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Pressure-deficient conditions are a common occurrence

in water distribution systems. These situations require

accurate modelling for timely decision making. However,

the conventional demand-driven analysis approach to

network modelling is unsuitable for operating conditions

with insufficient pressure. Increasing emphasis is being

placed on the need for water companies to satisfy

stringent performance standards for the continuous

supply of water to consumers and it is those pressure-

deficient operating conditions which are critical in

determining whether or not adequate supplies can be

provided. It is therefore very unfortunate that the

demand-driven analysis method becomes invalid for use

in precisely those critical conditions. The aim of this

paper is to present a new pressure-dependent demand

function to help improve the simulation of pressure-

deficient conditions. The proposed function has better

computational properties than those in the literature

and has been incorporated successfully in the governing

equations for water distribution networks. In particular,

the proposed function and its derivative do not have the

discontinuities that often cause convergence difficulties

in the solution of the constitutive equations. A robust

Newton–Raphson algorithm was developed to model

water distribution systems under both normal and

pressure-deficient conditions in a seamless way.

Examples which demonstrate the methodology are

included.

NOTATION

Cij Hazen–Williams roughness coefficient of pipe ij

c a coefficient in the head–discharge relationship for a

pump

Dij diameter of pipe ij

Ej elevation of node j

Fj flow balance (i.e. continuity equation) for node j

Hj piezometric head at node j

Hdes
j piezometric head at node j above which its demand is

satisfied in full

Hmin
j piezometric head at node j below which its flow is zero

Hpsv setting for pressure sustaining valve

Hset valve setting

h0 shut-off head for pump

hp head added by pump

J Jacobean matrix

Lij length of pipe ij

m a coefficient in the head–discharge relationship for a

pump

Ni the set of nodes connected to node i

Qij volume flow rate through link ij

Q j flow at node j (same as Qavl
j )

Qavl
j flow at node j

Q
req
j demand at node j

Qp volume flow rate through a pump

Æ j a parameter in the proposed pressure-dependent

demand function

� j a parameter in the proposed pressure-dependent

demand function

� dimensionless factor in the headloss formula

� a tolerance parameter in the convergence criteria

º relaxation coefficient in the Newton–Raphson

algorithm

� j mean value of Hj � Ej

� j standard deviation of Hj � Ej

1. INTRODUCTION

Pressure-deficient conditions are a common occurrence in

water distribution systems (WDSs). Examples include pump

failures, pipe bursts, excessive demands (e.g. for fire-fighting

purposes) and when major pipes are taken out of service in

order to carry out maintenance and repairs. These situations

require accurate simulation of the WDS for timely decision

making. However, the conventional demand-driven analysis

(DDA) approach to network modelling is unsuitable for

operating conditions with insufficient pressure (indicated by

large negative pressures at some demand nodes, for

example). Head-driven analysis (HDA) is much closer to

reality because it takes account of the pressures at the

demand nodes.

Recent reviews of head-dependent modelling include Ackley

et al. (2001), Tabesh et al. (2002) and Tanyimboh et al.

(2003). Bhave (1991) categorised demand nodes as fully

satisfactory if the piezometric head was not less than the

head required, or no-flow if the head was below the

elevation of the node. All other nodes were classed as

partial-flow. Each subnormal node was modelled as a

ground-level tank to determine the flow available. The

procedure is very laborious and time-consuming,

impracticable on real WDSs and does not lend itself to a

range of analyses, such as reliability and optimisation

studies. Tanyimboh et al. (1999) implemented a more
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practicable version of the technique. The algorithm proposed

by Ang and Jowitt (2006) uses artificial reservoirs in a

similar manner to Bhave (1991). Rossman (2007) formalised

the procedure using emitters in a methodology that involves

a single DDA run. Gupta and Bhave (1996) used multiple

DDA runs to adjust nodal flows iteratively. Chandapillai

(1991) updated nodal flows between successive DDA

solutions but the individual demand nodes were updated in

isolation thus causing convergence problems.

Kalungi and Tanyimboh (2003) developed a heuristic in which

some aspects of HDA were used in a DDA environment to yield

more realistic results. Some features of the technique include

the iterative use of DDA, a subcategory of nodes referred to as

key partial flow nodes and a joint nodal head-and-nodal flow

system of equations. The method does not make explicit use of

a pressure-dependent demand function (PDDF). A major

advantage of the methods in which the PDDFs are embedded in

the system of equations is that they solve the non-linear

constitutive equations only once, albeit iteratively. Tabesh et

al. (2002) used a relaxation coefficient whose value is obtained

by trial and error. Ackley et al. (2001) used a mathematical

programming formulation in which the objective was to

maximise the amount of water delivered while satisfying the

system constraints. Recently Giustolisi et al. (2008) and Siew

and Tanyimboh (2009) added PDDFs to the gradient method

(Todini and Pilati, 1988); pumps and valves were not catered

for.

This paper presents a new PDDF that is based on the logit

function (Weisberg, 1985). The proposed function has better

computational properties than those in the literature and has

been incorporated successfully in the system of equations for

WDSs. A robust Newton–Raphson algorithm was developed to

model WDSs under both normal and pressure-deficient

conditions in a seamless way. The formulation in Tanyimboh et

al. (2003) has been extended to other components including

pumps and valves. Examples that demonstrate the

methodology are included.

2. PRESSURE-DEPENDENT DEMAND FUNCTIONS

There is general agreement that the flow rate at a demand node

is related to the local pressure in the WDS. There is, however,

some uncertainty about the exact nature of the relationship

between flow and pressure due to a range of factors. The

relevant considerations may include the proximity of other

abstractions and their timings and magnitudes, elevations of

demand nodes, supply pipe characteristics, internal plumbing

and storage arrangements, and the micro-component make-up

of demands. It may be noted that water demand is inherently

stochastic which, therefore, introduces an extra level of

uncertainty.

Several functions have been proposed to characterise the

relationship between the nodal pressures and flows in WDSs

(Cullinane et al., 1992; Fujiwara and Ganesharajah, 1993;

Gupta and Bhave, 1996; Reddy and Elango, 1989; Wagner et

al., 1988). These PDDFs have been defined on the basis that the

nodal demand is fully satisfied when the nodal piezometric

head is greater than the desired level and zero when the

piezometric head is below the minimum level. A selection of

PDDFs from the literature are summarised in Table 1. Some

weaknesses of previous PDDFs include the absence of

continuity in their derivatives at the transitions between zero

and partial nodal flow and/or between partial and full demand

satisfaction. Discontinuities in PDDFs and their derivatives can

cause convergence difficulties in the computational solution of

the system of equations for WDSs (Gupta et al., 2003).

Furthermore, some PDDFs can yield demand satisfaction ratios

(DSRs) that either exceed, or never reach, 100%

(Germanopoulos, 1985; Reddy and Elango, 1989). Similarly,

others give nodal flows that are significantly greater than zero

when the residual pressure is zero (Cullinane et al., 1992).

Gupta and Bhave (1996) recommended Equation 1 (Wagner et

al., 1988). They also proposed Equation 2 as an improvement

on Germanopoulos (1985). Udo and Ozawa (2001) observed

that the Wagner et al. (1988) square root-type PDDF is similar

to the characteristic curve of a valve and appropriate for

Zero flow
(Hj < Hmin

j )
Partial flow
(Hmin

j , Hj , Hdes
j )

Full flow
(Hj > Hdes

j )

Wagner et al. (1988)
Equations 1

Qavl
j ¼ 0 Qavl

j

Q
req
j

¼
Hj � Hmin

j

Hdes
j � Hmin

j

 !0�5 Qavl
j ¼ Qreq

j

Germanopoulos–Gupta–Bhave
(GGB) (Gupta and Bhave, 1996)
Equations 2

Qavl
j ¼ 0

Qavl
j

Q
req
j

¼ 1� 10
�5(

H
j
� Hmin

j

H
req
j

� Hmin
j

)

Qavl
j ¼ Q

req
j

Fujiwara and Ganesharajah (1993)
Equations 3

Qavl
j ¼ 0

Qavl
j

Qreq
j

¼

ð Hj

Hmin
j

(Hj � Hmin
j )(Hdes

j � Hmin
j )dH

ð Hdes
j

Hmin
j

(Hj � Hmin
j )(Hdes

j � Hmin
j )dH

Qavl
j ¼ Q

req
j

Hj , piezometric head at node j; Hmin
j , piezometric head at node j below which outflow is zero; Hdes

j , piezometric head at node j
above which the demand is satisfied in full; Qavl

j , actual flow at node j; Q
req
j , demand at node j.

Table 1. A selection of pressure-dependent demand functions
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modelling a demand node corresponding to a single tap. They

proposed a relationship similar to Figure 1 on the basis that the

flow at a node of the mathematical model would represent the

abstraction at many demand points of the real WDS with

different elevations. Furthermore, using HDA, Gupta and Bhave

(1996) calculated the total flow supplied by a pipeline with

several outlets for a range of pressures. Figure 1 would appear

to be a reasonable approximation to the curve of actual

pressure plotted against flow for the pipeline as a whole.

Udo and Ozawa (2001) proposed the following PDDF

Qavl
j ¼ 0 if (H j � E j) < 0

Qavl
j ¼ 0:0189Qreq

j (Hj � E j)
2

if 0 , (Hj � E j) < 6:4176 m

Qavl
j ¼ Q

req
j

tan�1[1:3(H j � E j � 9:5)]

�
þ 0:5

� �

if 6:4176 m , (H j � E j) < 12:582 m

Qavl
j ¼ Q

req
j [1 � 0:0189(H j � E j � 19)2]

if 12:582 m , (H j � E j) < 19:0 m

Qavl
j ¼ Q

req
j if (Hj � E j) . 19:0 m

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

4

where Ej is the elevation of node j; Hj is the piezometric head;

Qavl
j is the actual flow; Qreq

j is the demand; and Hj � Ej is the

pressure head.

Cullinane et al. (1992) presented a curve based on the

cumulative normal distribution function – that is

Qavl
j ¼

Q
req
jffiffiffiffiffiffi
2�

p
ð(H j�E j�� j )=� j

�1
exp (�t 5=2)dt5

in which � j and � j are, respectively, the mean value and

standard deviation of Hj � Ej . Equation 5 is evaluated

numerically as it has no analytical form; although polynomial

approximations of the cumulative normal distribution function

may be used, it is worth noting that values of � j and � j are not

readily available.

The new PDDF proposed is

Q j(H j) ¼ Q
req
j

exp Æ j þ � j H j

� �
1 þ exp Æ j þ � j H j

� �6

where Q j and Hj are the flow and piezometric head,

respectively, at node j. The values of the parameters Æ j and � j

are determined using relevant field data for the node in

question. Q j
req is the demand at node j. When a node has a low

pressure, it may supply only a small proportion of the demand

or there may be no flow at all. By contrast, if sufficient

pressure is available, the flow is equal to the demand. Equation

6 approximates the performance of a WDS under both normal

and pressure-deficient conditions given the arguments Æ j

and � j .

System-specific data are required to ascertain the values of Æ
and � for any network. In the absence of field data, default

expressions may be obtained as follows. Taking

Q j(H
des
j ) ¼ 0:999Qreq

j and Q j(H
min
j ) ¼ 0:01Qreq

j , say, Equation 6

gives two simultaneous equations whose solution is

Æ j ¼
�4:595Hdes

j � 6:907Hmin
j

Hdes
j � Hmin

j

7

� j ¼
11:502

Hdes
j � Hmin

j
8

in which Hdes
j is the piezometric head above which Q j ¼ Q

req
j

and Hmin
j is the piezometric head below which Q j ¼ 0. For

simplicity, Hmin
j is often taken as the nodal elevation, Ej .

However, a higher, more appropriate value can be used instead.

The form of Equation 6 is shown in Figure 1. To the best of our

knowledge, Equation 6 is the only PDDF which obviates the

need for the extra conditions Q j(H j < Hmin
j ) ¼ 0 and

Q j(H j > Hdes
j ) ¼ Q

req
j . Equation 6 has the advantages of

simplicity and ease of incorporation into the WDS constitutive

equations. Furthermore, unlike other PDDFs, the derivative of

Equation 6 has no discontinuities at H j ¼ Hdes
j and

Hj ¼ Hmin
j , which is an important factor in the computational

solution of the system of equations. In effect, Equation 6 offers

a seamless transition between normal and pressure-deficient

operating conditions because it consists of a single continuous

function that applies to all the three pressure regimes of

Hj < Hmin
j , Hmin

j , H j , Hdes
j and H j > Hdes

j and has a

continuous derivative.

3. CONSTITUTIVE EQUATIONS

The flow rate in a pipe may be related to the piezometric heads

at the ends of the pipe by the Hazen–Williams equation as

Qij ¼ Rij(Hi � H j)9

where Qij is the pipe flow rate, Hi and Hj are the piezometric

heads at the nodes connected by the pipe. Rij incorporates the

pipe resistance, namely
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Figure 1. Proposed pressure-dependent demand function
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Rij ¼ �
Cij D

2�63
ij

L0�54
ij jHi � H jj0�4610

where � is a dimensionless factor whose value is 0.2785 in SI

units, Cij is the Hazen–Williams roughness coefficient, Dij and

Lij are the diameter and length, respectively. Equation 10 gives

results that are accurate enough for the flow conditions

commonly found in WDSs. The Darcy–Weisbach formula is

more accurate as it involves a pipe friction factor whose value

varies with the turbulence of the flow (unlike Cij which is

assumed constant for a given pipe).

The formulation herein can handle multiple sources, pumps

and valves. The equations for pumps and valves can be found

in textbooks on WDSs. Some of the more common

appurtenances are mentioned below. Non-return valves (NRVs)

are used to ensure that water can flow in one direction through

the pipeline but cannot flow in the opposite direction. A pipe

fitted with an NRV is modelled as

Qij ¼ Rijsign(Hi � H j)jHi � Hj j0�54

0

�
Hi > Hj

Hi , Hj
11

where sign(Hi � Hj) ¼ +1 if Hi > Hj and sign(Hi � Hj) ¼ �1 if

Hi , Hj.

Pressure-reducing valves (PRVs) are designed to prevent the

downstream pressure from exceeding a set value, and are used

for example in situations where high downstream pressures are

undesirable. A PRV is characterised in a model by the

downstream pressure that it attempts to maintain and its

control status. A PRV is modelled as

Qij ¼
RijjHset � Hj j0�54

Rijsign(Hi � Hj)jHi � H j j0�54

0

8><
>:

Hi > Hset > H j

Hset . Hi . H j

Hset , Hj

12

where Hset is the required piezometric head (pressure setting)

downstream of the PRV.

A pump is typically modelled using a function such as

hp ¼ H j � Hi ¼ h0 � cQm
p13

where hp is the increase in head due to the pump, h0 is the cut-

off head, Qp is the discharge while c and m are coefficients.

The discharge is thus expressed as

Qp ¼ Qij ¼
h0 � (Hj � Hi)

c

� �1=m

Qij > 014

A pressure-sustaining valve (PSV) prevents the upstream

pressure from dropping below a set value. The equation for a

PSV can be written as follows

Qij ¼
RijjHi � Hpsvj0�54

RijjHi � H j j0
:54

0

8><
>:

Hi > Hpsv > H j

Hi . Hj . Hpsv

Hi , Hpsv

15

where Hpsv is the pressure setting.

To set up the constitutive equations, the flow continuity

equation can be expressed for each node, i, as

Fi(Hi, H j) ¼
X
j2Ni

Qij � Qi(Hi) ¼ 016

where Qij is the flow in link ij (i.e. pipe, pump or valve), Qi(Hi)

is the head-dependent nodal flow and Ni represents all the

nodes connected to node i.

An outline of the numerical procedure developed to solve

Equation 16 is presented in the following algorithm.

Step 1. Set k ¼ 0. Set initial heads Hk; k represents the

iteration number.

Step 2. Compute F(Hk). If kF(Hk)k < �, where � is a

predefined tolerance, the algorithm terminates with Hk as the

solution. Otherwise, continue.

Step 3. Compute the Jacobian J (Hk).

Step 4. Solve J (Hk)�Hkþ1 ¼ �F(Hk) for the change in nodal

heads �Hkþ1.

Step 5. Compute the value of the relaxation coefficient ºkþ1 (a

scalar) to minimise kF(Hk þ ºkþ1�Hkþ1)k with respect to ºkþ1;

0 , ºkþ1
< 1:0.

Step 6. Set Hkþ1 ¼ Hk þ ºkþ1�Hkþ1 and go to Step 2.

The formulation in Equation 16 is based on the unknown

nodal piezometric heads, H. The solution procedure

developed in this research uses a Newton–Raphson scheme

with line searches and backtracking in each iteration. The

Newton step �H ¼ �J�1.F provides a descent direction for

the norm |F|2. Line searches and backtracking along the �H
direction help ensure that successive iterates reduce the

merit function |F|2. Other criteria are used to guard against

the merit function decreasing too slowly and/or excessively

small steps being taken. For example, in each iteration the

full Newton step �H should be tried first to take full

advantage of its quadratic convergence near the solution.

However, �H is not allowed to exceed a specified maximum

step length to help ensure that F is not evaluated in regions

within which it may be undefined. The solution strategy

outlined above is robust; it converges to the solution from

almost any starting point (Press et al., 1992). The authors’

prototype FORTRAN 90 implementation of the algorithm is

called PRAAWDS (Program for the Realistic Analysis of the

Availability of Water in Distribution Systems). Some of its

features are given below.

Extensive testing has shown that the method is robust, globally

convergent and offers seamless and realistic simulations for all

pressure regimes without operator intervention. There is a

choice of four PDDFs (Equations 1, 2, 3 and 6) including an

option to choose DDA instead of HDA in the computer program

4 Water Management Seamless pressure-deficient water distribution system model Tanyimboh • Templeman
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with an integrated procedure for setting the initial piezometric

heads Hk¼0 without operator intervention. Pumps and valves

(NRVs, PRVs, PSVs and flow control valves) can be handled

and pipes can be declared as open or closed. The program is

easy to use and expertise beyond the basics of WDSs is not

required. Extra data are not required either. However, this may

change with future sophistication. An innovative post-analysis

technique for verifying HDA results is included as an option;

nodal flows from WDSs with insufficient pressure will be

different from the demands. If the HDA nodal flows are correct,

then using the HDA flows as a new set of demands under the

same conditions should yield DDA nodal heads and pipe flows

that are identical to the original HDA heads and pipe flows.

This new test is simple, but it is extremely efficient, powerful

and effective as demonstrated in Ackley et al. (2001), for

example.

4. EXAMPLES, RESULTS AND DISCUSSION

This section contains results for three examples including

HDA and DDA obtained with PRAAWDS on a Pentium III

800 MHz PC.

4.1. Example 1

The first example is based on the simple network of Figure 2

(Fujiwara and Ganesharajah, 1993). Hdes
j ¼ 60 m for all

demand nodes; Hmin
j ¼ 45 m for nodes 3 and 4, 50 m for

nodes 1 and 2 and 55 m for nodes 5 and 6. Source head

values between 90 and 42 m were used. The results are

summarised in Figure 3, which shows that the proposed PDDF

needed fewer iterations. Figure 4 shows the hydraulic

performance of the network based on the new PDDF, which

can be compared with Figure 5 (Ackley et al., 2001;

Tanyimboh et al., 2003) that is based on the Wagner et al.

(1988) function.

The network performances under low-pressure conditions as

shown in Figure 4 suggest that each node may have a unique

head-flow curve. It is worth observing that the nodal

performances reflect: (a) the minimum piezometric head

values; (b) the distances from the source; and (c) the

magnitudes of the demands. For example, compare nodes 1

and 2 with nodes 3 and 4. Although it is expected that

different PDDFs will result in differences in the predictions of

nodal flows, Figure 5 would appear to suggest that the various

PDDFs may have different sensitivities to the relevant

parameters. This is illustrated by the curves for nodes 1 and 3

in Figures 4 and 5. It may be noted that Hmin
j is 45 m for node

3 and 50 m for node 1.

Source

[500, 1000, 140]

47·1 /sl

[400, 1000, 140]

47·1 /sl

47·1 /sl77·8 /sl

55·6 /sl 88·9 /sl

[Diameter (m), Length (m), C]

[4
00

, 1
00

0,
 1

40
]

[4
00

, 1
00

0,
 1

40
]

[2
50

, 1
00

0,
 1

40
]

[2
50

, 1
00

0,
 1

40
]

[250, 1000, 140]

[250, 1000, 140]

1 2

3 4

5 6

Figure 2. Sample network 1 (Fujiwara and Ganesharajah, 1993)
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Figure 3. Number of iterations to achieve convergence for
network 1
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Figure 4. Nodal performance of network 1 based on
proposed function (Equation 6)
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Figure 5. Nodal performance of network 1 based on Wagner
function (Equations 1) (Ackley et al., 2001; Tanyimboh et al.,
2003)
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4.2. Example 2

The second example is based on a WDS from Reddy and

Elango (1989). The network contains 70 pipes, 36 demand

nodes and one source node (Figure 6). The pipe data and the

elevations of the nodes are reported in Reddy and Elango

(1989). The effective head at the source was varied from 10 to

25 m. The nodal demands are all 80 litres/min while the

residual heads for full and zero flow are 6.17 and 0 m,

respectively. The results are summarised in Figures 7 and 8.

The CPU time was approximately 0.03 s for each simulation. It

should be noted that unlike the other parts of this paper, the

nodal heads in this example are pressure heads, because the

values of the nodal elevations have been omitted for brevity. It

is also worth noting that the DDA and logit function

simulations required a comparable number of iterations down

to a source head of about 19 m after which the logit function

performed better (Figure 7).

4.3. Example 3

The third example is based on Jeppson and Davis (1976). The

pipe data and demand at each node are given in Figure 9. The

hydraulic characteristics of the pumps were represented by

hp ¼ 26:67 � 1042Q2 and hp ¼ 33:33 � 1029Q2 for P10 and

P11, respectively. The setting for the PRV was 140 m. The head

at supply node 10 was decreased from 250 to 100 m while the

head at node 11 was maintained at a constant value of 180 m.

Additional data for the nodes are shown in Table 2. Figure 10

shows the performance of the WDS for the proposed PDDF and

Figures 11(a) and (b) show the performance of the solution

algorithm. Figures 11(a) and (b) show that the logit function

generally requires fewer iterations.

4.4. Comparison of pressure-dependent demand

functions

Table 3 shows a comparison of the PDDFs. Based on the

examples considered here, the proposed function compares

favourably against both DDA and other PDDFs. These results

would appear to highlight the computational difficulties

associated with discontinuous functions. For example, Figure 2,

which corresponds to sample network 1, shows several

unexpectedly high values of the number of iterations for all the

PDDFs except for the proposed function and DDA. It should be

noted that DSRs for nodes or networks have not been presented

herein for DDA. The reason is that the DSR for DDA is always

100% regardless of whether this implied 100% satisfaction

ratio is achievable or not.

5. CONCLUSIONS

A new pressure-dependent demand function (PDDF) for WDSs

has been proposed. It consists of a single function which

covers the entire range from zero through to full flow. A

major advantage of both the function and its derivative is

that they do not have discontinuities. The new PDDF is ideal

for incorporation in the WDS system of equations. The

method developed to solve the system of equations employs

a robust Newton–Raphson procedure. Evidence of the

robustness includes the ability of the computer program

(PRAAWDS) to run smoothly and produce realistic results,

even at extremely low network-wide demand satisfaction

levels. The program has a routine for selecting the initial
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Figure 6. Sample network 2
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Figure 7. Computational performance of proposed function
on network 2
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Figure 8. Hydraulic performance of network 2 based on
proposed function
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Figure 10. Nodal demand satisfaction ratios for network 3
based on the proposed function
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Figure 11. (a) Computational efficiency of proposed function
for network 3 with all pipes open; (b) computational
efficiency of proposed function for network 3 with pipe 4–5
closed

Nodes 1–2 3 4–5 6 7–9

Minimum piezometric head: m 150 100 130 150 120
Desired piezometric head: m 170 120 150 170 140

Table 2. Node data for network 3

DDA Logit Wagner GGB* Fujiwara

Network 1 6.7 7.0 7.5 9.2 7.8
Network 2 12.4 8.8 8.7 8.9 9.1
Network 3 (pipe 4–5 open) 12.8 12.1 12.0 11.0 17.0
Network 3 (pipe 4–5 closed) 12.8 11.0 15.8 16.2 17.6

* Germanopoulos–Gupta–Bhave

Table 3. Average number of iterations per simulation (for range of source heads)

[Diameter (mm), length (m), C]

10

P10

1
[250, 300, 130]

2
[200, 500, 110]

3
P11

4

80 l/s

7

8

[200, 300, 120]

[200, 300, 120]

[200, 500, 120]
956

30 l/s 50 l/s 80 l/s

[200, 500, 110]

30 l/s

[250, 300, 130]11

PRV

Figure 9. Sample network 3
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heads and in general multiple trials are not required. It can

handle pumps and several types of valve, simulate both

normal and pressure-deficient operating conditions seamlessly

and has four PDDFs. Finally, extensive testing based on

PRAAWDS including the examples herein suggests that, in

general, HDA simulations do not necessarily take longer than

DDA.
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