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Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for
non-equilibrium gas flows

Jianping Meng∗ and Yonghao Zhang†

Department of Mechanical Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK
(Dated: March 14, 2011)

Recently, the kinetic theory based lattice Boltzmann (LB) models have been developed to model
non-equilibrium gas flows. Depending on the order of quadratures, a hierarchy of LB models can be
constructed which we have previously shown to be able to capture rarefaction effects in the standing
shear wave problems. Here, we further examine the capability of high-order LB models in modeling
non-equilibrium flows considering gas/surface interactions and their effect on the bulk flow. The
Maxwellian gas/surface interaction model, which has been commonly used in other kinetic methods
including direct simulation of Monte Carlo method, is used in the LB simulations. In general, the LB
models with high-order Gauss-Hermite quadratures can capture flow characteristics in the Knudsen
layer and higher-order quadratures give more accurate prediction. However, for the Gauss-Hermite
quadratures, the present simulation results show that the LB models with the quadratures obtained
from the even-order Hermite polynomials perform significantly better than those from the odd-order
polynomials. This may be attributed to the zero-velocity component in the odd-order discrete set,
which does not participate wall/gas collisions, and thus under-estimate wall effect.

PACS numbers: 05.10.-a, 47.45.-n, 47.61.-k

I. INTRODUCTION

Non-equilibrium gas flows are traditionally associ-
ated with spacecraft re-entry into planetary atmosphere
and vacuum technologies. Recently, research in non-
equilibrium gas dynamics is reignited because of rapid de-
velopment of micro/nano-technologies and modern mate-
rial processing techniques including laser fabrication pro-
cessing and plasma etching [1–3]. In addition to tradi-
tional high-speed low-density non-equilibrium flows, the
research interest in rarefied gas dynamics is extended to
low-speed flows under standard ambient temperature and
pressure. For all these non-equilibrium flows, the linear
constitutive relation for stress, which is assumed in the
Navier-Stokes equation, is no longer valid. The level of
non-equilibrium in gas local flowfield can be classified by
the following Knudsen number:

Kn =
λ

l
≈ λ

Q

dQ

dl
, (1)

where λ is the mean free path of the gas molecules, l is
the characteristic length scale of the flow system and Q
is a quantity of interest, such as the gas density, pres-
sure or temperature. According to the Knudsen number,
gas flow regimes can be divided into : the hydrodynamic
regime (Kn < 0.001), the slip regime (0.001 < Kn <
0.1), the transition regime (0.1 < Kn < 10), and the free
molecular flow regime (Kn > 10). The Navier-Stokes
equation is only valid in the hydrodynamic regime. Mi-
cro/nano devices often operate in the hydrodynamic, slip
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and transition flow regimes with a range of Knudsen num-
bers in different parts of the device. Therefore, we need a
computationally efficient method to solve the Boltzmann
equation, which is valid in all the flow regimes.

For traditional high-speed applications, the direct sim-
ulation Monte Carlo (DSMC) method can provide accu-
rate solutions for non-equilibrium gas flows. However, for
low-speed flows with small Knudsen number, the DSMC
method needs large statistical samples to reduce vari-
ance. Meanwhile, the direct solution of the Boltzmann
equation is very complex due to the collisional integral.

The lattice Boltzmann (LB) framework has the po-
tential to be an alternative method to simulate non-
equilibrium gas flows. It was originally developed for
hydrodynamics and was proved to be a viable numerical
tool [4–7]. The LB models have been applied to a va-
riety of important areas e.g., turbulence(e.g., Ref.[10]),
multiphase flow, microfluidics and particle suspensions
(see Ref.[8]). To construct appropriate LB models, there
are different theoretical frameworks, e.g., entropic LB
models[9, 11–13] and the Hermite expansion approach
[21, 28–31]. Recently, non-equilibrium gas flows have
become an active area of research for the LB method
(e.g., Refs.[8, 14–21, 23–26, 42, 43]). Theoretically, it
was shown that the LB model with discrete velocity set
derived from high-order Gauss Hermite quadratures can
provide a computationally efficient way of solving the
Boltzmann model equation [21]. Higher-order LB models
can asymptotically recover the Bhatnagar-Gross-Krook
(BGK) equation[21].

The capability of high-order LB models for non-
equilibrium gas has been reported. Analytical solutions
for up to the D2Q16 model have been obtained for Cou-
ette and Poiseuille flows with finite Knudsen numbers
[23, 25, 42, 43]. Numerical experiments have also been
conducted to further assess higher-order models up to the
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D2Q36 model [24]. It was concluded that higher-order
LB methods can improve the capability in comparison
with the standard LB method but the accuracy does not
monotonically increase with the order of the GaussHer-
mite quadrature. Specifically, the D2Q25 model performs
poorer than the D2Q16 model[24]. For a standing shear
wave problem where the gas/surface interactions are ir-
relevant, surprisingly, we found that the D2Q25 model
performs better than the D2Q16 model, different from
the observation made in microchannel flows [27]. As the
LB model equation with a first order Hermite expansion
for the equilibrium distribution function was shown to be
sufficient to capture non-equilibrium effects at low Mach
number both numerically [24] and theoretically [27], this
contradictory observation of the high-order LB model ca-
pability may be caused by the quadrature effect in deal-
ing with wall boundary. Therefore, in this work, we will
further examine how various orders of Gauss-Hermite
quadratures influence the treatment of essential physics
of gas molecule/wall surface interactions.

II. HIGH-ORDER LB MODELS

High-order LB models for rarefied gas can be con-
structed by utilizing the Gauss-Hermite quadrature [21,
28–31]. It is computationally very expensive to solve the
full Boltzmann equation while model Boltzmann equa-
tions such as the BGK equation can produce sufficiently
accurate results for macroscopic properties such as veloc-
ity, density, pressure, and stress. So LB models are often
based on the BGK equation. The original BGK equation
is:

∂f

∂t
+ ξ · ∇f + g · ∇ξf = − p

µ
(f − feq) , (2)

where f denotes the distribution function, ξ the phase
velocity, p the pressure, g the body force and µ the gas
viscosity. Using the well-known Chapman-Enskog expan-
sion, the collision frequency can be represented by the
ratio of pressure and gas viscosity, which is convenient
to obtain the Knudsen number definition consistent with
that of the hydrodynamic models. Without losing gener-
ality, we define the following non-dimensional variables:

r̂ =
r

l
, û =

u√
RT0

, t̂ =

√
RT0t

l
,

ĝ =
lg

RT0
, ξ̂ =

ξ√
RT0

, T̂ =
T

T0
, (3)

where u is the macroscopic velocity, R the gas constant,
T the gas temperature, T0 the reference temperature,
r the spatial position and l the characteristic length of
the flow system. The symbol hat, which denotes dimen-
sionless value, will hereinafter be omitted. The Knudsen
number can be defined by using macroscopic properties
as below:

Kn =
µ
√
RT0

pl
. (4)

Based on these non-dimensional variables, the non-
dimensional form of the BGK equation becomes

∂f

∂t
+ ξ · ∇f + g · ∇ξf = − 1

Kn
(f − feq) , (5)

where the Maxwell distribution in D-dimensional Carte-
sian coordinates can be written as

feq =
ρ

(2πT )D/2
exp

[
−(ξ − u)2

2T

]
. (6)

For solving Eq.(5), the velocity space can be firstly
discretized by projecting the distribution function onto
a functional space spanned by the orthogonal Hermite
basis[32]:

f(r, ξ, t) ≈ fN (r, ξ, t) = ω(ξ)
N∑

n=0

1

n!
a(n)(r, t)χ(n)(ξ),

(7)
where χ(n) is the nth order Hermite polynomial, and
ω(ξ) is the weight function, which are given by

χ(n)(ξ) =
(−1)n

ω(ξ)
∇nω(ξ), (8)

ω(ξ) =
1

(2π)D/2
e−ξ2/2. (9)

The coefficients a(n) are

a(n) =

∫
fχ(n)dξ ≈

∫
f (N)χ(n)dξ (10)

=

d∑
α=1

wα

ω(ξα)
f (N)(r, ξα, t)χ

(n)(ξα).

The equilibrium distribution should also be expanded
as[21]

feq ≈ ω(ξ)
N∑

n=0

1

n!
a(n)
eq χ(n)(ξ), (11)

where the coefficient a
(n)
eq for the equilibrium distribution

is

a(n)
eq =

∫
feqχ(n)dξ. (12)

wα and ξα, a = 1, · · · , d, are the weights and abscissae
of a Gauss-Hermite quadrature of degree ≥ 2N respec-
tively. Therefore, the Maxwell distribution is approxi-
mated by up to N Hermite polynomials. The body force
term F (r, ξ, t) = g ·∇ξf can also be approximated as[21]

F (r, ξ, t) = ω
N∑

n=1

1

(n− 1)!
ga(n−1)χ(n). (13)
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It was shown that the first-order expansion on the equi-
librium distribution is sufficient for LB model to cap-
ture isothermal and incompressible non-equilibrium flow
phenomena[27]. Therefore, as low speed flows are mainly
considered in this work, the standard form of second or-
der approximation of the equilibrium distribution and the
body force will be used, as given below:

feq ≈ ω(ξ)ρ{1+ξ ·u+
1

2
[(ξ ·u)2−u2+(T −1)(ξ2−D)]},

(14)

F (r, ξ, t) ≈ ω(ξ)ρ{g · ξ + (g · ξ)(u · ξ)− g · u}, (15)

where T should be unity for isothermal problems and ρ
is constant for incompressible problems.
Based on the Gauss-Hermite quadratures, various or-

der discrete velocity sets can be constructed [21, 22],
which are the upmost important factor in determining
model accuracy [27]. Once the discrete velocity set is
chosen, Eq.(5) can be discretized as

∂fα
∂t

+ ξα · ∇fα = − 1

Kn
(fα − feq

α ) + gα (16)

where

fα = wαf(r, ξα, t)/ω(ξα),

feq
α = wαf

eq(r, ξα, t)/ω(ξα),

and

gα = wαF (r, ξα, t)/ω(ξα).

Therefore, the LB equation, i.e. Eq.(16), is now ob-
tained by discretizing Eq.(5) in the velocity space. In
one-dimensional case, one can obtain ξα by solving the
roots of one-dimensional Hermite polynomials and the
corresponding weights are determined by:

wα =
n!

[nχn−1(ξα)]2
. (17)

For higher dimensions, the quadrature can be con-
structed by using the “production” formulae [21]. In
this paper, we will assess the LB models in 2-dimension
with the Gauss-Hermite quadratures corresponding to
9, 16, 25, 36, 49 and 64 discrete velocities. We

name these models as D2Q9, D2Q16, D2Q25, D2Q36,
D2Q49, and D2Q64 according to the conventional LB
terminology[46]. For convenience, the accuracy of a
quadrature will be represented by its Hermite polyno-
mial order n hereinafter while its exact algebraic accu-
racy is 2n− 1. For instance, the Gauss-Hermite quadra-
ture of D2Q9 model is from the 3rd-order Hermite poly-
nomial, we call it 3rd-order accuracy while its algebraic
accuracy is the 5th-order. Similarly, D2Q16 is 4th-order,
D2Q25, 5th-order, D2Q36, 6th-order, D2Q49, 7th-order
and D2Q64 8th-order.

i,j+1

i,j i+1,ji−1,j

i,j−1

x

y

FIG. 1. Schematic diagram of square lattices.

III. NUMERICAL IMPLEMENTATION AND
BOUNDARY CONDITION

A. Numerical implementation

Various numerical schemes can be used to solve
Eq.(16). For some high-order LB models with the non-
integer-valued discrete sets, one has to choose a numerical
scheme to break the tie between the time step and the lat-
tice spacing used in the standard LB simulation. So they
are essentially off-lattice models. As some discontinuities
may occur at wall surface in the following simulations, we
will employ the forward Euler time-marching method and
the 2nd TVD scheme for space discretization (see Fig.1)
for Eq.(16)[33–35]. According to the characteristics of
problems, one can also choose any other appropriate nu-
merical method to solve Eq.(16).

Let fn,j
α,i denote the distribution function value fα at the nth time step in the node xi,yj (see Fig.1), the scheme

can be written as

fn+1,j
α,i = fn,j

α,i − ξαxδt
δx

[
Fn,j

α,i+1/2 −Fn,j
α,i−1/2

]
− ξαyδt

δy

[
Fn,j+1/2

α,i −Fn,j−1/2
α,i

]
+

δt
Kn

(feq,n,j
α,i − fn,j

α,i ) + gαδt, (18)

where δx and δy are the uniform grid spacing, and and δt is the time step, ξαx and ξαy denote the phase velocity
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component at the x and y coordinates. The outgoing and incoming fluxes in the node (i, j) (see Fig.1) are

Fn,j
α,i+1/2 = fn,j

α,i +
1

2

(
1− ξαxδt

δx

)[
fn,j
α,i+1 − fn,j

α,i

]
Ψ
(
Θn

α,i

)
(19)

Fn,j
α,i−1/2 = Fn,j

α,(i−1)+1/2, (20)

Fn,j+1/2
α,i = fn,j

α,i +
1

2

(
1− ξαyδt

δy

)[
fn,j+1
α,i − fn,j

α,i

]
Ψ
(
Θn,j

α

)
, (21)

Fn,j−1/2
α,i = Fn,(j−1)+1/2

α,i , (22)

where

Θn
α,i =

fn,j
α,i − fn,j

α,i−1

fn,j
α,i+1 − fn,j

α,i

, (23)

Θn,j
α =

fn,j
α,i − fn,j−1

α,i

fn,j+1
α,i − fn,j

α,i

, (24)

and the minmod flux limiter is

Ψ (Θ) = max [0,min(1,Θ)] . (25)

B. Diffuse reflection boundary condition

In the flowfield adjacent to the surface, gas molecules
have more chance to collide with the wall surface, so that
an appropriate gas/surface interaction model is impor-
tant. Traditionally, the simple diffuse reflection model,
developed by Maxwell in 1879 [36], which has been
proven to be sufficiently accurate for simulating non-
equilibrium flows with a broad range of Knudsen num-
bers. Therefore, the Maxwellian diffuse reflection model
will be used here and its implementation in LB models
has been reported in Ref.[37]. The numerical implemen-
tation of the Maxwellian diffuse reflection model in LB
simulation has also been discussed in Refs.[33, 38]. In this
work, the Version 1 of boundary conditions in Ref.[33]
will be employed.
For convenience, we assume

S ≈ wα{1+ ξα ·u+
1

2
[(ξα ·u)2 −u2 +(T − 1)(ξ2α −D)]},

(26)
so that feq

α is equal to ρS. As we conduct the discretiza-
tion along a Cartesian coordinate system (see Fig.2), the
treatment of boundary can be described as

f0
α,k = ρW,kS(TW,k,uW,k) ξα · n > 0, (27)

ghost nodes

boundary nodes

wall nodes

k

bulk nodes

1

1/2

0

FIG. 2. Schematic illustration of wall boundary treatment.

ρW,k =

∑
(ξα·n)<0

|ξα · n|f1
α,k∑

(ξα·n)>0

|ξα · n|S(TW,k,uW,k)
, (28)

where the subscript W denotes the computational nodes
at the wall, ρW,k denotes the density on the wall nodes
k (see Fig.2), TW,k the temperature, uW,k, the velocity,
n, the unity normal vector to the wall. In this version
of boundary condition, the distribution functions in the
ghost nodes are assumed to be identical to those on the
corresponding wall nodes.

IV. NUMERICAL RESULTS AND DISCUSSION

Significant efforts have been devoted to develop or ex-
amine the capability of LB models for finite Knudsen
number flows e.g., [8, 14–21, 23–26, 42, 43]. Some works
concentrated on proposing appropriate gas molecule/wall
interaction models to capture the slip velocity, such as the
bounce-back and specular reflection schemes or a combi-
nation of them [17, 39–41]. Further attention was at-
tracted on modifications to relaxation dynamics[19, 20,
42, 44]. An interesting modification is the so-called “ef-
fective relaxation time” approach where the relaxation
time is correlated to the effective mean free path which
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takes account of the effect of gas molecule/surface col-
lisions. It can successfully extend the capability of the
standard LB models for simulating non-equilibrium flows
with a broad range of Knudsen numbers [19, 20]. Ref.[21]
has revealed that LB models can be derived systemati-
cally from the BGK equation, so that LB models can also
be considered as an approximation of the BGK equation
which is beyond the Navier Stokes hydrodynamics. In-
deed the model equation of LB method is essentially a
truncated BGK equation.With the first-order expansion
on the equilibrium distribution function, it is the same as
the linearized BGK equation. Therefore, Eq.(5) with the
first order Hermite expansion is already sufficiently accu-
rate for a broad range of rarefied problems[27]. Higher-
order expansion terms should be mainly responsible for
finite Mach number effects which turn out to be an-
other important issue for LB models. Meanwhile, the
discrete velocity set is of great importance for captur-
ing non-equilibrium effects. For a standing shear wave
problem where the wall effect does not exist, we have
shown that the high-order LB models with moderate or-
der quadratures (e.g., D2Q16) can provide good results.
While the gas molecule/surface interactions become im-
portant, the situation becomes more complicated because
gas molecular/wall collisions play a dominant role. Be-
cause of the Knudsen layer which is the flowfield adjacent
to the wall surface, the momentum and energy cannot be
transferred effectively from the wall to the bulk flow and
vice versa. The discontinuity of macroscopic quantities
will occur, i.e. the velocity slip and temperature jump,
which will make non-equilibrium gas flow simulation a
challenging task. Although Kim et al.([24]) have exam-
ined high-order LB models for Couette and Poiseuille
flows, we will further clarify the relation between Gauss-
Hermite quadratures and LB model accuracy in captur-
ing non-equilibrium effects in rarefied flows especially in
the Knudsen layer.

A. Kramer’s problem

The classic Kramers’ problem is often used to assess
model capability in capturing the flow characteristics in
the Knudsen layer. This problem consists of finding the
molecular distribution function of a gas which fills the
half-space (y > 0) bounded by a plate at y = 0 (see
Fig.3). A constant shear rate along the plate is applied
at y → ∞. In the simulations, the wall at y = 0 is
fixed and a constant shear rate is applied at y = 200λ.
The Maxwellian diffuse reflection boundary condition is
employed for the fixed wall.
Fig.4 compares the LB simulation results with the data

given by Loyalka et al. [45]. Similar to the standing-shear
wave problem [27], discrete velocity sets are proved to
be of importance to accurately capture non-equilibrium
effects in the Knudsen layer. When a gas becomes suffi-
ciently rarefied, the collisions of high speed gas molecules
with the wall surface will be mainly responsible for mo-

FIG. 3. Schematic diagram showing the microscopic slip
(uslip) and macroscopic slip (us) for the Kramers’ problem.
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FIG. 4. The velocity profile of Kramers’ problem with the
diffuse reflection boundary condition. The symbols are the
data from Loyalka et al.[45]. Here, the velocity is normalized
by the reference velocity uo = −σxyλ/µ. The space quantity
is normalized by the mean free path. The data in Ref.[45] were

presented with the mean free path difined by µ
√
2RT/p. They

are converted to be consistent with the present definition.
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FIG. 5. The slip velocities of planar Couette flow, comparing
our numerical simulation with the analytic solution given by
Ansumali et al. [23], where both numerical and analytical
solutions are based on the D2Q16 model.

mentum and energy transfer as the molecules with low
speed molecules will less frequently collide with the wall
surface. Therefore, higher order discrete velocity sets can
help to improve model accuracy since the effects of high
speed gas molecules can be better represented.
It is also interesting to note that the LB models with

even-order Gauss-Hermite quadratures (D2Q16, D2Q36
and D2Q64) provide results in excellent agreement with
the data reported in the Ref. [45]. By contrast, the LB
models with odd-order quadratures, i.e. D2Q9, D2Q25,
D2Q49 models, perform significantly worse than those
with even-order quadratures despite the higher-order
models still provide better results. This interesting ob-
servation, i.e. the discrete velocity sets from the even or-
der Hermite polynomials show much better performance
than those from odd order ones, may attribute to the
fact that the odd-order quadratures contain a zero dis-
crete velocity. A physical explanation is that the zero
discrete velocity component in the discrete velocity sets
from odd polynomials, which represents a significant por-
tion of gas molecules, do not contribute to momentum
and energy transfer through collisions with the wall sur-
face. Therefore, gas molecule/surface interactions are
under-estimated which leads to over-prediction of slip ve-
locity, see Fig.4. As a result, we may conclude that the
discrete velocity set from odd polynomials do not appro-
priately represent gas molecular speeds. This observation
will be further confirmed in the following simulations.

B. Couette flow

With a simple geometry configuration, the Couette
flow represents many realistic shear dominant applica-
tions, e.g. hard-disc driver reader heads, micro tur-
bines and gas bearings. The Maxwellian diffuse reflec-
tion boundary condition is again employed to describe
gas/surface interactions. The upper and lower plates are
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FIG. 6. Nondimensional velocity profiles for planar Couette
flows where the velocity is normalized by the velocity differ-
ence between the two plates. Comparison of the odd-order
LB models with the linearized BGK solution.

set to be moving oppositely with the same velocity mag-
nitude.

In Fig. 5, the slip velocities from our numerical sim-
ulations are compared with the analytic solutions given
by Ansumali et al.[23] for the D2Q16 model, where ex-
cellent agreement can be clearly observed. Similar to the
Kramer’s problem, higher-order LB models provide bet-
ter simulation results when compared with the solution
of the linearized BGK equation and the DSMC data (see,
Figs. 6-7).

The D2Q16 model performs well for non-equilibrium
flows with the Knudsen number up to 0.5, while the 8th-
order D2Q64 model give excellent results even at Kn=1.0.
The reason is that the higher speed gas molecules are
better represented by higher-order discrete velocities. In
particular, we can see that the curvature of velocity pro-
file close to the wall region is captured well, which is
a typical non-equilibrium phenomenon in the Knudsen
layer. The Navier Stokes equation will predict a linear
velocity profile across the two plates. Again, we find
that the LB models with the discrete velocity sets from
the odd order Hermite polynomials give worse results.
Fig. 8 clearly show that the 4th-order D2Q16 LB model
is even significantly better than the 7th-order D2Q49
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FIG. 7. Nondimensional velocity profiles for planar Couette
flows where the velocity is normalized by the velocity differ-
ence between the two plates. Comparison of the even-order
LB models with the linearized BGK solution.

model. Similarly, Kim et al. [24] also reported that
the D2Q16 model can perform better than the D2Q25
model. When the Knudsen number increases via re-
ducing density or the system characteristic length, high
speed gas molecules will more frequently collide with the
wall surface to effectively transfer momentum and energy
between the flowfield and the wall. Such mechanisms
are less reflected in the lower-order LB models and the
LB models with odd-order quadratures (the zero discrete
velocities do not participate the collisions). Therefore,

these models over-estimate the slip velocity, i.e. the in-
fluence of wall is under estimated, see Figs. 7-8.

C. Force-driven Poiseuille flow

Finally, we will assess the models for fully-developed
force-driven Poiseuille flows where the two parallel plates
are located at y = 0 and y = l. The applied body force
in the streamwise direction is small, so that the flow can
be considered as incompressible.

When compared with the linearized BGK and DSMC
data, see Figs. 9-10, we can again confirm that the higher-
order LB models predict non-equilibrium Poiseuille flows
better while the even order models perform better than
the odd-order ones. However, the presence of body force
increases the complexity of the rarefaction effect. Fig. 9
shows that the D2Q64 model significantly over estimates
the slip velocity at the wall at the Knudsen number as low
as 0.8. Meanwhile, the odd-order models are even worse,
which significantly departure from the direct solution of
the linearized BGK equation at the Knudsen number as
low as 0.3, see Fig. 10. Fig. 11 confirms the importance of
choosing even-order Gauss-Hermite quadratures for LB
simulation of non-equilibrium gas flows.

Kim et al.[24] found that the D2Q9 and D2Q25 can
qualitatively capture the Knudsen minimum while the
even-order models such as D2Q16 and D2Q36 fail. We
can confirm their observation as shown in Fig. 12 where
even D2Q64 cannot predict the Knudsen minimum.
However, we also notice that the even-order models,
quantitatively, provide more accurate results. To test
whether higher-order even-order models can capture the
Knudsen minimum, we have tested extreme high-order
quadratures: D2Q4761 and D2Q4624 (see Fig. 12). Note:
we are not suggesting to use such high-order models; this
test is just to show that the even-order model (D2Q4624)
cannot only capture the Knudsen minimum but also
achieve more accurate results than the similar-order odd-
order one (D2Q4761); indeed, such high-order model will
be computationally costly(the D2Q4761 model takes 748
times longer than the D2Q9 for one computing time step
in this case), which is not ideal for practical computa-
tions. It indicates that, with increasing order, the even
order models are actually approaching the correct solu-
tion quicker than the odd-order ones. The quantitatively
better results of even orders (e.g., D2Q36, D2Q64) are
due to better representation of gas molecular speeds, in
comparison with the corresponding odd-order models.

V. CONCLUDING REMARKS

The LB models with high order Gauss-Hermite
quadratures are able to capture non-equilibrium phenom-
ena in gas flows. For the Guass-Hermite quadratures, the
LB models with higher-order quadratures perform better
while the even-order LB models may be preferred as the
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high-speed gas molecules are more appropriately repre-
sented by the discrete velocities which is important to
momentum and energy transfer between the wall surface
and the gas. However, as shown in Ref.[48], the discrete
velocity sets obtained via a different route can perform
quite differently, which indicates that more efforts are
required to fully understand optimal quadratures for de-
scribing non-equilibrium effects.
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FIG. 8. Nondimensional velocity profiles for planar Couette flows where the velocity is normalized by the velocity difference
between the two plates. Comparison of the LB models with the DSMC data reported in Ref.[24], where K =

√
π
2
Kn.
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FIG. 9. Nondimensional velocity profiles for the force-driven Poiseuille flows where the velocity is normalized by the average
velocity. Comparison of the even-order LB models with the linearized BGK solution.
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FIG. 10. Nondimensional velocity profiles for the force-driven Poiseuille flows where the velocity is normalized by the average
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FIG. 11. Nondimensional velocity profiles for the force-driven Poiseuille flows where the velocity is normalized by the average
velocity. Comparison of the LB models with the DSMC data reported in Ref.[24] where K =
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FIG. 12. The comparison study of different order LB models for the Knudsen minimum. The normalized mass flux Q is
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0
u dy where uc is the centerline velocity of the Navier-Stokes equation with no-slip boundary condition. The circles

are the data from Aoki et al.[47]. The original data are presented with the Knudsen number definition of(µ
√
8RT )/(

√
πpl).

They are converted to be consistent with the definition of K =
√

π
2
Kn.


