122.3, 143.6, 156.3, 157.2, 158.5, 159.1. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 299.1987. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{6}$ requires 299.1984.

Prepared by the same method as $15 a$ and $15 b$ were:

3.2.53 N^{2}-Allyl- N^{4}-butyl-6,7-diphenyl-2,4-pteridinediamine 19c

From 2-(allylamino)-6,7-diphenyl-4($3 H$)-pteridinone $\mathbf{1 7 h}$ and n-butylamine in 70% yield, m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3283,3080,2974,1691,1616,1560,1492,1220,903,735 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.31-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.60-1.67(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 4.02\left(2 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right), 5.06(2 \mathrm{H}, \mathrm{dd}$, $J=10.2,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 5.18(2 \mathrm{H}, \mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.95(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.29-7.44\left(11 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ and NH$) 8.16(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 411.2298. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{6}$ requires 411.2297 .

3.2.54 N^{2}-Allyl- N^{4}-benzyl-6,7-diphenyl-2,4-pteridinediamine 19d

From 2-(allylamino)-6,7-diphenyl-4(3H)-pteridinone 17h and benzylamine in 83% yield, m.p. $>230{ }^{\circ} \mathrm{C}$. $v_{\max }(\mathrm{KBr}): 3310,3054,2986,1663,1621,1446,1421,1263,993,895,739 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO- d_{6}): $4.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}\right), 4.75\left(2 \mathrm{H}, \mathrm{d}, J=5.2, \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right) 5.05(1 \mathrm{H}, \mathrm{dd}, J=$ $10.0,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHH}), 5.18(1 \mathrm{H}, \mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $7.21-7.45\left(16 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \times 3\right.$ and NH$), 8.67(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): 43.2,43.3,114.8$, $126.7,127.4,127.8,128.0,128.2,128.8,129.5,129.6,136.0,138.4,138.9,139.4,144.8$, 160.0, 161.4. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$ found 445.2136. $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{6}$ requires 445.2141.

3.2.55 N-Allyl-6,7-diphenyl-4-(1-pyrrolidinyl)-2-pteridinamine 19e

From 2-(allylamino)-6,7-diphenyl-4(3H)-pteridinone $\mathbf{1 7 h}$ and pyrrolidine in 80% yield, m.p: $>230^{\circ} \mathrm{C}$. $v_{\max }(\mathrm{KBr}): 3304,3063,2951,1696,1612,1439,1412,1249,998,755 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}$ (DMSO-d $)_{6}: 1.87-2.02\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.74\left(2 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.02(2 \mathrm{H}, \mathrm{d}, J=$ $\left.5.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}=\right), 4.26\left(2 \mathrm{H}, \mathrm{t}, J=6.5, \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 5.06(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.7 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHH}), 5.19(1 \mathrm{H}, \mathrm{dd}, J=17.2,1.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} H), 5.91-6.00(1 \mathrm{H}, \mathrm{m}), 7.29-7.45$ $\left(11 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{x} 2\right.$ and NH$)$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 409.2139. $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{6}$ requires 409.2141 .

3.2.56 2-(Benzylsulfanyl)-6,7,7-trimethyl-3,7-dihydro-4H-pyrimido[4,5-b][1,4]oxazin-4one 20

2-(Benzylthio)-6-hydroxy-5-nitrosopyrimidin-4(3H)-one (300 mg, 1.14 mmol) was dissolved in ethanol (20 mL) to which sodium dithionite ($496 \mathrm{mg}, 2.85 \mathrm{mmol}, 2.5 \mathrm{eq}$) in water (20 mL) was added dropwise at room temperature and allowed to stir for 4 h . The flask was covered with aluminium foil to protect from light. A light yellow solid was precipitated, which was filtered and washed with water $(2 \times 10 \mathrm{~mL})$ and ether $(2 \times 10 \mathrm{~mL})$. The resulting solid was suspended in a $1: 1$ water/ethanol mixture (20 mL). 3-Chloro-3-methylbutan-2-one (206 mg , $1.5 \mathrm{eq})$ in ethanol (10 mL) was then added to the suspension and this mixture was heated to reflux. After 15 min sodium acetate ($112 \mathrm{mg}, 1.2 \mathrm{eq}$) in water (5 mL) was added dropwise and heating under reflux was continued for a further 3 h . The resulting mixture was allowed to cool to room temperature and then stored at $0^{\circ} \mathrm{C}$ for 12 h . The resulting precipitate was filtered, washed with water $(2 \times 10 \mathrm{~mL})$ and dry ether $(2 \times 10 \mathrm{~mL})$ to yield the title compound 20 as a beige solid ($126 \mathrm{mg}, 0.399 \mathrm{mmol}, 35 \%$), m.p. $222-224^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3424,2981$, $1658,1561,1312,1239,1121,965,705 ; \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.44\left(6 \mathrm{H}, \mathrm{s}, 7-\mathrm{CH}_{3} \mathrm{x} 2\right), 2.07$ $\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{CH}_{3}\right), 4.36\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 7.41-7.20\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 12.63(2 \mathrm{H}, \mathrm{br}$ s, NH$)$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 316.1119. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires 316.1120 .

Similarly prepared was:

3.2.57 Ethyl 2-(benzylsulfanyl)-4-oxo-3,7-dihydro-4H-pyrimido[4,5-b][1,4]oxazine-6carboxylate 21

From 2-(Benzylthio)-6-hydroxy-5-nitrosopyrimidin-4(3H)-one reduced with sodium dithionite and ethyl bromopyruvate in 30% yield, m.p. $205-207^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3413,3046$, $2873,1700,1681,1539,1234,1025,721,697 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.28(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 4.25\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~S}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 7.42-7.25(5 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 13.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 346.0863. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires 346.0862 .

3.2.58 2-(Benzylamino)-6,7,7-trimethyl-3,7-dihydro-4H-pyrimido[4,5-b][1,4]oxazin-4one 22

2-(Benzylsulfanyl)-6,7,7-trimethyl-3,7-dihydro-4H-pyrimido[4,5-b][1,4]oxazin-4-one 20 ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) was dissolved in benzylamine ($2.0 \mathrm{~mL}, 18.31 \mathrm{mmol}$) and the solution was heated in a microwave for 1 hour at $110^{\circ} \mathrm{C}$. The excess solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate $(10 \mathrm{~mL})$ and washed with saturated sodium bicarbonate solution $(2 \times 5 \mathrm{~mL})$ and water $(2 \times 5 \mathrm{~mL})$. The organic layer was then dried over MgSO_{4} and was purified by flash chromatography to yield the title product as a beige solid ($44 \mathrm{mg}, 0.148 \mathrm{mmol}, 37 \%$), m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3425,3283$, 2992, 1643, 1551, 1213, 1303, 1239, 1091, $705 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}_{6}\right): 1.36\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \times 2\right)$, $2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.43\left(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 7.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.25-7.35(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 10.63(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 299.1506. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 299.1508.

3.2.59 N-Benzyl-2-(benzylamino)-4-oxo-3,7-dihydro-4H-pyrimido[4,5-b][1,4]oxazine-6carboxamide 23

Ethyl 2-(benzylsulfanyl)-4-oxo-3,7-dihydro-4H-pyrimido[4,5-b][1,4]oxazine-6carboxylate $21(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ was dissolved in benzylamine ($2.0 \mathrm{~mL}, 18.31 \mathrm{mmol}$) and the solution was heated in a microwave for 1 hour at $110^{\circ} \mathrm{C}$. The excess solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate (10 mL) and washed with saturated sodium bicarbonate solution ($2 \times 5 \mathrm{~mL}$) and water ($2 \times 5 \mathrm{~mL}$). The organic layer was then dried over MgSO_{4} and the title product was recrystallised from methanol as an orange solid ($34 \mathrm{mg}, 0.088 \mathrm{mmol}, 30 \%$), m.p. $>230^{\circ} \mathrm{C} . v_{\max }(\mathrm{KBr}): 3423$, $3005,2873,1701,1669,1539,1234,1025,697 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\right.$ DMSO-d $\left._{6}\right): 4.36(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 4.36\left(2 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NH}\right), 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right) 7.29\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{x} 2\right), 7.52$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.69(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 10.95(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(\mathrm{DMSO}_{6}\right): 42.1,43.7,63.1,126.7$,
127.1, 127.3, 127.4, 128.2, 128.4, 138.4, 139.4, 142.3, 153.8, 159.3, 162.0, 162.3. HRMS (FAB): $\mathrm{M}^{+}+\mathrm{H}$, found 390.1570. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires 390.1566.

4. Notes and references

1. Gibson, C.L.; Huggan, J.K.; Suckling, C.J. in Comprehensive Heterocyclic Chemistry III, Jones, R.A. (ed.) 2008, Chapter 10.18, pp. 915-975.
2. Gibson, C.L.; La Rosa, S.; Ohta, K.; Boyle, P.H.; Leurquin, F.; Lemaçon, A.; Suckling, C.J. Tetrahedron, 2004, 60, 943-959; Gibson, C.L.; Huggan, J.K.; Suckling, C.J.; Werner, E.R. unpublished observations, 2006.
3. Al Hassan, S.S.; Cameron, R.J.; Curran, A.W.C.; Lyall, W.J.S.; Nicholson, S.H.; Robinson, D.R.; Stuart, A.; Stirling, I.; Suckling, C.J.; Wood., H.C.S. J. Chem. Soc., Perkin Trans. 1, 1985, 1645-1659.
4. Haddow, J.; Suckling, C.J.; Wood., H.C.S.; J. Chem. Soc., Perkin Trans. 1, 1989, 12971304.
5. Gibson, C.L.; Huggan, J.K.; Kennedy, A.; Kiefer, L.; Lee, J.-H.; Suckling, C.J.; Clements, C.; Harvey, A.L.; Hunter, W.N.; Tulloch, L.B. Org. Biomol. Chem, 2009, 7, 1829-1842.
6. Suckling, C.J.; Gibson, C.L.; Huggan, J.K.; Morthala, R.R.; Clarke, B.; Kununthur, S.; Wadsworth, R.M.; Daff, S.; Papale, D. Bioorg.. Med. Chem. Letters 2008, 18, 15521555.
7. Gibson, C.L.; La Rosa, S.; Suckling., C.J. Org. Biomol. Chem, 2003, 1, 1909-1918.
8. Melguizo, M.; Nogueras, M.; Sanchez., A. Heterocycles, 1991, 32, 1719.
9. Negrillo, J.; Nogueras, M.; Sanchez, A.; Melgarejo, A. Chem. Pharm. Bull. 1988, 36, 386393.
10.Huggan, J.K., Ph.D. Thesis, University of Strathclyde, 2006.
10. Castro, A.M.M., Chem. Rev., 2004, 104, 2939-3002; Li, C.J. Chem. Rev., 1993, 93, 20232035.
11. Minnemeyer, H.J.; Egger, J.A.; Holland, J.F.; Tieckelmann, H. J. Org.Chem., 1961, 26, 4425-4429; Dinan, F.J.; Minkemeyer, H.J.; Tieckelmann, H. J. Org. Chem., 1963, 28, 1015-1018.
12. Gibson, C.L.; Huggan, J.K.; Kennedy, A.R.; Suckling., C.J. Acta Cryst E, 2006, 324-326.
13. Shi, M.; Feng, Y-S. J. Org. Chem., 2001, 66, 406-411.
14. Corma, A.; Garcia, H. Chem. Rev., 2003, 103, 4307-4365.
15. Jamieson, A.G.; Sutherland, A. Org. Biomol. Chem., 2005, 5, 735-736.
16. Yoon, T.P.; Dong, V.M.; MacMillan, D.W.C. J. Am. Chem. Soc., 1999, 121, 9726-9727.
17. Wan, Z.-K.; Wacharasindhu, S.; Bunnun, E.; Mansour, T. Org. Lett., 2006, 8, 2425-2428.
18. Guiney, D.; Gibson, C.L.; Suckling, C.J. Org.Biomol.Chem., 2003, 1, 664-675.
19. Menichincheri, M; Angiolini, M.; Bassini, D.F.; Gude, M. Tetrahedron Letters, 2005, 46, 8749-8752.
20. Murata, S.; Yoshikawa, K.; Chen, N.; Chemistry - A European Journal, 2005, 11, 48354848.
21. Gibson, C.L.; Huggan, J.K.; Kiefer, L.; Suckling, C.J. Chemistry and Biology of Pteridines and Folates. Jansen, G.; Peters, G.J. (eds), SPS Publications, Heilbronn, 2007, pp 269-278.
22. Tulloch, L.B.;Martini, V.P; Iulek, J.; Huggan, J.K.; Lee, J.H.; Gibson, C.L.; Smith, T.K.; Suckling C.J.; Hunter, W.N. J. Med. Chem. 2010, 53, 221-229.

Electronic Supplementary Information (ESI) available: ${ }^{1} \mathrm{H}$ NMR spectra for most new compounds.

Abbreviations for reagents

BOP	(1-benzotriazolyl)oxy tris(dimethylamino) phosphonium hexafluorophosphate
m-CPBA	m-chloroperbenzoic acid
DBU	1,8 -diazabicyclo[5,4,0]undec-7-ene
TBD	$1,5,7$-triazabicyclo[4.4.0]dec-5-ene

Legends for figures.

Scheme 1. Substitution by Claisen rearrangement.Reagents and conditions: i. DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $100^{\circ} \mathrm{C}, 20 \mathrm{~h} ;$ ii. $200^{\circ} \mathrm{C}, 24 \mathrm{~h}$

Scheme 2. Preparation of dialkylated pyrimidine 5 Reagents and conditions: i. DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}, 55{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$

Scheme 3. Reagents and conditions: i. DMF, r.t, 7 d; ii. TBD or DBU, MW, $100^{\circ} \mathrm{C}, 30$ min

Scheme 4. Regents and conditions: i. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, KI , r.t., 24 h ; ii. $\mathrm{TiCl}_{4} .2 \mathrm{THF}$, THF, reflux, 3 d

Scheme 5. Proposed mechanism for the synthesis of derivatives 11

Scheme 6. Diversification reactions for pyrrolopyrimdines. Reagents and conditions: i. DMF, m-CPBA, r.t., 3 h ; $i i$, appropriate amine, MW, $110^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, BOP, CHCN, r.t., 10 min ; $i v$, DBU, appropriate amine, r.t., 48 h .

Scheme 7. Diversification reactions for pteridines. Reagents and conditions: $i, \mathrm{HNO}_{2} ; i i$, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$; iii, EtOH, reflux; $i v$, DMF, m-CPBA, r.t., 3 h ; v, appropriate amine, MW, $110^{\circ} \mathrm{C}, 1$ h ; vi, $\mathrm{BOP}, \mathrm{CH}_{3} \mathrm{CN}$, r.t., 10 min ; vii, DBU, appropriate amine, r.t., 48 h .

Scheme 8. Diversification for pyrimidooxazines. Reagents and conditions: $i, \mathrm{HNO}_{2} ; i i$, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$; iii, aq. EtOH, NaOAc, reflux; i iv $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$, MW, $110^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Scheme 1

Scheme 2

$1 \mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{H}$
7a $\mathrm{R}^{1}=\mathrm{NH}_{2}, \mathrm{R}^{2}=\mathrm{H}$
7b $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{Me}$
7c $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}$
7d $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CHCH}_{2}$

6a $R^{1}=S B n, R^{2}=H, R^{3}=E t, 46 \%$
6b $R^{1}=S B n, R^{2}=H, R^{3}=H, 30 \%$
6c $R^{1}=N H_{2}, R^{2}=H, R^{3}=E t, 83 \%$
6d $R^{1}=N H_{2}, R^{2}=H, R^{3}=H 53 \%$
6e $R^{1}=S B n, R^{2}=M e, R^{3}=E t, 33 \%$
6f $R^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Et}, 33 \%$
6 g $\mathrm{R}^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CHCH}_{2}, \mathrm{R}^{3}=\mathrm{Et}, 33 \%$

8a $R^{1}=S B n, R^{2}=H, 98 \%$
8b $R^{1}=N H_{2}, R^{2}=H, 81 \%$
8c $R^{1}=S B n, R^{2}=\mathrm{Me}, 96 \%$
8d $R^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}, 96 \%$
$8 e R^{1}=\mathrm{SBn}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CHCH}_{2}, 96 \%$

Scheme 3

Scheme 4

Scheme 5

11b
14a $\mathrm{R}=\mathrm{NHCH}_{2} \mathrm{Ph}, 44 \%$
14b R = pyrrolidin-1-yl, 51\%
14c R = NHPh, 37\%
14d $\mathrm{R}=\mathrm{OH}, 44 \%$

Scheme 6

18a $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}, 78 \%$ 18b $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, 87 \%$ 18c $R^{1}=\mathrm{Me}, R^{2}=$ pyrrolidin- $1-\mathrm{yl}$, 18d $R^{1}=$ Me, $R^{2}=\mathrm{PhNH}, 65 \%$ 18e $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 71 \%$ $18 f R^{1}=\mathrm{Me}, \mathrm{R}^{2}=4 \mathrm{Et}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, 71 \%$

17a $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, 94 \%$ 17b $R^{1}=$ Me, $R^{2}=$ pyrrolidin-1-yl, 90% 17c $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhNH}, 54 \%$ 17d $\mathrm{R}^{1}=$ Me, $\mathrm{R}^{2}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 86 \%$ 17e $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, 83 \%$ 17f $R^{1}=P h, R^{2}=$ pyrrolidin- $1-y l, 83 \%$ $17 \mathrm{~g} \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{PhNH}, 61 \%$ 17h $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 79 \%$

19a $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, \quad \mathrm{R}^{3}=$ pyrrolidin-1-yl, 40%
19b $R^{1}=$ Me, $R^{2}=$ pyrrolidin-1-yl, $R^{3}=$ pyrrolidin-1-yl, 36%
19c. $\mathrm{R}^{1}=\mathrm{Ph}, \quad \mathrm{R}^{2}=n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}, \mathrm{R}^{3}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 70 \%$
19d $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{PhCH}_{2} \mathrm{NH}, \mathrm{R}^{3}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 83 \%$
$19 \mathrm{e} \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=$ pyrrolidin-1-yl, $\mathrm{R}^{3}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}, 80 \%$
Scheme 7

Scheme 8

