
Strathprints Institutional Repository

Apneseth, Claus Christian and Day, Alexander and Clelland, David (2010) Hydrodynamics of an
oscillating articulated eel-like structure. Ocean Engineering, 37 (13). pp. 1221-1232. ISSN 0029-
8018

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9031352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


XML-IS

Our reference: OE 1820 P-authorquery-v7

AUTHOR QUERY FORM

Journal: OE

Please e-mail or fax your responses and any corrections to:

Article Number: 1820

E-mail: corrections.essd@elsevier.macipd.com

Fax: +44 1392 285878

Dear Author,

Any queries or remarks that have arisen during the processing of your manuscript are listed below
and highlighted by flags in the proof. Please check your proof carefully and mark all corrections at
the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile
them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Articles in Special Issues: Please ensure that the words ‘this issue’ are added (in the list and text) to any
references to other articles in this Special Issue

Uncited references: References that occur in the reference list but not in the text – please position each reference in the
text or delete it from the list.

Missing references: References listed below were noted in the text but are missing from the reference list – please make
the list complete or remove the references from the text.

Location in
article

Query/remark
Please insert your reply or correction at the corresponding line in the proof

Q1 A slight change has been made to the sentence ‘‘this study examinesysegments oscillating’’. Please check
the same for correctness.

Electronic file usage
Sometimes we are unable to process the electronic file of your article and/or artwork. If this is the
case, we have proceeded by:

Scanning (parts of) your article Rekeying (parts of) your article Scanning the artwork

Thank you for your assistance.



Hydrodynamics of an oscillating articulated eel-like structure

C.C. Apneseth a, A.H. Day b,n, D. Clelland b

a Miko Marine AS, Ruseløkkveien 26, PO Box 1534 – Vika, N-0117 Oslo, Norway
b Department of Naval Architecture and Marine Engineering, University of Strathclyde, Glasgow, Scotland, UK

a r t i c l e i n f o

Article history:

Received 10 November 2009

Accepted 1 June 2010

Keywords:

Hydrodynamics

Fish locomotion

Swimming

Model testing

a b s t r a c t

This study examines the hydrodynamic performance of a highly simplified eel-like structure consisting

of three articulated segments with the two aft segments oscillatiQ1 ng. A physical model was built and

tested to determine the forces developed with the model stationary, to find the self-propulsion speed,

and to explore the effect on hydrodynamic performance of different swimming patterns. It was found

that hydrodynamic performance increases with increasing oscillation frequency; the highest forces

when stationary, and the highest self-propulsion speeds were produced by swimming patterns in which

the amplitude in the aft segment is larger than that in the forward segment, and in which the motion of

the aft segment lags the forward segment.

A simple semi-empirical model based on Morison’s equation was implemented to predict the

hydrodynamic forces. This was shown to predict mean thrust well in cases in which the aft segment

oscillates in phase with the forward segment, but less reliably when the phase difference between the

segments increases. Force time histories are generally not well-predicted using this approach.

Nonetheless, self-propulsion speeds are predicted within 30% in all cases examined.

& 2010 Published by Elsevier Ltd.

1. Introduction

1.1. Background

The hydrodynamics of fish propulsion has been a subject of
theoretical interest for many years. More than eighty years ago,
Breder (1926) made an early attempt at the classification of methods
of aquatic propulsion. Gawn (1950) described the relevance of fish
propulsion to naval architects. One of the key studies of these
phenomena was made by Lighthill (1960), whose work apparently
started in investigating the well-known idea known as ‘‘Gray’s
Paradox’’, (Gray, 1936), which suggested that dolphins swim many
times faster than their muscle mass should allow them.

In recent years, interest in this area has expanded, as the
possibilities for practical application have grown, particularly
with the development of low-cost robotic technologies. Notable
contributions have been made by Videler (1993), Azuma (2006),
and the work of the MIT team led by Triantafyllou who have
developed the ‘‘Robotuna’’ over a fifteen year period (see for
example Triantafyllou et al. 1996, 2002. A number of recent
studies have addressed the issues of fish propulsion specifically in
the context of the challenges of autonomous fish-like vehicles,
and as such, a significant body of work has concentrated on the
control algorithms required for these vehicles, such as the studies

of McIsaac and Ostrowski (2003). Particular advantages perceived
include the potential for improved acceleration and/or manoeuvr-
ability and the ability to operate in environments in which
conventional propellers may become entangled.

Many of the robotic fish studied have attempted to replicate
fish kinematics in a realistic or semi-realistic manner and have
thus utilized relatively large numbers of segments distributed
along the ‘‘spine’’ of the vehicle in order to generate the realistic
motion. These can provide valuable insight into the hydrody-
namics of fish propulsion, but may prove difficult to implement
on larger practical devices or vehicles.

1.2. Aims and objectives of current study

In contrast, the aim of the current study was to examine the
hydrodynamics of highly simplified eel-like structures consisting
of a small number of relatively large segments and then to explore
the feasibility of predicting the hydrodynamic performance of
these structures using simple models based on well-known semi-
empirical formulations such as the ‘‘Morison Equation’’ .

The first objective of the study was to design and build a
simplified physical model of such a structure and test it in a towing
tank. The model was built in a modular fashion to allow segments
to be added in sequence, to allow the hydrodynamics to be
explored for different numbers of segments. In the current study,
physical models with two and three segments are described.

In parallel, the second objective was to develop a simplified
approach to the prediction of hydrodynamic forces, based on a
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Morison-like approach, to investigate the possibility of developing
a rapid semi-empirical method which could be used to predict
global parameters of the structure at the preliminary design stage.
The validity of the approach developed would be explored by
attempting to predict the forces generated by the model at zero
speed and the self-propulsion speed of the swimming model, and
by comparing with the data determined from the tank tests.

2. Kinematics of a simplified articulated eel-like structure

Before developing a physical model of a simplified eel-like
structure, it is important to understand the kinematics of the
simplified model eel and how these relate to the kinematics of
real eels. Fish locomotion was classified by Breder (1926) as being
ostraciiform, carangiform or anguilliform depending upon how
much of a ‘‘wavelength’’ of motion was exhibited in the fish body.
Ostraciiform locomotion is used by fish with relatively inflexible
bodies, which use their caudal (tail) fin for propulsion. Carangi-
form locomotion involves the posterior part of the fish body
flexing to create undulations, which can be viewed as being of
approximately one half a wavelength; this is the mode used by
faster swimming fish such as tuna, mackerel and marlin. Eels on
the other hand are flexible throughout their length and flex with
undulations of more than half a wavelength; this is described as
anguilliform locomotion (see Fig. 1). Subsequent researchers have
indicated that this classification is an over-simplification of the
variation between real fish, but the terms are still widely used.

The kinematics of a robotic eel depends upon a number of
variables, including the number of segments, the length of the
segments, the motion of the head of the eel relative to the water,
the amplitude and frequency of oscillation in the various joints,
and the phase angle between oscillations in the joints.

In nature, an eel swimming in a straight line at low to
moderate speeds will have minimal head movement in the lateral
plane, and will swim with a backwards travelling wave, which can
reasonably be idealized as a sinusoid of linearly increasing
amplitude toward the tail (Gillis, 1998). Since the current study

dealt exclusively with motion in the horizontal plane, it was
considered reasonable to fix the head of the model eel to the
towing carriage in the test tank.

The discretisation of the simplified structure is illustrated in
Fig. 2 showing four moving segments. The continuous line
represents the idealized motion at an arbitrary point in time. As
the amplitude of oscillation increases towards the tail, the angular
displacement also increases. With the moderate number of
sections adopted here, it could be argued that an unequal
distribution of length of the sections should be adopted to allow
the most accurate fit to such a curve; however in the current
study it was decided that the lengths of the moving sections
would be kept uniform in the interests of standardization.

The motion of the simplified eel can then be described in terms
of two variables for each moving segment: the amplitude of
motion and the phase of the motion relative to the segment
immediately in front of it. Two further global variables are
required: the frequency of oscillation and the forward speed. In
principle the frequency of oscillation could be allowed to vary
between segments; however this would lead to time-varying
motion patterns which are not observed in nature for steady
propulsion. A more subtle point relates to the form of the
oscillation: it is not necessarily obvious that the motion of each
segment should be exactly sinusoidal in order for the instanta-
neous profile to follow the idealized form described. However, for
the current study, the motions were constrained to be sinusoidal.

The kinematics of a segmented eel can be considered in a
straightforward manner. The geometry of the system is shown in
Fig. 3. The origin of the co-ordinate system is located at the
leading edge of the first moving segment. The eel is swimming
from right to left in this system.

The location of the end points of the segments in the global co-
ordinate system (X,Y) is given as

Xi ¼ Xi�1þLi�1cosyi�1 with X1 ¼ 0

Yi ¼ Yi�1þLi�1sinyi�1 with Y1 ¼ 0
ð1Þ

Hence the velocity of the end points is

_X i ¼
_X i�1�

_yi�1Li�1sinyi�1 with _X 1 ¼U
_Y i ¼

_Y i�1þ
_yi�1Li�1cosyi�1 with _Y 1 ¼ 0

ð2Þ

where U is the speed of the eel (positive left to right); the
acceleration of the end points is

€X i ¼
€X i�1�

_y
2

i�1Li�1cosyi�1�
€yi�1Li�1sinyi�1 with €X 1 ¼ 0

€Y i ¼
€Y i�1�

_y
2

i�1Li�1sinyi�1þ
€yi�1Li�1cosyi�1 with €Y 1 ¼ 0

ð3Þ

Velocities and acceleration at intermediate points in a segment
may be found from appropriately weighted sums of the values at
the end points.

We now consider the velocity and acceleration distributions
for a three segment (two moving) eel. In the very simplest case,
the eel is not moving forwards and two segments move in phase
with each other and with the same amplitude. If the amplitude of
the angular displacement is 30 degrees, this case can be
designated as 30-30-0, indicating the amplitude of angular
motion of each segment and the relative phase lag of segment 2

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

112

113

114

115

116

117

118

119

120

Fig. 1. Anguilliform locomotion (left) and Carangiform locomotion (right) (from

Gray, 1936) Fig. 2. Discretisation of a simplified articulated eel.
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with respect to segment 1. In this case the motion is extremely
simple; the velocity in this case is always perpendicular to the
segment (except when zero); however the acceleration is only
perpendicular to the segment when the velocity is zero, i.e. when
the displacement is maximum.

A swimming pattern closer to the real eel has a backwards
travelling wave with amplitude increasing towards the tail. In
order to achieve this, the amplitude of segment 2 must be greater
than that of segment 1 and the phase of segment 2 must lag
segment 1. Fig. 4 shows the 30-40-60 case (using the same
notation) with zero forward speed. In this scenario, neither the
acceleration nor velocity is normal to the segments, except for
the velocity on the forward segment. The final plot of Fig. 4 shows
the instantaneous positions of the second segment in this case,
and the path followed by the tip of the tail. This is no longer a
circular arc, instead it forms a curved figure-of-eight.

The two previous cases both illustrate velocity and accelera-
tion with the mean forward velocity equal to zero; this is
equivalent to a ‘‘bollard-pull’’ condition in naval architecture
terms and forms the initial condition when the structure sets off
from rest. With a mean forward speed, the velocity distribution is
more complex, as illustrated in Fig. 5, which shows the velocity
for a forward speed of 0.1 m/s.

3. A simple hydrodynamic model of an oscillating articulated
structure

A wide range of approaches have been attempted for
modelling of fish-like locomotion. At the simplest end, some
authors have done calculations based simply on cross-flow drag
coefficients (e.g. McIsaac and Ostrowski, 2003). Such an approach
entirely ignores inertial forces. Given that the kinematics have
been shown to lead to reasonably complex acceleration patterns,
it seems unlikely that a method which entirely neglects forces
related to fluid acceleration will produce reliable results.

A range of potential-flow methods have been developed based
on solution of analytical equations. Well-known examples include
the ‘‘elongated-body theory’’ developed by Lighthill (1960) and
the ‘‘large-amplitude elongated-body theory’’ (Lighthill, 1971).
There are two key problems in applying these types of slender-
body approach to the articulated eel. Firstly, in some cases, the
approaches are linearized, in the sense that the amplitudes of
oscillation are considered small with respect to the length, thus
the slopes of the segments relative to the mean direction of
motion are also assumed to be small. In the cases examined here,
the segment slopes are as high as 40 degrees, which cannot
reasonably be considered small. Secondly, these types of approach
are generally designed to reflect the kinematics of real fish; as
such, they are intended to model smoothly curving bodies, in
which the slope varies in a continuous fashion along the length, at
any given moment in time. In contrast, the articulated eel exhibits

constant slope along each segment and discontinuities in slope at
each hinge. These methods could arguably be applied in an
approximate fashion to an articulated eel with many segments, in
which the discontinuities at each hinge would be reasonably
small, by essentially curve-fitting the centreline of the segments
in some suitable manner. However, with a small number of
segments, as adopted here, the articulated eel exhibits substantial
discontinuities in slope at each hinge and thus these methods
would not be expected to produce reliable results.

In recent years a number of computational solutions have also
been implemented. These have been based on both potential-flow
computations, using approaches such as the vortex-lattice
method (e.g. Singh and Pedley, 2008) and CFD-based computa-
tions (e.g. Carling et al., 1998). Computational approaches are
clearly valuable for analysis of mature designs; however CFD
methods in particular are less well-suited to preliminary design
studies due to the large human and computer resources required
to develop a mesh and solve the flow field.

One of the aims of the current study was to investigate the extent
to which the performance of a simplified oscillating articulated
structure could be modelled using a simple semi-empirical
engineering approach, rather than using a complex full-field flow
solver. If such an approach gave reliable predictions it could
potentially be extremely valuable in the preliminary design of a
real structure and the optimization of its swimming pattern and
control. It was felt unlikely from the outset that it would be possible
to generate such a model without having some experimental data
which would allow the calculation of suitable flow force coefficients;
however, if data from a small set of tests could be used in
conjunction with a simple model to predict performance over a wide
range of geometric variations and/or swimming patterns, there
would be potential for some significant advantages to the designer.

The Morison equation (Morison et al., 1950) is widely used for
quick and simple calculations in offshore engineering, such as
those in preliminary design. Originally developed for predicting
wave load on a fixed vertical pile, it has since been used to predict
forces on an enormous range of structures oriented at different
angles to the flow, moving in still water, or moving in a flow field.
In the current problem, the Morison equation can be easily applied
to one segment of the articulated eel by integration of the velocity
and acceleration, normal to the segment in the plane of the motion.
Numerical integration is convenient for handling discontinuities,
for example in mass distributions, and is adopted here.

Each segment is divided into M elements; the force on each
element can then be written as

fX,i,j ¼
pD2

i

8
Ca,i,jr

Li

M
€X
?

i,jþDiCd,i,j:r
Li

M
_X
?

i,j V?i,j

���
���þmi,j

€X i,j ð4Þ

fY ,i,j ¼
pD2

i

8
Ca,i,jr

Li

M
€Y
?

i,jþDiCd,i,j:r
Li

M
_Y
?

i,j V?i,j

���
���þmi,j

€Y i,j ð5Þ

where the subscript i, j indicates the value appropriate to the jth
element of the ith segment.
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Fig. 3. Geometry of an articulated eel.
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Here V?i,j is the component of velocity normal to the element;

_X
?

i,j,
_Y
?

i,j,
€X
?

i,j and €Y
?

i,j are the components of the normal velocity and

acceleration parallel to the X and Y axes, respectively. The

contributions of the tangential velocities and accelerations to

the hydrodynamic forces are considered negligible. The first term

in each equation is the resolved Morison inertia force; Ca,i,j is the
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Fig. 4. Velocity, acceleration, and path of segment 2 for 30-40-60 case with zero forward speed.
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section added mass coefficient for the jth element of the ith
segment (non-dimensionalised with respect to a circular cylinder
of diameter equal to the vertical height of the eel cross-section
Di ). The second term is the resolved Morison drag force; Cd,i,j is
the corresponding section drag coefficient. The third term is the
force related to solid inertia. The instantaneous thrust may be
found as the sum overall elements of all segments of the
longitudinal forces

TðtÞ ¼
XN

i ¼ 1

XM

j ¼ 1

fX,i,j ð6Þ

and the mean thrust can be obtained by integrating this over a
whole cycle of motion. Clearly this approach makes some
substantial approximations about the flow field and the mass
distribution of the eel.

Some sample calculations were carried out using this highly
simplified model in order to examine the predictions of forward
and transverse forces. These were based on assumed values of
hydrodynamic force coefficients.

Fig. 6 shows the time histories of the total longitudinal force
based on an assumption that the two moving segments have a
mass of 2 kg, length of 200 mm, and depth of 200 mm and that
the eel is swimming in the 30-40-60 pattern at zero forward
speed. In each case the calculations are carried out for oscillations
in air, assuming that hydrodynamic forces are negligible, and in
water, for which it was assumed that Ca¼1, Cd¼1.2. Furthermore,
in order to explore the sensitivity of the result to the distribution
of mass, velocity and acceleration properties, the calculations
were also carried out using a ‘‘lumped mass’’ approach in which
velocities, accelerations, and forces are calculated only each
segment midpoint. It can be seen that in this case there is no
great difference between the two approaches to discretisation in

the prediction of the longitudinal force. It can also be seen that the
model does predict a net thrust—i.e. a mean force in the negative
X-direction. Fig. 7 shows the breakdown of this force into the
components corresponding to the three terms of Eq. (4).

4. Design and implementation of model experiment

4.1. Model design

A working model of the simplified eel was built in order to
explore these ideas further. The engineering of the model eel is by
no means straightforward and the final version was quite
different in a number of respects from the original versions. It
was decided early in the study to concentrate on a three segment
model, with the forward segment attached to the towing carriage
and two moveable segments behind it.

One of the main challenges was the drive system; in the early
versions, the segments were driven through a pair of wire drives,
with the motors mounted on the carriage and the wires passing
through the sting into the eel; however after a lot of effort this
was abandoned as it proved impossible to achieve the desired
degree of control of the motions. The major problem in this regard
proved to be the elasticity of the wires. These had to be relatively
flexible to work reliably with the relatively small sheaves in the
numerous pulleys; however this requirement then precluded the
use of wire, which was stiff in tension. Given the length of wire
required, it was calculated that movement of one typical
oscillation amplitude from the centre to one side could be
achieved by a 2% extension in the wire with the motor stationary.
Various attempts were made to address this problem by
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Fig. 5. Velocity for 30-40-60 case with forward speed.
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pre-tensioning the wire, but these solutions led to more
challenges as the increased tension induced more frictional
loading; eventually this idea was abandoned.

The version tested used a pair of shaft drives passing through
the sting connected to a set of toothed timing belts to transmit the
motion to the moving segments. The sting was mounted on a
substantial plate above the water, which provided a rigid base for
the motors. The motors then drove the shaft via a timing belt. The
toothed wheels on the motor and shaft were markedly different in
size in order to behave like a gearbox. The entire system was then
mounted on a six-component load cell.

The segments were constructed from aluminium with rectan-
gular cross-sections. The aft-most segment was tapered to a point
in both vertical and transverse directions. A 50 mm high fin ran
along the centre plane of the upper and lower surfaces.
Unfortunately, due to the many design changes through the
study, in the final version it did not prove possible to retain solid
sides throughout the main body as these impeded the timing belts
with larger motions. Consequently some openings were left in the
main body. However, a small set of tests carried out with
the openings sealed showed that the effect of flow through the
openings reduced the mean thrust by less than 2%. The sting was
also constructed from aluminium with triangular fairings fore and
aft. A photograph and a schematic drawing of the eel and sting are
shown in Fig. 8.

4.2. Instrumentation and control

The motors were controlled using a closed-loop position
control system utilising tachometers on the motors as well as
potentiometers mounted on the motor shaft. The command
signals for the motor drives were generated using a D/A converter.
The measured data, sampled on a 12-bit A/D converter, consisted
of the potentiometer signals indicating the instantaneous posi-
tions of the eel segments, the speed of the carriage and the forces
and moments. The three force/moment components in the
horizontal plane were also recorded.

It was originally intended to estimate the input power from
the electrical demand on the motors. This could then be used to
calculate the propulsive efficiency using the measured global
forces and velocities. Unfortunately, the measurements were
dominated by effects related to the relatively low efficiency of the
transmission system, and reliable results could not be obtained

within the constraints of the study. As a consequence, these
measurements were discarded.

4.3. Signal conditioning and correction

One weakness of the design was the siting of the potenti-
ometers on the motor shaft. This was driven by budget
constraints; however the corollary was that it was difficult to
verify that dynamic effects due to response of the shafts and
timing belt system did not lead to dynamic errors in angular
measurement. In order to quantify these effects, a complete set of
tests were carried out in air. From a knowledge of the measured
force in X and Y directions and an assumption that the first two
terms in Eq. (4) are zero in air, it is possible to infer a phase
correction which minimizes the error between the computed and
measured force signals in X and Y directions for each test. This
correction was found to increase with increasing frequency and
with decreasing amplitude. Typical value was around 1 degree;
the largest value found was 3.6 degrees. The data from these tests
was also used to identify the time-history of force resulting from
the solid inertia of the eel. This time history could then be
subtracted from the corresponding time-history of total measured
force found from the tests in water in order to isolate the
hydrodynamic forces.

Due to the complex motion of the eel itself, the eel drive
system, and the motion of the carriage, there were a variety of
sources of mechanical noise in the system, as well as some well-
defined structural vibration frequencies. Fortunately, Fourier
analysis showed that the majority of the noise occurred at
frequencies around an order of magnitude above the oscillation
frequencies of the eel. In order to remove these noise sources from
the signal, an approach was adopted employing Fourier recon-
struction of the signals based on the harmonics of the oscillation
frequency. This was utilized in examining the time histories of the
force signal; however it should be pointed out that since the noise
has a zero mean, the time-averaged thrust was taken from an
integer number of oscillation-frequency cycles of the raw data.
The complete data processing procedure is illustrated in Fig. 9.

Since the sting is quite substantial and the load cell used to
measure the towing force is located above the sting, it is
important to correct the measured force for the drag of the sting.
This was achieved in an approximate manner by building an exact
replica of the sting and towing over a range of speeds. A
polynomial fit was then applied to the data in order to allow
the sting resistance to be carried out at any speed within the
range. It was found that the resistance of the sting was rather
higher than the frictional resistance (as calculated from the ITTC
1957 friction line with a form factor of unity), suggesting that
there is some wave-making and viscous pressure resistance as
well as friction.

This approach is imperfect for two reasons. Firstly it ignores
hydrodynamic interaction between the sting and eel; secondly it
neglects the effect of the wetted area of the end of the sting (and
the corresponding area on the eel covered by the sting) as well as
any resistance related to flow around the end of the sting. It is
therefore likely that the sting resistance is over-estimated.
Nonetheless, it was not possible to improve on this approach
within the constraints of the project.

5. Model testing program and results

Three main series of tests were carried out with the model in
the towing tank at the Kelvin Hydrodynamics Laboratory
(76�4.6�2.5 m3). In the first set of tests the two moving
segments were controlled to move in unison – i.e. with the same
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oscillation amplitude and with zero phase difference. In this case
the two segments act as if they are rigidly joined. These tests were
conducted with zero forward speed. This type of test was
described as a ‘‘single flapper’’. The second set of tests retained
the zero forward speed condition, but adopted more realistic
swimming patterns, with larger amplitude in the aft segment and
a phase difference between the two motions. This was described
as a ‘‘double-flapper’’ test. The third and final set of tests included
the effect of forward speed. These tests were carried out over a
range of speeds in order to determine the self-propulsion point.

It should be pointed out that these tests are not directly
comparable to the conventional ship resistance tests familiar to
naval architects. There is a reasonably well-defined distinction
between resistance of a ship (which can be determined by a
traditional bare-hull resistance test) and the propulsion generated
by the propeller, which can be found by a propeller test. The
interaction between the two, whilst of importance in ship design,
is relatively small. In the case of a structure swimming with
forward speed, such as the simplified eel, the two are completely
inseparable and there is no significant meaning to the resistance
or the propulsive thrust. All that can meaningfully be considered
is the difference of the two. At zero forward speed, of course, the
mean thrust may be found. Nonetheless, it is sometimes useful to
consider a reference value of the resistance for the sake of
comparison; in this case, some researchers have considered the
condition in which the swimming structure is aligned with all
sections parallel to the flow. This is sometimes referred to as the
‘‘stretched straight’’ condition.

5.1. Single-flapper zero speed tests

A series of eleven tests were carried out as ‘‘single flapper’’
tests. These were all based on a 30 degree oscillation with varying
frequency. The goal of these tests was to develop an under-
standing of the performance of the model and the testing

methodology in the simplest realistic flow case, to examine how
simple tests such as these could be used to derive the added mass
and drag coefficients required for the simple Morison-based
model, and to examine how well the simplified model can predict
the various parameters for interest. The test is effectively
equivalent to a ‘‘bollard-pull’’ test and is of practical interest in
that the forces generated at rest will influence initial acceleration.

In order to determine the number of oscillation cycles over
which the eel was run, the mean thrust was calculated on a cycle-
by-cycle basis over a large number of runs and the convergence
examined. It was found that there was some scatter in the data;
however the mean value appears well-defined. The scatter relates
to many factors, including the motion control, the hydrodynamics
and the measurement system. In some of the very low frequency
tests, for which the mean thrust is extremely small no such mean
value is apparent and these results were discarded. Based on this
study, a standard value of 30 oscillations was chosen; however in
every case the convergence was examined and checked to ensure
that the results were well-behaved.

The results of the tests are shown in Fig. 10. Results are broadly
as might be expected; as frequency increases, with constant
amplitude of oscillation, the cross-flow velocity increases linearly
and the cross-flow acceleration increases quadratically.
Consideration of Eq. (4)thus suggests that it is reasonable to
expect that the mean force will increase approximately
quadratically with frequency.

5.2. Modelling of ‘‘single-flapper’’ case zero speed tests using the

Morison-based approach

The data shown in Fig. 10 can be used in conjunction with
Eq. (4) to derive a set of force coefficients for this swimming case,
through a standard process of linear least-squares fitting of the
data. All points were equally weighted. An alternative was tried in
which higher weighting was given to points with a larger absolute
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value, but it was found to increase the root-mean-square error in
the time series.

In a simple application of Morison’s equation, such as the
prediction of force around a two-dimensional cylinder in an
oscillating flow, the force coefficients are derived from measurements
of force normal to the structure. In the current study, the relatively
complex motion of the structure results in a net hydrodynamic force
which varies in magnitude and direction through the cycle of motion.
This force is decomposed into longitudinal and transverse compo-
nents, both for the purposes of measurement and for the analysis of
propulsion. In this simplified model, both components of force are
assumed to result from the same mechanisms; hence it is reasonable
to assume that both longitudinal and transverse force data should be
used in the derivation of the force coefficients. Where both force
components are used, the components may be weighted differently in
the least squares fit in order to increase or reduce the influence of one
force relative to the other.

However it is also possible to derive the coefficients solely
from consideration of one component of the net force. It can be
argued that consideration of the longitudinal force component
alone might yield better prediction of the propulsive performance
of the eel than consideration of both force components. In the
current study three approaches were tried. In the first approach,
the coefficients were derived from a combination of both force
components with data scaled to give equal weighting to X-force
and Y-force data; in the second approach, derivation was based
only on the longitudinal force. Finally, for completeness, in the
third approach, the coefficients were found by consideration of
only the transverse force.

Two approaches were tried for handling data analysis given
that more than one data set is available. In the first case, the
coefficients were calculated individually for each run and an
average value was calculated; in the second case the time
histories were concatenated and a single calculation performed
overall the resulting time values. One source of difference
between these approaches stems from the different length of
data records between tests; the sampling frequency was kept
constant throughout at 213 Hz and each test ran for 30 cycles.
Hence if all tests are concatenated there are more points
contributed to the concatenated record from the low-frequency
tests than from the high-frequency tests.

All permutations of these possibilities were tried; naturally
different values of force coefficients were obtained. The difference
between the two approaches for handling the multiple data sets
was small, affecting the inertia coefficients by no more than 4%.
The relative differences between coefficients gained based on the
choice of force data used were quite large, especially for the
inertia coefficient which is relatively small.

One comparison of particular interest is that between the
mean thrust predicted using the derived coefficients and that
measured in the tests. Over the frequency range considered, the
better of the two predictions for mean thrust given by each of the
three force fits is shown in Fig. 11. In this graph it should be
noted that the mean thrust is positive left to right, but the eel is
swimming right to left—hence this represents forward
propulsion.

The approach using both transverse and longitudinal forces to
derive force coefficients clearly gives the best overall fit to the
measured data for mean thrust. This resulted in values of
Ca¼0.37, Cd¼4.45, leading to a satisfactory fit over the frequency
range. The prediction of mean thrust from the derivation based on
longitudinal force alone yields better agreement with experiment
data at lower frequencies, where the mean forces are small and
rather less satisfactory fit at higher frequencies, where the mean
forces are larger.

It can thus be seen that the mean forces are predicted
reasonably well over a range of different frequencies by suitable
derivation of force coefficients based on an appropriate fit to the
force time history for this simple kinematic case. However, it is
clearly possible that the quality of fit for force in one direction
could be improved at the expense of some degradation of the
quality of fit for the force in the other direction. Since the mean
value of the force is relatively small compared to the maximum
and minimum instantaneous values in the time history, even
some quite subtle changes in the force coefficients can lead to
relatively large changes in the mean values. This is presumed to
be the reason for the particularly poor prediction of mean thrust
in the case for which coefficients are derived from a fit only the
transverse component of force alone. Since both components of
force result from the same flow phenomena, it is reassuring that
the use of both components to derive the coefficients from the
force time histories leads to the best prediction for the mean
thrust.

Unfortunately, comparison between the time histories pre-
dicted using the derived coefficients, indicate that the predictions
of instantaneous forces do not fit the measured data as well as the
predictions for mean thrust. The example shown in Fig. 12 is
based on the best fit for mean thrust. The angle of the eel is
indicated at a notional scale in order to indicate the phase of the
forces. The root-mean-square error in the predicted data
expressed as a percentage of the measured data is around 35%
for the transverse force and around 38% for the longitudinal force.
This indicates that the Morison equation is failing to capture all of
the physics of the flow correctly. The Morison equation implicitly
assumes locally two-dimensional flow normal to the body. The
poor prediction of the time history of the forces is presumed to be
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related to one or more of three factors: the assumption of
constant force coefficients over the body of the eel, the neglect of
effects related to tangential flow, or key three-dimensional effects
related to flow near the tail.

In an attempt to improve this modelling, a more sophisticated
version of Morison’s equation was implemented. It is well-known
that force coefficients are sensitive to the Keulegan–Carpenter
number. Graham (1980) suggested through a theoretical ap-
proach that the coefficients could be expressed as

CD ¼ AK ð3�2lÞ=ð2l�1Þ
c

Cm ¼ Cm0þBK2=ð2l�1Þ
C ð7Þ

In this equation the value l depends upon the internal angle of
the vortex-shedding edge. For a sharp thin edge such as found on
a thin flat plate, l¼2. The constants A and B can be determined by
numerical calculation or physical measurement. For a thin flat
plate Graham estimated A¼11.8 and B¼0.25 using the discrete
vortex method and found A¼8.0 and B¼0.2 from 2D U-tube
measurements. The coefficient Cm0 is the added mass coefficient
for the body when flow is attached. For a thin plate – or the eel

with fins – it can reasonably be argued that the flow is never
attached and that Cm0¼0.

Following this argument, it is reasonable to suggest that the
drag coefficient might depend upon the inverse cube-root of the
Keulegan–Carpenter number, though it should be noted that
Graham pointed out that empirical evidence suggested that the
dependence might be closer to an inverse square root. The
Keulegan–Carpenter number varies substantially along the length
of the eel; in the case of the single flapper, Kc varied linearly from
just over zero at the forward joint to just over one hundred at the
tail in these trials.

Hence a second exercise was conducted in order to see if any
improvement could be made by allowing the coefficients to vary
as

CD ¼ AK�1=3
C

Cm ¼ BK2=3
C ð8Þ

and using the least-squares fit to find the constants of propor-
tionality A and B. Numerical computation using the results gave
values of A¼7.47 and B¼0.14, slightly less than the values of
A¼8.0 and B¼0.2 found by Graham for a flat plate.

However, using these values lead in practice to little improve-
ment in either the mean thrust prediction or the root-mean-
square error in the time histories. One example is shown in
Fig. 13. It can be seen that the KC-dependent approach fits slightly
better at the lower frequency and slightly less well at the higher
frequencies.

It should be noted however that since the moments in the
joints were not measured in these trials, then the distribution of
force along the segment is unknown; it is possible that this
distribution might have be better predicted using the KC-
dependent coefficients.

5.3. Double-flapper zero speed tests

The second set of tests explored the effect of differing
amplitude and phase of the rear segment over a range of
frequencies. Two swimming patterns were investigated; in the
first the oscillation amplitudes were identical in both segments
and in the second the aft segment had a larger oscillation
amplitude. In each case three frequencies were tested, over a
range of phase angles. Results for mean thrust are shown in
Fig. 14.
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Several observations can be made from these results. As
expected from the single-flapper case, the mean thrust increased
with increasing frequency. In each case the pattern with larger
amplitude in the rear segment generated more mean thrust than
the equivalent case with equal amplitudes in both segments.
Finally it can be seen that the maximum thrust occurred with the
oscillation of the second segment at a relative phase angle of
around 30–40 degrees.

5.4. Modelling of zero-speed ‘‘double-flapper’’ case using the

Morison-based approach

The data shown in Fig. 14 was used to recompute the values of
the constants A and B in Eq. (8) using the forces in both
longitudinal and transverse directions in a manner similar to that
adopted for the single-flapper case. The added mass coefficient B

remained constant at 0.14, but the best fit results showed the drag
constant A dropping to from 7.47 to 5.87. Unfortunately in this
case the mean thrust was not so well-predicted by the Morison-
based approach. This is illustrated for one of the worst cases – the
30-40-60 test – in Fig. 15.

The root-mean-square error in the time histories is also
considerably worse in the longitudinal direction than in the
single-flapper case. This suggests that the simple Morison-type
model starts to breakdown substantially as the phase difference
between the motion of the forward and aft segments increases.
This is illustrated in Fig. 16, in which it is seen that the error
grows at a rate approximately proportional to the phase
difference between the segments.

One key difference between the cases is the introduction of a
tangential velocity component in the ‘‘double flapper’’ case, which
is not present in the ‘‘single-flapper’’ case. Various attempts were
made to improve the prediction by incorporating a tangential
drag term into the model, but none were successful in
substantially improving predictions.

5.5. Double-flapper forward speed tests

In the final set of tests, all of the swimming patterns which had
been tested with zero forward speed were retested with a range of
forward speeds. These were selected to ensure that some tests
resulted in net positive thrust whilst others resulted in net
negative thrust. A curve was then be fitted to the data; a typical
example is shown in Fig. 17. Once the effect of the sting was
accounted for the point of zero net thrust was found—which is
the mean speed which should be obtained for the self-propelled
eel.

It can be seen that the points lay very close to a straight line
allowing the speed to be predicted with confidence. It should be

noted that the self-propulsion speed is higher than the speed at
the point at which the line crosses the axis due to the resistance of
the sting.

Since the previous results indicate that the higher frequency
would naturally lead to higher thrust, four styles are compared for
the same frequency of 0.6 Hz in Fig. 18. This indicates that the
style with increasing amplitude towards the tail and the larger
phase angle attains the highest self-propulsion speed. It is
interesting to note by comparing the results from Fig. 18 and
Fig. 14 that the 30-40-60 pattern, which produced the highest
self-propulsion speed produced less mean thrust at zero speed
than the 30-40-30 pattern. A similar observation may be made
regarding 30-30-60 and 30-30-30. This suggests that for
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maximum performance the phase angle of the rear segment
should increase as the speed increases.

The effect of oscillation frequency on the fastest swimming
style is shown in Fig. 19. As might be expected from the variation
of mean thrust at zero speed, the self-propulsion speed increased
with increasing frequency; the variation is approximately
quadratic.

5.6. Modelling of zero-speed ‘‘double-flapper’’ case using the

Morison-based approach

The final calculation examined the possibility of predicting the
self-propulsion speed of the eel using the Morison-based
approach. The model described previously only predicts the mean
thrust and makes no attempt to capture the resistance. It was
therefore assumed that the resistance of the eel could be obtained
from the data in the straight position as described in Section 4.2. A
series of calculations is then carried out over a range of speeds in a
manner analogous to the experiment test procedure and the
predicted self-propulsion point obtained. This process is illu-
strated in Fig. 20 for the 30-40-30 case. Perhaps surprisingly, the
errors in the predicted speed are rather less than the errors in the
mean thrust.

The variation of self-propulsion speed with frequency pre-
dicted by the Morison-based approach for the 30-40-60 case is
compared with the measured data in Fig. 21. In this case the worst
error for self-propulsion speed is 21%. For all the swimming styles

tested, the worst error found was 29%. All computed values were
found to over-estimate the speed.

5.7. Comparison with data from real eels

It is interesting to compare the results obtained from these
tests with data from measurements of real eels. A detailed study
of the motion of the American Eel both on water and on land is
presented by Gillis (1998). Four individuals were studied, with
length between 0.35 and 0.39 m, compared with the total length
of the structure presented here of 0.81 m.Gillis characterized
speed in terms of body lengths (L) advanced per second; studies in
water were carried out between 0.4 and 1.0 L/s.

With regard to the kinematics of the eel body, Gillis noted that
at the lower speeds the forward half of the body underwent no
significant lateral undulations; whilst at higher speeds the
proportion which was laterally stationary reduced to one third.
For the mechanical eel, the forward 51% of the body underwent no
oscillations; hence it can be seen that the proportion of the
structure which is non-oscillatory in the lateral direction is
consistent with the real eel. The extent of the lateral displacement
at the tail tip, however is rather different. Gillis found a maximum
lateral tail-tip displacement of 0.08 L, compared to a maximum
value of 0.25 L for the mechanical eel in the 30-40-60 pattern.
However, it is interesting to note that the slope of the body of the
real eel near the tail is comparable at both low and high speeds to
the 40 degree value, which provided the fastest eel propulsion
speeds in the model tests. It is thus possible that the requirement
for relatively large transverse displacements in the model results
from the relatively crude discretisation of the oscillating part of
the eel into two segments of equal length. It should also be noted
that other similar-sized elongated swimmers, including snakes
and salamanders, swimming at similar speeds, exhibit tail-tip
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Fig. 19. Variation of self-propulsion speed with oscillation frequency.
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Fig. 21. Computed variation of self-propulsion speed with frequency using the

Morison-based approach for 30-40-60 style.
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amplitudes in the range from 0.11 to 0.19 L (see for example
Jayne,1985, Gillis, 1997).

The speed range for self-propulsion of the mechanical eel is in
the range between 0.25 and 0.75 L/s, which is slightly lower than
the range of the real eels. Gillis showed that the relationship
between speed and frequency is approximately linear for real eels,
with oscillation frequency varying between around 1.0 Hz at low
speeds and 2.5 Hz at the high speeds. This was based on
observations at three speeds with a reasonable degree of scatter.
The Strouhal number of the flow (based on length) thus remains
approximately constant, varying between 0.96 and 0.98. In
contrast, the results for the mechanical eel (see Fig. 19) indicate
a slightly non-linear variation of speed with frequency over the
range studied (0.4–1.0 Hz), yielding a Strouhal number variation
between 1.4 and 1.7. However, it should be noted that the
swimming pattern of the real eel changes with the speed, whereas
the results for the mechanical eel show the variation of speed
with frequency for the same swimming pattern, so the two sets of
results are not strictly comparable.

In summary it can be seen that many of the trends exhibited
by the tests of the mechanical eel broadly reflect the behavior of
real eels, although there are some clear differences, which can be
attributed at least in part to the substantial simplification of the
geometry in the mechanical eel.

6. Discussion and conclusions

Computation of hydrodynamic forces generated by fish- (or
eel-) like motions is a challenging problem for many reasons
including the substantial changes of the body geometry through
the swimming cycle. The decomposition of forces in a manner
traditional in ship design, into components related to resistance
and propulsion is not particularly meaningful in the context of a
fish-like vehicle.

Computation of the performance of a simplified mechanical
eel-like device is arguably more challenging than for a realistic
motion due to the discontinuities at the joints. The motion of the
mechanical eel generates velocities and accelerations both
perpendicular and tangential to the segments. Previous simplified
approaches to prediction of forces on such structures have
neglected either inertia or drag forces. In the current study a
simplified approach based on the Morison equation was investi-
gated to explore how well it can predict longitudinal and
transverse forces. The method allows calculation of both drag
and inertia forces, but required input of the associated force
coefficients. Two versions were developed, with both the
Keulegan–Carpenter number dependent and independent
coefficients.

A physical model of a three-segment mechanical eel was
designed, built and tested in a towing tank. The model was used
to examine the swimming performance of a simplified eel in three
modes: the zero-speed ‘‘bollard-pull’’ case with the two oscillat-
ing segments moving as if rigidly joined to simulate a single
oscillating segment, designated as the ‘‘single-flapper’’ approach;
the zero-speed case with two oscillating segments, and a large set

of runs with forward speed and two oscillating segments. It was
shown that greater performance at both zero-speed and self-
propulsion speed resulted from the use of two segments with the
aft segment oscillating at a larger angle than the forward section
and with a phase lag relative to the forward section. The data
suggests that for maximum performance, the phase lag should be
greater at self-propulsion speed than at rest. The mean thrust at
zero speed and the self-propulsion speed increase approximately
quadratically with oscillation frequency.

A series of comparisons were made between the model test
data and the predictions from the simplified Morison-based
approach with force coefficients derived from the test data. The
mean thrust was quite well-predicted for the zero-speed ‘‘single-
flapper’’ case, although the time histories indicate that instanta-
neous forces are less well-predicted. However when the segments
move independently, the error in the zero-speed mean thrust
prediction increases as the phase difference between the
segments increases; it can reasonably be argued that the effect
of changing the phase angle is to amplify existing deficiencies in
the assumptions made in the Morison equation, and/or to
introduce or exaggerate hydrodynamic effects not accounted for,
such as vortex shedding at the tail. Nonetheless, perhaps
surprisingly, the simplified method was found to estimate the
self-propulsion speed to within 30% in all the cases examined.
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