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 Abstract— In this paper, model-based approaches for 

real-time 3D soccer ball tracking are proposed, using image 

sequences from multiple fixed cameras as input. The main 

challenges include filtering false alarms, tracking through 

missing observations and estimating 3D positions from single 

or multiple cameras. The key innovations are: i) incorporating 

motion cues and temporal hysteressis thresholding in ball 

detection; ii) modeling each ball trajectory as curve segments in 

successive virtual vertical planes so that the 3D position of the 

ball can be determined from a single camera view; iii) 

introducing four motion phases (rolling, flying, in possession, 

and out of play) and employing phase-specific models to 

estimate ball trajectories which enables high-level semantics 

applied in low-level tracking. In addition, unreliable or missing 

ball observations are recovered using spatio-temporal 

constraints and temporal filtering. The system accuracy and 

robustness is evaluated by comparing the estimated ball 

positions and phases with manual ground-truth data of real 

soccer sequences. 

 

Index Terms— Motion analysis, video signal processing, 

geometric modeling, tracking, multiple cameras, 

three-dimensional vision. 

 

I. INTRODUCTION 

ith the development of computer vision and multimedia 

technologies, many important applications have been 

developed in automatic soccer video analysis and content-based 

indexing, retrieval and visualization [1-3]. By accurately 

tracking players and ball, a number of innovative applications 

can be derived for automatic comprehension of sports events. 

These include annotation of video content, summarization, 

team strategy analysis and verification of referee decisions, as 
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well as the 2D or 3D reconstruction and visualization of action 

[3-16]. In addition, some more recent work on tracking of 

players and the ball can be also found in [27-29]. 

In a soccer match, the ball is invariably the focus of 

attention. Although players can be successfully detected and 

tracked on the basis of color and shape [1, 10, 12], similar 

methods cannot be extended to ball detection and tracking for 

several reasons. First, the ball is small and exhibits irregular 

shape, variable size and inconsistent color when moving 

rapidly, as illustrated in Figure 1. Second, the ball is frequently 

occluded by players or is out of all camera fields of view (FOV), 

such as when it is kicked high in the air. Finally, the ball often 

leaves the ground surface, and its 3D position cannot be 

uniquely determined without the measurements from at least 

two cameras with overlapping fields of view. Therefore, 3D 

ball position estimation and tracking is, arguably, the most 

important challenge in soccer video analysis. In this paper the 

problem under investigation is the automatic ball tracking from 

multiple fixed cameras.  

A. Related Work  

Generally, TV broadcast cameras or fixed-cameras around 

the stadium are the two usual sources of soccer image streams. 

While TV imagery generally provides high resolution data of 

the ball in the image centre, the complex camera movements 

and partial views of the field, make it hard to obtain accurate 

camera parameters for on-field ball positioning. On the other 

hand, fixed cameras are easily calibrated, but their wide-angle 

field of view makes ball detection more difficult, since the ball 

is often represented by only a small number of pixels.  

In the soccer domain, fully automatic methods for limited 

scene understanding have been proposed, e.g. recognition of 

replays from cinematic features extracted from broadcast TV 

data [1] and detection of the ball in broadcast TV data [1, 2, 

4-9]. Gong et al adopted white color and circular shape to 

detect balls in image sequences [1]. In Yow et al [2], the ball is 

detected by template matching in each of the reference frames 

and then tracked between each pair of these reference frames. 

Seo et al applied template matching and Kalman filter to track 

balls after manual initialization [4]. Tong et al [5] employed 

indirect ball detection by eliminating non-ball regions using 

color and shape constraints. In Yamada et al [6], white regions 
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Fig. 1.  Ball samples in various sizes, shapes and colors. 
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are taken as ball candidates after removing of players and field 

lines. In Yu et al [7, 8], candidate balls are first identified by 

size range, color and shape, and then these candidates are 

further verified by trajectory mining with a Kalman filter. 

D‟Orazio et al [9] detected the ball using a modified Hough 
transform along with a neural classifier.  

Using soccer sequences from fixed cameras, usually there 

are two steps for the estimation and tracking of 3D ball 

positions. Firstly, the ball is detected and tracked in each single 

view independently. Then, 2D ball positions from different 

camera views are integrated to obtain 3D positions using 

known motion models [10-12]. Ohno et al arranged eight 

cameras to attain a full view of the pitch [10]. They modeled the 

3D ball trajectory by considering air friction and gravity which 

depend on an unsolved initial velocity. Matsumoto et al [11] 

used four cameras in their optimized viewpoint determination 

system, in which template matching is also applied for ball 

detection. Bebie and Bieri [12] employed two cameras for 

soccer game reconstruction, and modeled 3D trajectory 

segments by Hermite spline curves. However, about one-fifth of 

the ball positions need to be set manually before estimation. In 

Kim et al [13] and Reid and North [14], reference players and 

shadows were utilized in the estimation of 3D ball positions. 

These are unlikely to be robust as the shadow positions depend 

more on light source positions than on camera projections.     

B. Contributions of This Work 

In this paper, a system is presented for model-based 3D ball 

tracking from real soccer videos. The main contributions can 

be summarized as follows.  

Firstly, a motion-based thresholding process along with 

temporal filtering is used to detect the ball, which has proved to 

be robust to the inevitable variations in ball color and size that 

result from its rapid movement. Meanwhile, a probability 

measure is defined to capture the likelihood that any specific 

detected moving object represents the ball. 

Secondly, the 3D ball motion is modeled as a series of planar 

curves each residing in a vertical virtual plane (VVP), which 

involves geometric based vision techniques for 3D ball 

positioning. To determine each vertical plane, at least two 

observed positions of the ball with reliable height estimate are 

required. These reliable estimates are obtained by either 

recognizing a bouncing on the ground from single view, or 

triangulating from multiple views. Based on these VVPs, the 

3D ball positions are determined in single camera views by 

projections. Ball positions for frames without any valid 

observations are easily estimated by polynomial interpolation 

to allow a continuous 3D ball trajectory to be generated.  

Thirdly, the ball trajectories are modeled as one of four 

phases of ball motion – rolling, flying, in-possession and 

out-of-play. These phase types were chosen because they each 

require different models in trajectory recovery. For the first two 

types, phase-specific models are employed to estimate ball 

positions in linear and parabolic trajectories, respectively. It is 

shown how two 3D points are sufficient to estimate the 

parabolic trajectory of a flying ball. In addition, the transitions 

from one phase to another also provide useful semantic insight 

into the progression of the game, i.e. they coincide with the 

passes, kicks etc. that constitute the play.  

C. Structure of the Paper 

The remaining part of the paper is organized as follows. In 

Section II, the method we used for tracking and detecting 

moving objects is described, using Gaussian mixtures [17] and 

calibrated cameras [19]. In Section III, a method is presented 

for identifying the ball from these objects. These methods 

operate in the image plane from each camera separately. In 

Section IV, the data from multiple cameras is integrated, to 

provide a segment-based model of the ball trajectory over the 

entire pitch, estimating 3D ball positions from either single 

view or multiple views. In Section V, a technique is introduced 

for recognizing different phases of ball motion, and for 

applying phase-specific models for robust ball tracking. 

Experimental results are presented in Section VI and the 

conclusions are drawn in Section VII. 

II. MOVING OBJECTS DETECTION AND TRACKING 

To locate and track players and the soccer ball, a 

multi-modal adaptive background model is utilized which 

provides robust foreground detection using image differencing 

[17]. This detection process is applied only to visible pitch 

pixels of the appropriate color. Grouped foreground connected- 

components (i.e. blobs) are tracked by a Kalman filter which 

estimates 2D position, velocity and object dimensions. These 

2D positions and dimensions are converted to 3D coordinates 

on the pitch. Greater detail is given in the subsections below. 

A. Determining Pitch Masks  

Rather than process the whole image, a pitch mask is 

developed to avoid processing pixels containing spectators. 

This mask is defined as the intersection of the geometry-based 

mask gM  and the color-based mask cM , as shown in Figure 

2. The former constrains processing to only those pixels on the 

pitch, and can be easily derived from a coordinate transform of 

the position of the pitch in the ground plane to the image plane 

as follows. For each image pixel p , compute its corresponding 

ground-plane point P . If P  locates within the pitch, then p  

is set to 255 in gM , otherwise 0. Note, however, that parts of 

the pitch can be occluded by foreground spectators or parts of 

the stadium. Thus, a color-based mask is used to exclude these 

elements from the overall pitch mask (i.e. the region to be 

processed).  

The hue component of the HSV color space is used to 

identify the region of the background image representing the 

pitch, since it is robust to shadows and other variations in the 

appearance of the grass. As it is assumed that the pitch region 

has an approximately uniform color and occupies the dominant 

area of the background image, pixels belonging to the pitch will 

contribute to the largest peak in any hue histogram. Lower and 

upper hue thresholds 1H  and 2H  delimit an interval around 

the position 0H  of this maximum. Defined as the positions at 



which the histogram has decreased by 90% of the peak 

frequency, image pixels contributing to this interval are 

included in the color-based mask cM . 

A morphological closing operation is performed on cM  to 

bridge the gaps caused by the white field lines in the initial 

color-based mask.  Thus the final mask, M , can be generated 

as follows:     

BHHvuHvuMc ]},[),(|),{( 21  (1) 

cg MMM           (2) 

where the morphological closing operation is denoted by   

and B  is its square structuring element of size 66 .   

B. Detecting Moving Objects  

Over the mask M  detected above, foreground pixels are 

located using the robust multi-modal adaptive background 

model [17]. Firstly, an initial background image is determined 

by a per-pixel Gaussian Mixture Model, and then the 

background image is progressively updated using a running 

average algorithm for efficiency. 

Each per-pixel Gaussian Mixture Model is represented as 
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where   is the updating rate satisfying 10   . For each 

unmatched distribution, the parameters remain the same but its 

weight decreases. The initial background image is selected as 

the distribution with the greatest weight at each pixel. 

Given the input image kI , the foreground binary mask kF  

can be generated by comparing |||| 1 kk ȝI  against a 

threshold, i.e. k5.2 . To accelerate the process of updating 

the background image, a running average algorithm is further 

employed after the initial background and foreground have 

been estimated: 

kkHkHkkLkLk FF ])1([])1([ 11   ȝIȝIȝ 
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where 
k

F  is the complement of kF . The use of two update 

weights (where 10  HL  ) ensures that the 

background image is updated slowly in the presence of 

foreground regions. Updating is required even when a pixel is 

flagged as moving to allow the system to overcome mistakes in 

the initial background estimate. 

Inside these foreground masks, a set of foreground regions 

are generated using connected component analysis. Each 

region is represented by its centroid ),( 00 cr , area  a , and  

bounding box where ),( 11 cr  and ),( 22 cr  are the top-left and 

bottom-right corners of the bounding box. 

C. Tracking Moving Objects 

A Kalman tracker is used in the image plane to filter noisy 

measurements and split merged objects because of frequent 

occlusions of players and the ball. The state Ix  and 

measurement Iz  are given by:  

T
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T
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where ),( 00 cr  is the centroid, ),( 00 cr   is the velocity, 

),( 11 cr  and ),( 22 cr  are the top-left and bottom-right 

corners of the bounding box respectively (such that 21 rr   

and 21 cc  ) and  ),( 11 cr   and ),( 22 cr   are the 

relative positions of the two opposite corners to the centroid. 

The state transition and measurement equations in the Kalman 

filter are: 
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where Iw  and Iv  are the image plane process noise and 

measurement noise, and 
IA  and 

IH  are the state transition 

matrix and measurement matrix, respectively.  
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Fig. 2.  Extraction of pitch masks based on both color and geometry: 

(a) Original background image, (b) Geometry-based mask of pitch, (c) 

Color-based mask of pitch, and (d) Final mask obtained.  
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In equation (8), 
2I  and 

2O  represent 22  identity and 

zero metrics; T  is the time interval between frames. Further 

detail on the method for data association and handling of 

occlusions can be found in [18].   

D. Computing Ground Plane Positions 

Using the Tsai‟s algorithm for camera calibration [19], the 
measurements are transformed from image co-ordinates into 

world co-ordinates. Basically, the pin-hole model of 3D-2D 

perspective projection is employed in [19] to estimate totally 11 

intrinsic and extrinsic camera parameters. In addition, 

effective dimensions of pixel in images are obtained in both 

horizontal and vertical directions as two fixed intrinsic 

constants. These two constants are then taken to calculate the 

world co-ordinates measurements of the objects on the basis of 

detected image-plane bounding boxes. Let ),,( zyx  denote 

the 3D object position in world co-ordinates, then x  and y  

are estimated by using the center point of the bottom line of 

each bounding box, and z  initialized as zero. Until Section 

IV, all objects are assumed to lie on the ground plane. (This 

assumption is usually true for players, but the ball could be 

anywhere on the line between that ground plane point and the 

camera position). For each tracked object, a position and 

attribute measurement vector is defined as 
T][ yxi vvzyxp  and 

T][ nahwi a . In 

addition, a ground plane velocity ),( yx vv  is estimated from 

the projection of the image-plane velocity (which is obtained 

from the image plane tracking process) onto the ground plane. 

Note that this ground-plane velocity is not intended to estimate 

the real velocity, in cases where the ball is off the ground. The 

attributes hw,  and a  are an object‟s width, height and area, 

also measured in meters (and meters squared), and calculated 

by assuming the object touches the ground plane. Besides, each 

object is validated before further processing provided that its 

size satisfies mw 1.0 , mh 1.0  and 
203.0 ma  . 

Finally, n  is the longevity of the tracked object, measured in 

frames.  

III. DETECTING BALL-LIKE FEATURES 

To identify ball-like features in a single-view process, each 

of the tracked objects is attributed with a likelihood l that 

represents the ball. The two elementary properties to 

distinguish the ball from players and other false alarms are its 

size and color. Three simple features are used to describe the 

size of the object, i.e. its width, height, and area, in which 

measurements in real-world units are adopted for robustness 

against variable sizes of the ball in image plane. A fourth 

feature derived from its color appearance, measures the 

proportion of the object‟s area that is white.  
To discriminate the ball from other objects, a 

straightforward process is to apply fixed thresholds to these 

features. However, this suffers from several difficulties. Firstly, 

false alarms such as fragmented field lines or fragments of 

players (especially socks) cannot always be discriminated. 

Secondly, if no information is available about the height of the 

ball, the estimate of the dimensions may be inaccurate. For 

example, by assuming the ball is touching the ground plane, an 

airborne ball will appear to be a larger object. Thirdly, the 

image of a fast-moving ball is affected by motion blurring, 

rendering it larger and less white than a stationary (or slower 

moving) ball.  

A key observation from soccer videos is that the ball in play 

is nearly always moving, which suggests that the velocity may 

be a useful additional discriminant. Thus, as field markings are 

stationary the majority of these markings can be discriminated 

from the ball by thresholding both the size and absolute velocity 

of the detected object.  

Another category of false alarms is caused by a part of a 

player that has become temporarily disassociated from the 

remainder of the player. A typical cause of this phenomenon is 

imperfect foreground segmentation. However, such transitory 

artifacts do not in general persist for longer than a couple of 

  (a) 

 (b) 

  (c) 

 (d) 

Fig. 3.  Tracked ball with ID and assigned likelihood (a) Id=7, l=0.9 (b) 

l=0.0, the ball is moving out of current camera view (c) Id=16, l=0.9 

and (d) ball is merged with player 9 in frame #977, #990, #1044, and 

#1056, respectively. 
 



frames, whereupon the correct representation is resumed. 

Therefore, this category of false alarm can be correctly 

discriminated by discarding all short-lived objects, i.e. whose 

longevity is less than five frames.  

Features describing the velocity and longevity of the 

observations are used to solve the three difficulties described 

above. These features (derived from tracking) are employed 

alongside size and color features to help discriminate the ball 

from other objects. The velocity feature is also useful when the 

size of the detected ball is overestimated, either through a 

motion-blur effect (proportional to the duration of the 

shutter-speed), or a range error effect (incorrectly assuming 

the object lies on the ground plane).  Here, the key innovation is 

to allow the size threshold to vary as a function of the estimated 

ground-plane velocity. There is a simple rationale for the 

motion-blur effect: the expected area is also directly 

proportional to the image-plane speed. The range error effect is 

more complicated as the 3D trajectory of the ball may be 

directly towards the camera generating zero velocity in the 

image plane. However, in general it can be assumed that the 

ball rapidly moving in the image plane is more likely to be 

positioned above the ground plane, and therefore, the size 

threshold should be increased to accommodate the consequent 

over-estimation of the ball size.  

As for a standard soccer ball, it has a constant diameter 0d  

(between m216.0  and m226.0 ) and an area (of a great circle) 

0a  about 
204.0 m . Considering over-estimated ball size 

during fast movement, two thresholds for the width and height 

of the ball, 0w  and 0h  ,  are defined by   
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For robustness, valid size ranges of the ball are required 

satisfying 5/|| 00 dww  , 5/|| 00 dhh  , and 

2

00 )(||8/|| Tvvaaa yx  . In addition, the proportion 

of white color within the object is required no less than 30% of 

the whole area. All objects having size and color outside the 

prescribed thresholds are assigned a likelihood of zero and 

excluded from further processing. Each remaining object is 

classed as a ball candidate, and assigned an estimate of the 

likelihood that represents the ball. The proposed form for this 

estimate is the following equation, incorporating both its 

absolute velocity iv  and longevity n : 
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where 
maxv  is the maximum absolute velocity of all the objects 

detected in the given camera, at a given frame (including the 

ball, if visible, and also non-ball objects), and 0t  is a constant 

parameter. Thus, faster moving objects are considered more 

likely to be the ball based on the fact that, in the professional 

game, the ball normally moves faster than other objects.  

Figure 3 shows partial views of camera #1 with detected ball 

at frame 977, 990, 1044 and 1056, respectively. The ball or 

each player is assigned with a unique ID unless it is near the 

 (a) 

 (b) 

 (c) 

Fig. 4. Thirty seconds of single camera tracking data from camera #1 (a) and filtered results of the ball  in  (b) and (c), in which time 

t moves from left to right, and the x-coordinate of the objects c0 is plotted up the y-axis. In (b) and (c), most-likely ball is labeled in 

black, (b) is the result filtering on appearance and velocity and (c) is the result after temporal filtering. 
 

 



boundary of the camera view or merged with another object. 

When the ball is moving, its trajectory (recent history of 

centroid positions) is plotted, too. Text output is also utilized to 

show the tracking status.  

Since the ball is frequently missed in detection, due to 

occlusion or in-possession, the proposed approach includes a 

temporal filter of the ball likelihood. The filter uses hysteresis 

to process the likelihood estimates into discrete labels, in an 

approach similar to the Canny filter [20]. Three thresholds 

321 ,, hhh  are used, where 321 hhh  . Candidates with a 

likelihood above 1h  are unequivocally designated a „ball‟ 

label; and candidates with a likelihood below 3h  are 

unequivocally classified as „not ball‟ (i.e. false alarms). The 

filtering process iteratively examines likelihood values along 

the tracked trajectory: observations with likelihood l in the 

interval 21 hlh   are labeled as a „ball‟ if there is an object 
has been labeled as a ball in its neighboring frame. Similarly, 

objects with likelihood l  in the interval 32 hlh   are 

labeled as „not ball‟ if the object has that label as not ball in a 
neighboring frame. This process is iterated for BN  frames, 

where BN  is the buffer size for the filter. This temporal filter 

significantly improves the robustness of detection and 

continuity of trajectory.  

Figure 4 plots the positional column- coordinate 
0c  of the 

trajectories of multiple objects tracked over the frame #950 to 

#2100 in camera sequence #1. The original trajectories before 

ball detection is shown in Figure 4(a), and the result of 

appearance and velocity filter is shown in Figure 4(b), which 

still include some false alarms. In this sequence, application of 

the temporal filter successfully locates the ball among these 

various candidates.  

The above process is executed on the data from each camera, 

and the most likely ball candidate from each is input to the 

second processing stage, described below in Sections IV, V and 

VI, in which these observations are combined to estimate the 

height, phase and trajectory of the motion. 

IV. MODEL BASED 3D POSITION ESTIMATION IN SINGLE AND 

MULTIPLE VIEWS 

In this section, the detection results of the ball from all 

single views are integrated for estimation of 3D position. If the 

ball is located on the ground, the conversion from 2D image 

co-ordinates to real world 3D co-ordinates is completely 

determined using the camera calibration parameters. 

Otherwise, the 2D image position can only provide constraints 

for the 3D line on which, somewhere, the ball is located. After 

a segment-based model of the ball motion is presented, two 

methods are provided for determining 3D ball positions. The 

first method is for cases in which the ball is detected from only 

one camera: the instant when the ball bounces on the ground is 

detected and the corresponding 3D position is estimated as zero. 

The second is for cases in which the ball is visible from at least 

two cameras, thus integration from multiple observations are 

used.  

A. The Ball Motion Model 

During a soccer game, the ball is moving regularly from one 

place to another. Its direction will change suddenly if and only 

if it touches the ground, a player, or a goal post, etc. It is 

assumed that the ball trajectory between two bounces or kicks 

forms a curve in a vertical virtual plane. In a special case when 

the ball is rolling on the ground, the curve will become a 

straight line. Therefore, the ball movement can be modeled as 

comprising a series of virtual vertical planes. In each vertical 

plane  , the ball will generate a single trajectory curve. The 

complete ball trajectory can be modeled as a sequence of 

adjacent planar curve segments. If it is assumed that there is no 

air resistance, then each plane will correspond to a single flight 

made by the ball. While beyond the scope of this paper, if the 

ball is struck to impart significant spin about an axis, then it 

will „swerve‟ in the air and the assumption that the ball travels 
in a vertical plane is invalid, although the „swerve‟ may be 

approximated by several segments, each defined by a vertical 

plane. 

To estimate a virtual vertical plane (VVP), at least two 

estimates of 3D ball positions on the vertical plane must be 

available. These estimated 3D ball positions are described as 

fully determined estimates, in contract to most observations, 

which are only determined up to a line passing through the 

camera focal point.  If r  and s  are two fully determined 

estimates hypothesized to lie in virtual plane  , the plane   

can be simply determined as follows. Firstly, locate points 'r  

and 's  on the ground plane   with 'rr  and 'ss , 

then there is a line '' sr  on  . Then,   is determined as the 

plane through '' sr  and perpendicular to  .  

The process for locating fully determined estimates from 

single and multiple views, and then a method for generating 

further 3D estimates within the corresponding VVP, are 

provided below.   

B. Fully Determined Estimates from a Single View 

From a single camera view, the strategy adopted for 

determining a 3D ball position, is to detect an occasion in 

which the ball bounces off some other object: players, ground or 

goal-post. If the height at which the bounce occurs can be 

estimated, then this height, together with its 2D image location, 

completely determines the 3D ball position at this time.  

The ground-plane ball positions at frame n can firstly be 

obtained as 
T],[)( nn yxn x . Then, the velocity 

T],[)( yx vvn v  is defined as: 

Tnnn  /)]()1([)( xxv        (11) 

where T  is the time interval between frames defined in 

Section II(C). To identify the bouncing ball, it is proposed to 

detect significant changes in the direction of this velocity at 

frame n : 
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where 5.00   is an appropriate threshold. Then, the height 

of the ball position is estimated as zero if there are no players or 

other objects near the ball. Otherwise, it is determined by the 

relative position of the ball and the object it touches. For 

example, it can be assumed the ball is two meters off the ground 

plane when it strikes a player‟s head.  

C. Fully Determined Estimates from Multiple Views 

When a ball is observed in multiple cameras, there are 

multiple projection lines from each camera position through 

the corresponding observation (which, in this application, can 

be terminated at the ground plane). The intersection point of 

these lines is normally taken as the estimate of the 3D ball 

position. However, false observations may exist which will lead 

to incorrect solutions. In the proposed method, firstly, 3D ball 

positions from each pair of cameras are estimated, and then the 

final estimate is calculated as the average of these estimated 

positions. However, some false estimates can be generated from 

the mis-association of the ball (in one camera) and e.g. some 

background clutter (from another camera). Thus, prior to this 

last step, some false estimates can be excluded by accepting 

only those estimates for which the calculated height is positive 

(actually, greater than a small negative value, -0.25m, to 

account for the small calibration error between two cameras, 

and less than the height of the cameras above the ground), and 

also estimated positions within the virtual pitch. 

If the ball b  is observed from two cameras 1c  and 2c  with 

projected positions 1b  and 2b  on the ground plane   as 

shown in Figure 5, b  is estimated from 1b , 2b , 1c  and 2c . 

Let 111 cbL   and 222 cbL  . However, 1L  and 2L  usually 

have no intersection point due to errors caused by image-plane 

measurement and inaccurate camera calibration. Therefore, it 

is proposed to use the solution for  b  which minimizes the sum 

of squared distances to both lines. 

 Let 1p  and 2p  be two points on lines 1L  and 2L , 

respectively, so that line 21 pp  be a common perpendicular of 

1L  and 2L . Then b  should be on the line 
21 pp . Suppose 

0][1 f  and 0][2 f  are the equations for the two lines 

1L  and 2L , then the points 1p  and 2p  can be determined 

by:  

0][
11 pXf            (13) 

0][
22 pXf          (14) 

0][][
1121
 bcpp XXXX               (15) 

0][][
2221
 bcpp XXXX              (16) 

where 
2121

,,, ccpp XXXX  and bX  are the 3D positions of 

2121 ,,, ccpp  and b respectively. When the different 

measurement covariances for 1p  and 2p  are considered, the 

distances from b to 1p  and 2p  are changed into Mahalanobis 

distances. The measurement covariance for 1p  and 2p  is 

inversely proportional to its distance to the underlying camera. 

As a result, the estimated position of b  is automatically biased 

to the viewing rays of the closer cameras which has the more 

accurate ball measurement. Assume 1  and 2  are the 

position covariance of the ball in cameras  1c  and 2c  

respectively. Let 2

11 ||
11 bc XX    and 

2

22 ||
22 bc XX   , thus the final 3D ball position along 

21 pp  can then be estimated as 

21

12 21







 pp

b

XX
X             (17) 

For simplicity, b  can be set as the middle-point of 1p  and 

2p , i.e. 2/)(
21 ppb XXX  . 

D. Estimating Internal Ball Positions from a Single View 

When the location of a virtual plane   is determined, the 

3D positions of the ball observed in a single view can be 

recovered as internal ball positions within the corresponding 

 

Fig. 5.  3D ball b  estimation from cameras 
1c  and 

2c  with projected 

ball positions 
1b  and 

2b . 

  

 c  

a  e  

d  b  

  



Fig. 6.  Geometric relationship among the camera position c, the 

ball position b, as well as vertical and ground planes   and   . 

  



curve-segment on  . This is achieved by triangulation from 

the ground-plane projection of the image-plane observations, 

as illustrated in Figure 6.  

Let us represent the world coordinates of a point p by 

),,( pppp zyxX  . In Figure 6, c is the camera position; a 

is the projection of an image-plane ball observation on the 

ground plane; b is the required 3D position of the ball and 

located on the vertical plane; d and e are the normal projections 

of c and b onto the ground plane, respectively. Therefore, b is 

given from the intersection point of plane   and line ac . The 

coordinates of points a, b, c, d and e in Figure 6 satisfy 0az , 

)0,,(),,( ccddd yxzyx  , )0,,(),,( bbeee yxzyx  .    

With a known plane   and points a  and d , bx  and by  

can be recovered from e  as the intersection point of   and 

line ad . As the two triangles acd and abe  are similar, 

hence  

da

ea

dc

eb

XX

XX

XX

XX









,                   (18) 

and since beb zXX   and czcd || , then bz  can 

be expressed as: 

c

da

ea

b z
XX

XX
z 




 .                  (19) 

Thus the 3D ball position 
bX  has been recovered. 

E. Estimation of Missed or Uncertain Ball Positions 

For those frames without ball observations in any single 

view or with ball observations of lower likelihood, i.e. less than 

a given threshold, the 3D ball positions are estimated by using 

polynomial interpolation in a curve on the corresponding 

vertical planes (see Section V). In this work, each curve is 

calculated from two fully determined estimates. If more fully 

determined estimates are available, then they could all be 

incorporated into the estimation of the trajectory based on a 

more general least squares estimator [25].    

V. RECOGNITION OF BALL MOTION PHASES AND 

PHASE-SPECIFIC TRAJECTORY ESTIMATION  

A. Four Phases of Ball Motion 

In this work, it is proposed to model the ball motion at each 

instant into four phases, namely rolling (R), flying (F), 

in-possession (P) and out-of-play (O). A different tracking 

model is applicable to each phase, and furthermore the 

designation also provides a useful insight into the semantic 

progression of the game. In most cases the progression of play 

is reasonably straightforward to annotate, as a chain of 

transitions e.g. {P|F|O|P|R|P…} among these phases. A 
sequence of play can be annotated according to these four 

definitions and the transition graph given in Figure 7. 

However, there are sometimes ambiguities in the 

interpretation, e.g. between flying and rolling phases or in 

deciding how many touches of the ball constitute a possession.  

Though some other semantic events have been analyzed for 

soccer video understanding [21-24], they are focused on 

players‟ motion in broadcasting context, yet phase transitions 
in the ball trajectory have not been discussed. For this model, it 

is simpler to denote even a single touch of the ball by a player as 

a frame of in-possession phase. This is because in-possession 

phases act as special periods that initialize other phases (such 

as rolling or flying), i.e. literally kicking the ball off in a 

particular direction. In fact, the ball trajectories for rolling and 

flying phases are determined by the last kick of a player during 

the preceding in-possession phase (notwithstanding gusts of 

wind, and other noise processes). Furthermore, the pattern of 

play is punctuated by periods when the ball is out-of-play, e.g. 

caused by fouls, ball crossing touchline, off-side or 

in-possession by the goal-keeper. Thus, the pattern of play is 

described as a list of phase-chains, always being started by an 

in-possession phase, and ending in an out-of-play phase. When 

the ball is out of play, it will be reinitialized (through several 

football events like throw-in, corner-kick etc.) for another cycle 

of phase transitions.  

B. Estimating Motion Phases 

Given observations of the ball from separate cameras and 

height cues obtained as described in Section IV, what follows is 

the estimation of the current ball phase. Prior to this stage, at 

each frame there is at most one estimate of ball position from 

each of the camera views, and each estimate is assigned a 

measure of the likelihood that it represents the ball. A „soft‟ 
classification [26] of the four phases is introduced, which is 

then input into a decision process to determine the final 

estimate of the phase. These estimates are written as 

)( flyingG , )(rollingG , )_( possessioninG  and 

)__( playofoutG .  

Let ),,( www zyx  denote the final position of the ball and 

maxl  the maximum likelihood among all the observations from 

multiple cameras. In this work, three distances are used to 

estimate the phase of the motion, i.e. the height wz , distance to 

nearest player pdmin_ , and distance from the edge of the 

playfield bdmin_ . Smooth functions are chosen to provide a 

measure, bounded between 0 and 1, of the membership of each 

motion phase.  

 

Fig. 7.  Phase transition graph in soccer ball motion. 
  



Firstly, )( flyingG  is determined by comparing the height 

of the ball to a threshold height 
fz  as 
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If 
2max hl   (where 2h  is firstly defined for temporal 

filtering of ball likelihood in Section III), it refers to a separate 

ball observation hence 0)_( possessioninG , and 

)(rollingG  is decided by  
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When 
2max hl  , this refers to a ball occluded or 

in-possession, and a pair of functions are then used to 

discriminate between in-possession and rolling phases, 

comparing the distance to the nearest player pdmin_  with a 

scaling distance  pd : 
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Finally, the membership of the out of play phase is 

determined using a corresponding model, using bdmin_ , the 

distance to the edge of the playfield:  
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where md p 4.0  and mdb 5.0  are both constant 

parameters.  

The final designation of the motion phase at any instant is 

simply decided as the maximum of the four 

measures )( flyingG , )(rollingG , )_( possessioninG  

and )__( playofoutG . In the case of equal measures, the 

out of play phase has the priority, since the ball can still be 

flying or rolling when it moves out of the pitch. 

If there is no ball observation, the phase of the previous 

frame is temporally maintained. For each of the in-play phases, 

a specific model is then employed for robust trajectory 

estimation below. While the above labeling formulations are 

somewhat arbitrary, their adoption has proved successful in 

accurately labeling the phases of play. 

C. Phase-specific Trajectory Estimation 

Finally, in this section, the three different in-play models of 

ball motion are described, starting with the flying trajectory. 

Disregarding air friction, the velocity parallel to the ground 

plane is constant and thus the ball follows a single parabolic 

trajectory. Let 1p  and 2p  be two known 3D ball positions on 

this trajectory such as the two fully determined estimates. The 

points ),,( 1111 zyxX   and ),,( 2222 zyxX   are the 

3D co-ordinates of 1p  and 2p , and 1t  and 2t  are their 

corresponding moments in time.  

Let ))(),(),(( tztytxX   denote the 3D position of the 

ball at time t . Disregarding all friction, )(tx  and )(ty  will 

satisfy the following equations, whether the ball is rolling or 

flying: 
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Moreover, when the ball is rolling or in-possession, the 

approximation is made that 0)( tz .  

For the flying ball phase, the parabolic trajectory is decided 

by the two known 3D points 1p  and 2p  using the standard 

equation of motion under gravitational acceleration g .   
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Moreover, if more than two ball positions have been decided 

within a curve-segment, then a least-squares calculation of the 

trajectory segment can be used to provide a more robust 

estimate [25]. 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS  

A. System Architecture 

The proposed system was tested on data captured from 

matches played at Fulham Football Club, U.K. in the 2001 

Premiership Season captured by eight fixed cameras. The 

camera positions are constrained by the layout of the stadium 

and the requirement to obtain the best resolution view of the 

football pitch - in particular the goalmouth. All the cameras are 

manually calibrated before tracking and 3D estimation. In the 

video processing stage, all the moving objects are detected and 

tracked in each camera to generate the ground plane positions 

of players (including the referee and linesmen) and the ball (by 

assuming it is on the ground). These 2D positions along with 

category information are collected as features and integrated by 

a centralized tracker. Using the multi-view information, 3D 

ball positions are then estimated in world coordinates on the 

basis of the proposed model. The 3D ball trajectory is 



visualized along with tracked players on a virtual playfield. 

The final output generated will be a single model of the game 

state at a given time marked up in XML for third party 

applications e.g. the delivery of football services to specific 

cell-phone audiences. The system architecture and 

arrangements of the cameras with their field-of-views are 

shown in Figure 8.  

All the cameras are connected to a rack of eight processors 

(named Feature Servers) through a network of fiber optics, with 

each optical fiber terminating in a centralized location that 

houses all of the processing hardware. An IP/Ethernet network 

is employed to connect these processors. For communication 

and synchronization, a “request-response” mechanism is 

utilized to manage eight simultaneous streams of data across 

the network. It is the multi-view tracker which is responsible 

for orchestrating the process by which (single-view) Feature 

Servers generate their results of features. During each iteration 

of the process, the tracker sends a single broadcast request with 

time stamp when it takes place. Then, all the Feature Servers 

will respond to this request by generating features using the 

latest frame, and these features will be naturally synchronized 

by the time stamp obtained from the tracker. Detailed 

discussion on player tracking and classification as well as 

communication and synchronization are given in [16].  

Eight cameras were statically mounted around the stadium 

as described in Figure 8. All cameras recorded in mini DV 

format, in which four Canon XM1 cameras and four Sony 

cameras. The fields of view were adjusted to ensure all areas of 

the pitch were covered by at least one camera, which implied 

most cameras were almost fully zoomed out. The white balance 

was set to automatic on all cameras.  

B. Data Preparation and Results 

The proposed model has been tested in several sequences 

with up to 8 cameras, and each sequence has over 5500 frames. 

In the experiments, the frame images are at 576720  using 

24bits full color (RGB) format. In a single-view process, ball 

candidates are filtered after foreground detection and 

image-plane tracking. Then, all the ball candidates detected 

from 8 sequences are integrated for multi-view tracking of the 

ball and 3D positioning. The output of the system will lag up to 

several seconds behind the input observations, as the tracking 

process accumulates evidence for the temporal filter process (in 

single-view processing) and awaits the detection of a second 

fully determined point (in multi-view processing). When two 

fully determined estimates are available, a virtual vertical plane 

is generated. As discussed in Section IV(C), internal ball 

positions within this virtual plane can be even recovered from 

single-view observations. With the estimated 3D positions of 

the ball, four motion phases are determined for phase-specific 

trajectory generation. A list of important thresholds and 

parameters used in the proposed system is provided in Table 1. 

Table 1. List of important constant parameters and 

thresholds.  

Location Symbol Value Description 
Eq. (3)   02.0  

Updating rate in estimating the 

original background 

Eq. (4) 

 L  002.0  
Updating rate in dealing with 

foreground 

H  02.0  
Updating rate in dealing with 

background 

Eq. (9) 
0d  22.0  

Diameter of a football in meters 

After Eq. (9) 
0a  04.0  

Projected area of a football in 

square meters 

 

Section III for 

temporal 

filtering of 

ball likelihood 

1h  75.0  
Maximum likelihood in the 

temporal filter 

2h  55.0  
Medium likelihood in the temporal 

filter 

3h  35.0  
Minimum likelihood in the 

temporal filter 

BN  50  
Buffer size in frames for temporal 

ball filtering 

Eq. (12) 
0  5.0  

Threshold of angle in radian for a 

bouncing ball  

Eq. (20) 
fz  5.1  

Height threshold of a flying ball in 

meters 

 

 Ground truth ball positions were manually extracted at 

every 25th frame from the common ground plane, providing 

239 GT positions in 5500 frames. To determine 3D ground 

truth data of the ball, we need to locate image-plane ball 

positions in multiple sequences by hand. Then, its 3D position 

is estimated by using multi-view geometry constraints. For the 

frames between two GT frames, the estimated GT positions are 

linearly interpolated. At the same time, motion phases within 

the GT data were also extracted whenever there was a phase 

transition among the four phases. Based on the manually 

derived ground truth ball positions and motion phases, two 

types of evaluation are presented. The first is the distance (in 

meters) between estimated and ground-truth (GT) ball 
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Fig. 8.  Architecture of the proposed tracking system and arrangements of eight cameras with their field-of-views. 
  



positions, in which only 2D distance in x-y plane is used. The 

second is a comparison of the transitions of motion phases 

between estimated and GT data. Details of these two 

evaluations are discussed in the next two Sections below. 

C. Evaluation of Tracking Accuracy versus Latency 

In eight testing sequences of 5500 frames each, 3D ball 

positions are estimated in about 3720 frames. Excluding the 

1131 frames in which the ball is out of play, approximately 

85% of in-play ball positions are correctly detected using the 

proposed method. Figure 9 presents the accuracy measured as 

distance between ground truth and estimate in the ground 

plane. The estimate is accurate to within 3m of the ground truth 

position for more than 90% of the recovered ball positions.  It is 

not trivial to further improve the accuracy of the proposed 

method, given the errors and inconsistencies among calibration 

parameters at this order of magnitude. The ground-plane errors 

among calibration projections are estimated to be between 0.1 

and 2.5 meters, depending on the distance of the ground point 

to the cameras. In addition, the model used to estimate 3D 

position for the flying ball does not take into account all factors 

(such as air resistance). Hence, with these considerations, the 

proposed method demonstrates promising performance for 

real-time automated ball tracking.  

 

 Table 2. Tracking accuracy versus latency (buffering size) 

           Items 

Buffer/Latency 

Recover 

rate 

Distribution of recovered ball samples  

<0.5m <1.0m <1.5m <2.0m <2.5m <3.0m 

0/0 34.5% 14.7% 25.6% 29.1% 30.6% 32.8% 33.4% 

25 frames/1s 72.5% 26.0% 48.4% 57.8% 62.8% 67.4% 69.0% 

50 frames/2s 85.2% 26.7% 50.6% 64.4% 71.8% 76.2% 78.6% 

75 frames/3s 87.1% 26.9% 50.8% 65.1% 72.3% 77.0% 78.7% 

 

Figure 10(a) demonstrates a plane view of the estimated 3D 

ball positions when a ball was kicked out by the goalkeeper. 

Estimated ball positions are shown as a magenta trajectory. The 

grey trajectories are ground plane projections of ball positions 

from individual camera views. The brown line in front of the 

3D ball trajectory refers to path of ground truth, along which 

the actual ball trajectory should follow. Player positions are 

 
(a)  

 
(b)  

Fig. 10.  Estimated 3D ball trajectory compared with GT and two 2D trajectories (a), and the visualization of the 3D trajectory from 

frame #755 to #826 shown in (b).  
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Fig. 9. Probability distribution of tracking accuracy compared the 

estimated ball positions with GT in 5500 frames: (a) PDF of the 

accuracy, (b) is accumulated probability of (a). 



marked by black or white circles with tails representing recent 

trajectory. For comparison, two single-view ball trajectories are 

given in image planes and projected ground plane, respectively. 

The 3D visualization of the ball trajectory from frame 755 to 

826 is also shown in Figure 10(b). 

In the above experiment, a buffer of 50 frames (2 seconds 

latency) is used for temporal filtering. Table 2 illustrates 

performance under various size of buffer (latency) in the 

proposed system. From this table it can be observed that, 

without temporal filtering, only 34.5% ball positions can be 

recovered. Allowing a latency of 1, 2 and 3 seconds, the overall 

recover rates are significantly improved to 72.5%, 85.1% and 

87.1%, respectively. At the same time, the corresponding 

tracking accuracies within 2.5 meters, the maximum 

measurement errors of the system output are 32.8%, 67.4%, 

76.2% and 77.0%. This demonstrates that although longer 

latency or buffer size is helpful to attain higher recovery rate, it 

seems that no further significant improvements in tracking 

accuracy can be achieved with latency of more than 2 seconds. 

In other words, a buffer of 50 frames or a latency of 2 seconds is 

an acceptable trade-off between a high recovery rate and a 

reasonable delay for a broadcast system. Consequently, the 

overall latency is 3 seconds alongside one second delay (25 

frames buffering) for the multi-view tracking of the ball. 

However, in a broadcast environment, this delay is of the size as 

other common digital processing operations; furthermore, the 

method can operate on locally generated streamed media 

without accumulating an increasing delay.  

Most of the estimates additionally provided by the temporal 

filter are occluded ball observations. If the ball is occluded by 

several players or in a crowd, whether its trajectory can be 

recovered depends on if the ball can be observed again within 

the given latency, even from separate camera views. A ball 

in-possession is expected to emerge eventually from the 

player(s) by whom it is being occluded. When the ball is found 

within temporal filter window, its trajectory is approximated by 

using the trajectory of the corresponding player(s), hence the 

lower accuracy of these estimations. However, in the limiting 

case of severely occluded situations lasting for several seconds 

or more, the system will fail. The challenge remains to design a 

system as robust as a human observer. 

D. Evaluation of Phase Transition Accuracy 

Figure 11 illustrates a complete 3D trajectory history 

(ground plane projection) from frame 0 to 954 and its 

corresponding phase transitions. In Fig 11(a), the frame 

numbers at some of the phase transition points are marked and 

player trajectories are given in black. Compared with GT, the 

phase transitions are successfully extracted as shown in Fig 

11(b).  

The analysis of the frame-by-frame phases can be presented 

as a confusion matrix, as in Table 3, from which several facts 

can be observed. Firstly, during the period, in over 50% of 

samples, the ball is in-possession; and in 33% of samples the 

ball is rolling, thus 2D models can be applied to 83% of cases. 

Secondly, about 25% rolling and 13% in-possession balls are 

misjudged from each other, which happens when a rolling ball 

cannot be observed in a crowd or an in-possession ball is rolling 

near the player who possessed the ball. This misjudgment 

affects the accuracy of the ground-truth as well as the estimate 

from the proposed method. Disregarding the confusion 

between these two phases, the average correct rate of phase 

transitions will increase from 82.6% to 98.3%. Interestingly, 

about 11% flying balls are incorrectly classified as rolling. One 

explanation for this error is that a low-flying ball has a similar 

appearance to a rolling ball. Calculation of the height wz  is 

sensitive to errors in camera calibration and motion detection; 

hence the threshold fz  has to be tolerant to these errors. 

Heights below fz  will not be recognized correctly. 

Table 3. Quantitative analysis of Figure 11(a) using ground 

truth and estimated results.  

          GT  

Results 
Flying Rolling Possessed Out Sum 

Flying 
Frame 56 3 1 0 60 

% 88.9 0.8 0.2 0.0 5.4 

Rolling 
Frame 7 273 77 0 357 

% 11.1 73.4 13.6 0.0 32.4 

Possessed 
Frame 0 96 480 0 576 

% 0.0 25.8 84.8 0.0 52.3 

Out 
Frame 0 0 8 100 108 

% 0.0 0.0 1.4 100.0 9.8 

Sum 
Frame 63 372 566 100 901 

% 5.7 33.8 51.4 9.1 100.0 

  

 (a)                             

  (b)  

Fig. 11.  Overall trajectory of the ball from frame #0 to frame #954 

(left), and its corresponding phase transition graph in a complete CPT 

compared with ground truth with four y-axis positions represent the 

four phases (right).  



It is worth noting that there are some phase transitions 

missing from the estimated trajectory. The reason here is not 

phase transition in a short period, but the lack of sufficient 

observations. For example, the phase transition from possessed 

to rolling between frame #413 and #450 is successfully 

detected. During that period, the ball is rolling within a crowd 

thus cannot be identified in the appearance filtering procedure. 

Although the ball trajectory can be estimated from the player 

trajectory of the player(s) using temporal filtering, the 

corresponding phase is incorrectly classified as in-possession. 

To solve this problem and thereby allow accurate estimation of 

the phase, high, well-separated and perhaps more numerous 

cameras will need to be deployed.  

E. System Limitations 

As discussed above, there are two main drawbacks in our 

system in terms of tracking accuracy and phase transition 

accuracy owing to severe occlusions or insufficient 

observations. In principle, most of these problems may be 

resolved by putting additional cameras, even capturing images 

over the pitch. However, occlusions are still unavoidable in the 

soccer context which constraints the overall recovery rate and 

accuracy. Moreover, our system ignores air friction and cannot 

model some complex movements of the ball, such as the 

„swerve‟, and this may be an interesting topic for further 
investigation.  

VII. CONCLUSIONS  

A method has been described for real-time 3D trajectory 

estimation of the ball in a soccer game. In the proposed system, 

video data is captured from multiple fixed and calibrated 

cameras. Size, color, and speed are features that discriminate 

the ball from other moving objects. Temporal filtering of the 

ball likelihood is also proved essential in robust ball detection 

and tracking. We model the ball trajectory as curve segments in 

consecutive virtual vertical planes, which can accurately 

approximate the real cases even in complex situation. Using 

geometric reconstruction techniques, we can successfully 

estimate 3D ball positions from a single view.  

 One interesting feature of the approach is that it uses 

high-level phase transition information to aid low-level 

tracking. Through recognition of the four phases, 

phase-specific models are successfully applied in estimating 

3D position of the ball. Unlike existing models proposed in the 

literature, the proposed model can fulfill automatic 3D tracking 

without shadow information and manual assistance. The 

results obtained from the proposed model are very 

encouraging. Simple mechanisms for classifying the phase of 

the ball and estimating its trajectory are demonstrated to be 

effective. There is an excellent scope for building more 

sophisticated models into this innovative approach for tracking 

the ball and content-based understanding of soccer videos. 
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