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 Abstract—In this paper, we propose a new method for estimating 

sub-pixel motion via exploiting the principle of phase correlation in the 

Fourier domain. The method is based on linear weighting of the height of 

the main peak on the one hand and the difference between its two 

neighboring side-peaks on the other. Using both synthetic and real data we 

show that the proposed method outperforms many established approaches 

and achieves improved accuracy even in the presence of noisy samples.  

 
Index Terms—phase correlation, motion estimation, sub-pixel 

registration, linear interpolation. 

I. INTRODUCTION 

OBUST and accurate motion estimation is a critical component of 

many image analysis and computer vision applications, where 

pairs of images or sub-images need to be aligned and used for further 

processing. This can benefit a wide range of applications, including 

video coding, image stabilization, image registration, robotic/stereo 

vision, image mosaicking, super-resolution reconstruction, and object 

recognition [1-8, 13], and useful surveys can be found in [4, 7-8].  

Among many existing motion estimation techniques, the phase 
correlation method has emerged as a particularly attractive solution 
and has been successfully applied to image registration, object 
recognition and other applications [9-14]. Three main advantages 
using frequency-domain approaches for motion estimation are: 1) 
robust to distortions caused by intensity and geometry changes [21]; 2) 
able to estimate shift, rotation and scale changes [10]; and 3) high 
efficiency due to the fast implementation of the Fourier transform.  

Although integer-pixel accuracy can be adequate in some cases, 
fractional accuracy sub-pixel registration is generally beneficial to 
most applications [5, 18]. This is because that actual motion occurs in 
arbitrary increments and is oblivious of the discrete nature of the 
image registration grid. In other cases such as magnetic resonance 
imaging (MRI), data are usually sampled using non-integer offsets in 
the spatial Fourier domain before reconstruction and so sub-pixel 
registration by phase correlation is a natural approach in such a context 
[11]. Other application domains that have historically required the 

computation of sub-pixel estimates for registration include image 
down-sampling [18-20], spatial interpolation [21], interpolation-free 
[6] and pyramid-based approaches [2].  

In phase correlation methods, sub-pixel registration is achieved 
using interpolation-based or interpolation-free approaches after 
determining the maximum peak of the correlation surface on the 
integer-accuracy grid. In [20], a least-squares fitting approach has 
been used with removal of outlier spectral components. In [15-17, 21], 

the maximum peak and its four surrounding points are used for 
interpolation-based sub-pixel registration via fitting of quadratic, 
Gaussian, sinc and the so-called esinc functions. Though good results 
have been reported, these methods are generally sensitive to noise.  

Typical interpolation-free approaches can be found in [11, 
18-19]. In [18], a closed-form solution is provided by modelling 
sub-pixel offsets as the result of down-sampling of images undergoing 
integer-accuracy offsets on a higher density grid and then analyzing 

the signal power distribution around the main peak. This is extended in 
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[12] to deal with noisy samples using higher order statistics. In [19], 

discrete phase difference is modeled as a 2-D saw-tooth signal and 
sub-pixel registration is performed by counting the number of cycles 
of the phase difference matrix along each frequency axis. In [11], 
subspace extension is presented for sub-pixel registration based on the 
fact that noise-free phase correlation matrix is a rank one, separable- 
variable matrix. In noisy cases, sub-pixel motion estimation is reduced 
to a problem of finding the rank one approximation to that matrix. All 
these methods require a high signal-to-noise ratio, otherwise 

performance degrades significantly [4, 12].  
In this paper, we propose a high-accuracy sub-pixel registration 

method in the Fourier domain. The basics of phase correlation are 
introduced in Section II and the proposed method is presented in 
Section III. Experimental results and discussion are given in Section 
IV followed by a brief conclusion in Section V.  

II. PHASE-CORRELATION ANALYSIS 

Phase correlation is based on the Fourier shift theorem, which 
states that a shift between two functions will cause a phase shift in the 

Fourier domain. Let ),( yxf  and ),( yxg
 
be two NM   images 

and their 2-D discrete Fourier transforms are denoted as ),( vuF  and 

),( vuG , where ]1,0[,  Mux  and ]1,0[,  Nvy . If the 

above two images satisfy ),(),( yyxxgyxf   where 

),( yx   is the 2-D offset, then, we have that  
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where * is the complex conjugate, 1j , and ),( vuP  is 

referred to as the cross power spectrum of the two signals.  

If we apply the inverse Fourier transform to ),( vuP , the 

so-called phase correlation surface (PCS) can be obtained as ),( yxp . 

This is a 2-D impulse (Dirac) function located at ),( yx  if the two 

images under consideration are perfect replicas of each other. If not the 

surface is noisy but crucially still contains a dominant peak which 
yields an estimate of the shift parameters and can be recovered as  

|),(|maxarg)ˆ,ˆ(
,

yxpyx
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In this case, the peak value can be substantially less than unity 
(the expected value). To enhance the peak identification accuracy, 
pre-processing in the shape of filtering or windowing is often used. In 
our paper, however, such processing has not been considered in order 
to facilitate comparisons with competing methods so that the results 
are not conditional upon using a specific pre-processing regime.  

It is worth noting that sub-pixel offsets will also trigger lower 

peaks appearing in the same neighborhood of the PCS rather than a 
single peak. Adopting the assumption that sub-pixel offsets between 
images are correspond integer offsets on a higher-density grid 

followed by down-sampling, ),( yxp  is approximated as [18]  
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where ),( yxn  refers to effect of interference terms including spatial- 

interpolation effects, non-overlapped regions, and noise.  
If the interference term can be ignored when the SNR is high 

enough, the sub-pixel offset can be obtained as: 
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where the sub-pixel offsets are decided by linear weighting the main 
peak and one of the side-peaks. Although good results have been 
reported in [18], the above solution has the drawback that it doesn't 
take into account the interference term. When real data are involved 
lower accuracy is achieved as demonstrated below. 

According to (4), )0,0(p  and )0,1(p  are obtained as:  
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If we substitute (6) and (7) in (5) and let 0x , we have  
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Obviously, due to the effect of the interference item 0 Forx  

even when 0x . Similarly, 0 Fory  even when 0y . As 

a result, we present a new solution to overcome this ambiguity which 
is discussed in the next Section. 

III. SUB-PIXEL MOTION ESTIMATION 

To obtain sub-pixel accuracy, the location of an underlying peak 

defined on a higher density (in the limit continuous) PCS needs to be 

identified. To achieve this, some representative approaches using 

interpolation are summarized below. 

A. Existing Methods  

In general, the location of the highest peak ),( 00 yx is taken as the 

central point, and one or more of its closest neighbors are then used for 

interpolation. For simplicity, we denote ),(),( 00 lykxplkC 
 

where ]1,0,1[, lk  as shown in Fig. 1. As mentioned above, in 

[18] linear weighting is used taking into account )0,0(C
 
and either 

)0,1(C
 
or )1,0(C

 
to respectively estimate x

 
and

 
y . In [21], 

two 1-D quadratic curves are fitted in x
 
and

 
y directions using three 

points including the main peak and its two neighboring peaks. Then, 

x
 
and

 
y  are determined as follows:  
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In [16], two 1-D Gaussian functions are fitted using the same three 

points yielding: 
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Using the same triplets of points, two 1-D sinc  functions are fitted 

in [15-17]. Further a modified esinc function is also employed in [15]. 

It is worth noting that the last two approaches do not lead to 

closed-form solutions and consequently optimality may not be 

demonstrable analytically.     

 

)1,1( C  )1,0( C  )1,1( C  

)0,1(C  )0,0(C  )0,1(C  

)1,1(C  )1,0(C  )1,1(C  

Figure 1. Correlation values of the main peak )0,0(C
 
and its  

direct neighbors for sub-pixel motion estimation. 

B. Proposed Method 

It is worth mentioning that one possible categorization of the 
above methods can be based upon whether they use (in addition to the 
maximum peak) neighborhoods of one-sided ([12], [18]) or two-sides 
([15]-[17], 21]). As implied by (6)-(8), using one-sided information is 
sensitive to noise. Consequently, in what follows we favor the use of 
two-sided neighborhoods.  

Firstly, let us define the difference between the two-sided 

neighbors along the x and y directions as 
xD  and 

yD , i.e.  

)0,1()0,1(  CCDx ,
  

)1,0()1,0(  CCDy
 (11) 

If interference terms can be ignored, i.e. under a high SNR, we 

can derive from (4) that )sin()].1([2 1 xxxDx     and  

)sin()()0,0( 1 xxc    . When )1,0(x , our estimate in 

the x  direction Ourx  can be obtained as  
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As seen from (12), more closer x  to 1 is, more accurate the estimate 

becomes. Decreasing x  to near zero may increase the relative error 

of estimate. However, the absolute error is still limited as x  itself is 

small and the effect of interference terms becomes more important.  

If we consider the interference terms and substituting (4) into 
(12), we obtain that 
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If the interference term cancels out within the boundaries of a 

compact neighborhood or it exhibits even-function characteristics, i.e. 

)0,1()0,1(  nn , we have 0 Ourx  when 0x . This renders 

our estimate more robust than the one in [18] as illustrated in Eq. (8). 
More generally, our estimate in the x  direction is given by 
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As seen from (14), if 0xD  we have 0 Ourx . On the other 

hand, we have 0 Ourx  if 0xD . When the two side peaks are 

equal, i.e. 0xD , there is no such bias then 0 Ourx . This means 

that the obtained estimate is always biased towards the sign of 
xD , the 
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difference of the two-side neighbors, rather than the direction of a 
higher side-peak. As a result, this may lead to better estimates in 
generating good results as explained below.    

Consider the case when )1,0(x , in fact both Forx  and 

Ourx  can be written in the form of 
1]/)0,0(1[  xSC  where we 

have )0,1()0,1(  CCSx  but )0,1(CSx   in Foroosh 

[18]. Using the peak difference rather than the peak height helps to 
make a difference in the following cases as illustrated in Fig. 2. 

 

 

Figure 2. Two typical examples of peaks on the correlation 
surface, where A and B correspond to cases with more or less noise. 

 
In Fig. 2, Case A is typical “noisy” motion estimation (not 

well-defined main peak and leakage of energy towards side peaks) and 

will force Forx  to have given a significant bias away from the main 

peak. In contrast our scheme is insensitive to the actual heights of the 
side peaks and will still produce an estimate of high accuracy. For case 

B (typical of noise-less motion estimation i.e. low leakage) both 
schemes perform well in yielding a more reliable estimate.   

Similarly, the estimate for y  is given by 
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C. Uncertainty of the Main Peak 

When the sub-pixel shift is ±0.5, it can be found that there are two 

or more dominant peaks on the PCS. In the case 5.0x , we have  

)0,0()0,1()0,0()0,1( nnCC  if assuming 0y  for 

simplicity. If the interference item can be ignored subject to a high 
SNR, then the difference becomes zero, which renders the heights of 

the two peaks involved equal. Similarly if 5.0 yx , it can be 

shown that the following four correlation values  involved i.e. 

)0,0(C , )0,1(C , )1,0(C  and )1,1(C  are all equal. Due to the 

effect of interference terms, any of them can be extracted as the highest 
peak and leads to ambiguity. To overcome this drawback, an 

additional condition is introduced below, where )1,85.0[  is used 

to measure how close the two correlation values are.   
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IV. RESULTS AND DISCUSSION 

Both synthetic and real data have been used for evaluating the 
performance. Synthetic data is generated by displacing the original test 
images with known sub-pixel shifts (considered as ground truth) using 
linear interpolation. For experiments using real data, a set of MRI 
images are employed which have undergone sub-pixel displacements. 

If we consider the ground truth data as a reference, error vectors 
for the estimates obtained by each competing method can be 

computed. Let 
xd  and 

yd  denote the corresponding vectors of 

absolute error, i.e. |ˆ|)( iix xxid   and |ˆ|)( iiy yyid  , 

where ),( ii yx  are the thi  real displacements and )ˆ,ˆ( ii yx  their 

corresponding estimates. The mean   and standard deviation   of 

error vectors are computed to assess accuracy. Additionally, the mean 
squared error (MSE) between the estimates and the ground truth is also 
used as a performance measure. This is consistent with work reported 
elsewhere (i.e. [4]). These three measures are defined as follows. 
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Consequently, a good quality estimate is expected to minimize 
such measures, where MSE and   provides accuracy of the estimate 

and   reflects how robust or consistent the estimate can be under 

different conditions. In addition, we also require that the values 
obtained for each of the three measures above are close to each other. 

This is important as it will show if the estimate is sensible to image 
contents such as edge effects under interpolation.  

A. Synthetic Data 

To generate sub-pixel shifts and evaluate the corresponding 

algorithms, five well-known images are employed which include 
“Airfield”, “Barbara”, “Image043”, “Paris” and “Pentagon” as shown 
in Fig. 3. These are monochrome 8bpp images, and four of them are of 
512 512 pixels except “Paris” which is of 200 200. They are 
shifted by linear interpolation to obtain sub-pixel displacements. This 
is different from that followed in [18] and [19], in which sub-pixel 
shifts are obtained by low-pass filtering and down- sampling of a real 

high resolution.  
To fully test the effectiveness of the proposed method, in each 

direction 17 shifts are generated within the interval of [-1,1] which 

A: High side peaks 
similar to each other 

B: low side peaks 
similar to each other 

     

Fig. 3. Five test images used to generate sub-pixel shifts namely “Airfield”, “Barbara”, “Image043”, “Paris” and “Pentagon”, respectively. 
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include -1, -0.875, -0.75, -0.667, -0.5, -0.333, -0.25, -0.125, 0, 0.125,  
0.25, 0.333, 0.5, 0.625, 0.75, 0.875 and 1. Consequently, for each test 
image in total a group of 289 2-D offsets are formed to generate shifted 
samples in the test, and results from each group are then evaluated in 

terms of  , MSE and   measurements for evaluations.  

Here, our results are compared with those obtained from Hoge 
[11], Foroosh [18], Stone [20] and interpolation based approaches 
using Gaussian [16], Quadratic [21], Sinc [17] and ESinc [15] models. 
The corresponding results in terms of MSE and   measurements are 

illustrated in Table I and Table II, respectively for quantitative 
evaluations. Please note that the standard Blackman window is 
employed to all the methods except Hoge in the spatial domain 
towards removing image-boundary effects for robustness. As can be 
seen, our approach consistently yields the best results in both x  and 

y  directions achieving the minimum values in terms of MSE and    

measurements. In addition, the two measures of our results along the 

x  and y  directions are very close to each other, which also show that 

our result is insensitive to image contents.  

Regarding MSE measurements in Table I, Stone‟s approach 
almost fail in these tests, and its average errors are over half pixels in 
both the x  and y  directions. The results of Hoge, Foroosh and 

quadratic interpolation are very comparative with an average error 
between 0.11 and 0.15 pixels, though Hoge‟s method appears slightly 
worse. Interpolation using Gaussian, Sinc and ESinc produces similar 
results, whose average error is between 0.064 and 0.085 pixels, the 

second best in the group. Finally, our proposed method yields the most 
accurate results with an average error of less than 0.038 pixels. 

Regarding the measurement of   in Table II, it is useful in 

measuring how robust and consistent the results are for one image 
under different sub-pixel shifts. Not surprisingly, it is found that Stone 

[20] still generates worst results. However, the 2nd worst results are 
from ESinc interpolation, followed by the methods from Hoge and 
Foroosh, which shows that these methods seem lack of robustness and 
may produce inaccurate estimates under certain circumstances. 
Interpolation based methods using Gaussian/quadratic and our scheme 
generate much less   values, where our results are again the best.  

1) Error Distribution Analysis 
Although the   above can provide a rough measurement of the 

robustness of these methods, it fails to show how accurate the 
estimates are under various shifts. To further evaluate the error 
distribution of these methods, we further analyze the MSE and   

measurements in the x  and y  directions as follows. Firstly, the shift 

in the y  direction is fixed. For all the estimates of horizontal shifts 

among the five test images in Fig. 3, their MSE and   measurements 

are attained. When the fixed shift varies among its 17 possible values, 
for each method two curves of MSE and   vs. the fixed vertical shift 

are obtained. Similarly, two curves of MSE and   values over 

estimates in the y  direction vs. the fixed horizontal shift are also 

obtained for each method. Curves obtained from different methods are 

Table I. Measurement of   values along x- and y- axes for the five test images in Fig. 3 using 289 shifts between [-1,1] for each image. 

Test images Hoge [11] Foroosh [18] Stone [20] Gaussian [16] Quadratic [21] Sinc [17] ESinc [15] Ours 
Airfield (0.1334,0.1328) (0.0831,0.1327) (0.7306,0.7066) (0.0559,0.0479) (0.1118,0.1106) (0.0786,0.0786) (0.0686,0.0919) (0.0228,0.0132) 

Barbara (0.1937,0.1330) (0.1634,0.1403) (0.7458,0.6913) (0.0643,0.1195) (0.1167,0.1212) (0.0881,0.1125) (0.0998,0.1194) (0.0429,0.0954) 

Image043 (0.1331,0.1330) (0.0828,0.0902) (0.7428,0.6705) (0.0515,0.0498) (0.1108,0.1090) (0.0837,0.0854) (0.0342,0.0288) (0.0066,0.0052) 

Paris (0.1336,0.1337) (0.1631,0.1671) (0.6990,0.7057) (0.1100,0.0560) (0.1052,0.1152) (0.0897,0.0777) (0.0996,0.0885) (0.0831,0.0269) 

Pentagon (0.1330,0.1330) (0.0800,0.1416) (0.6805,0.6852) (0.0576,0.0485) (0.1123,0.1098) (0.0768,0.0766) (0.0777,0.0960) (0.0276,0.0208) 

Mean (x, y) (0.1454,0.1331) (0.1145,0.1344) (0.7197, 0.6919) (0.0679,0.0644) (0.1114,0.1132) (0.0833,0.0862) (0.0760,0.0849) (0.0366,0.0379) 

 

Table II. Measurement of   values along x- and y- axes for the five test images in Fig. 3 using 289 shifts between [-1,1] for each image. 

Test images Hoge [11] Foroosh [18] Stone [20] Gaussian [16] Quadratic [21] Sinc [17] ESinc [15] Ours 
Airfield (0.0813,0.0806) (0.0943,0.1502) (0.6899,0.6640) (0.0370,0.0328) (0.0696,0.0629) (0.0629,0.0633) (0.1437,0.2431) (0.0171,0.0128) 

Barbara (0.4120,0.0870) (0.1811,0.0596) (0.5047,0.4671) (0.0394,0.0581) (0.0676,0.0953) (0.0811,0.1122) (0.1985,0.1190) (0.0317,0.0624) 

Image043 (0.0811,0.0809) (0.0777,0.0820) (0.7776,0.5169) (0.0391,0.0419) (0.0730,0.0770) (0.0620,0.0622) (0.0766,0.0372) (0.0067,0.0047) 

Paris (0.0831,0.0821) (0.1111,0.1812) (0.5602,0.5876) (0.0539,0.0351) (0.0891,0.0642) (0.0753,0.0660) (0.0942,0.1672) (0.0588,0.0220) 

Pentagon (0.0808,0.0809) (0.0935,0.1628) (0.5277,0.5497) (0.0415,0.0315) (0.0621,0.0672) (0.0638,0.0640) (0.1397,0.2515) (0.0211,0.0177) 

Mean (x, y) (0.1477,0.0823) (0.1116,0.1271) (0.6120, 0.5571) (0.0422,0.0399) (0.0711,0.0747) (0.0692,0.0735) (0.1305,0.1636) (0.0271,0.0239) 

 

 

     

Figure 4.  Measurements of   and   (y-axis) under various sub-pixel shifts (x-axis) over the five test images in Fig. 3: The left two are 

obtained respectively as average   and   values over all vertical shifts with fixed sub-pixel shifts in the horizontal direction, and the right two 

are for horizontal shifts under fixed sub-pixel shifts in the vertical direction.  
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plotted in Fig. 4 for comparisons, where the curves from Stone‟s 
method are omitted for better visualization purpose as they suffer  
large data ranges due to significant estimate errors produced. 

As can be seen, these curves appear nearly bilateral symmetry as 
even functions, where the reason is that the shift values that we 

adopted are almost symmetry. Again, it has clearly demonstrated that 
our proposed method help to produce least MSE and   values, i.e. 

the most accurate and most robust results, followed by the results 
using Gaussian fitting. Although Foroosh‟s method and ESinc fitting 
occasionally generate good results, they suffer large estimate errors 

when the absolute values of sub-pixel shifts are more than 0.6. Fitting 
using Sinc and quadratic functions yield consistent estimates, which 
makes the corresponding curves appear like lines. In addition, Sinc 
fitting outperforms quadratic fitting, and they both defeat Hoge‟s 
method. Although Hoge‟s method generates consistent measurement 
in the vertical direction (see the left two images in Fig. 4), the results in 
the horizontal direction are less consistent. This is due to occasional 
incorrect estimates from the test set, which has inevitably shown lack 

of robustness of this method.  

B. Synthetic Data with Additive Noise 

In this section, performance assessment of competing sub-pixel 
estimation methods is carried out using data with additive Gaussian 

and uniform noise. For simplicity, the six best performing methods 
from the previous test (i.e. Tables I and II) are selected. Before adding 
noise, the intensity level of the original images is normalized within 

]1,0[ . Then, zero-mean noise is generated with different variance 

values to be added to the test images. In total, five levels of noise are 
used for both Gaussian and uniform noise, and the corresponding 

variance values are given in Table III.  Example images with additive 
Gaussian / uniform noise are shown in Fig. 5 where it can be visually 
appreciated the extent to which the images have been degraded.  

 

       
Figure 5. Examples of two groups of noisy test samples with additive 

Gaussian noise (the left two) and uniform noise (the right two) 
embedded to the “Barbara ” image, where the noise levels in each 
group are 2 and 5, respectively.  
 

Table III. Variance values for five levels of Gaussian and uniform 
noises used to generate noisy samples.  

Variance Level-1 Level-2 Level-3 Level-4 Level-5 
Gaussian 0.005 0.015 0.025 0.035 0.045 

uniform 0.05 0.10 0.15 0.20 0.25 

 

For each of the five noise levels, 289 noisy samples are generated 
with embedded additive noise. Displacement estimates are computed 
between each pair of the 289 noisy samples for quantitative analysis. 
The MSE measures along x-axis and y-axis are then obtained and 
plotted in Fig. 6. Firstly, we can see that curve fitting using sinc and 

esinc is very sensitive to noise, which makes these two methods weak 
performers. Secondly, Foroosh‟s method yields third worst results, 
followed by quadratic interpolation, where the latter produces much 
better results than the former when samples with Gaussian noise are 
used. Thirdly, the results from Gaussian fitting and our approach are 
the best and robust over the entire set of test conditions. Moreover our 
approach exhibits lower MSE values slightly outperforming Gaussian 
fitting and is shown to be the overall best option in this comparison. 

 

 

  

  

Figure 6. Comparison of MSE results (y-axis) vs. noise levels (x-axis) 
along the x- and y- directions (as the left and the right columns) for 
Gaussian (top row) and uniform noise (bottom row), respectively. 

C. Real Data  

In this section, real MRI data are used for evaluations. The data 
set is from Hoge and consists of five MRI images of a grapefruit [11]. 
The true offsets between each pair of images are known so they can be 
used as ground truth for performance evaluation. The first MRI image 
and its two noisy samples are shown in Fig. 7.  

Firstly, 10-pairs of combinations are extracted from the five 

noise-free MRI images and used for motion estimation, and the 
estimated shifts as well as their corresponding average MSE 
measurements are given in Table IV. In general, the estimate along the 
x-axis has much larger MSE value than that of the y-axis, and the 
reasons are analyzed in detail in [11]. Among all the test methods, 
again it was found that the results generated by our method as well as 

    Table IV. Estimated shifts and their average MSE measurements for 10 image pairs of MRI data. 

Image 

pairs 

Real- 

shifts 

Hoge  

[11] 

Foroosh  

[18] 

Balci  

[19] 

Gaussian  

[16] 

Quadratic 

[21] 

Sinc  

[17] 

ESinc  

[15] 
Ours 

[1,2] (-2.40, 4.00) (-2.03, 4.01) (-2.22, 4.23) (-2.11, 4.10) (-2.07, 4.02) (-2.03, 4.01) (-2.0, 4.00) (-2.0, 4.00) (-2.09, 4.02) 

[1,3] (-4.80, 8.00) (-4.13, 8.01) (-4.36, 8.24) (-3.9, 8.05) (-4.33, 8.01) (-4.18, 8.00) (-4.12, 8.00) (-4.25, 8.0) (-4.34, 8.01) 

[1,4] (-7.20, 4.32) (-6.81, 4.17) (-6.59, 4.41) (-6.22, 4.34) (-6.57, 4.37) (-6.73, 4.25) (-6.72, 4.12) (-6.54, 4.31) (-6.58, 4.38) 

[1,5] (-7.20, 12.0) (-6.82, 12.02) (-6.59, 12.26) (-6.39, 12.15) (-6.57, 12.06) (-6.74, 12.03) (-6.73, 12.0) (-6.54, 12.04) (-6.59, 12.08) 

[2,3] (-2.40, 4.00) (-2.1, 3.99) (-2.32, 3.75) (-2.18, 3.86) (-2.26, 3.97) (-2.13, 3.98) (-2.09, 4.0) (-2.19, 4.00) (-2.27, 3.96) 

[2,4] (-4.80, 0.32) (-4.28, 0.15) (-4.55, 0.39) (-4.16, 0.30) (-4.55, 0.35) (-4.65, 0.22) (-4.72, 0.11) (-4.59, 0.28) (-4.54, 0.36) 

[2,5] (-4.80, 8.00) (-4.78, 8.00) (-4.55, 8.24) (-4.13, 7.92) (-4.56, 8.01) (-4.65, 8.00) (-4.71, 8.0) (-4.60, 8.00) (-4.54, 8.01) 

[3,4] (-2.40, -3.68) (-2.17, -3.84) (-2.4, -3.61) (-2.34, -3.62) (-2.433, -3.66) (-2.25, -3.78) (-2.27, -3.89) (-2.46, -3.72) (-2.40, -3.65) 

[3,5] (-2.40, 4.00) (-2.18, 4.51) (-2.41, 3.76) (-2.49, 4.07) (-2.44, 4.00) (-2.27, 4.00) (-2.27, 4.0) (-2.47, 4.0) (-2.41, 4.00) 

[4,5] (0.00, 7.68) (0.01, 7.85) (-0.18, 7.61) (-0.03, 7.66) (-0.013, 7.64) (-0.01, 7.78) (0.00, 7.87) (0.00, 7.54) (-0.02, 7.64) 

Mean MSE (x,y) (0.367, 0.191) (0.337, 0.195) (0.586, 0.084) (0.355, 0.031) (0.333, 0.061) (0.349, 0.130) (0.385,0.051) (0.349, 0.040) 
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Gaussian fitting are the best. The corresponding MSE values are 
(0.349, 0.040) and (0.355, 0.031), respectively, which are slightly 
better than those using quadratic, sinc and esinc fitting. The methods 
by Hoge [11], Foroosh [18] and Balci [19] yield significant errors, and 
their MSE values were found respectively as (0.367, 0.191), (0.337, 

0.195) and (0.586, 0.084).  
Regarding motion estimation from noisy samples, among all 

methods, as shown in Fig. 8, our proposed method together with curve 

fitting using Gaussian and quadratic functions were shown to be the 

ones less sensitive to noise. Fitting using sinc and esinc functions are 

found very sensitive to noise. Although good results are generated in 

the horizontal direction, Foroosh‟s method [18] yields the worst results 
in the vertical direction, which makes it less robust in this test.  

 

   

Figure 7. One of the five original MRI images (left, Courtesy of W. 

S. Hoge [11]) and its two noisy versions (the right two) embedded with 
the Gaussian and uniform noise at variance level 3, respectively.  

 

 

  

  

Figure 8. Comparison of MSE results (y-axis) vs. noise levels (x-axis) 
for the 10 pairs of noisy MRI data, where the top and bottom rows 
respectively refer to results from noisy samples with Gaussian and 

uniform noise. The left and the right columns are for shifts along the 
horizontal and vertical directions.  

V. CONCLUSIONS 

We have proposed a new scheme for the identification of sub-pixel 

motion estimates on phase correlation surfaces. The robustness of the 

proposed method in the presence of the noise and other forms of 

interference such as non-overlapping image material has been 

demonstrated both theoretically and empirically. It was found that 

taking into account the difference between the two secondary 

side-peaks as opposed to a one-sided peak improves considerably the 

sub-pixel accuracy performance. Results obtained using a variety of 

test material, including manually displaced digital imagery and MRI 

data, under a variety of test conditions have confirmed the superiority 

of our approach.   
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