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Abstract

In a recent paper [Abazari R. Application of (G
′

G
)-expansion method to travel-

ling wave solutions of three nonlinear evolution equation. Computers & Fluids
2010;39:1957–1963], the (G′/G)-expansion method was used to find travelling-wave
solutions to three nonlinear evolution equations that arise in the mathematical mod-
elling of fluids. The author claimed that the method delivers more general forms
of solution than other methods. In this note we point out that not only is this
claim false but that the delivered solutions are cumbersome and misleading. The
extended tanh-function expansion method, for example, is not only entirely equiv-
alent to the (G′/G)-expansion method but is more efficient and user-friendly, and
delivers solutions in a compact and elegant form.
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Over the past two decades or so several methods for finding travelling-wave solutions
to nonlinear evolution equations have been proposed, developed and extended. The
solutions to dozens of equations have been found by one or other of these methods.
References [1–12] and some of the references therein mention some of this activity.

One recent method that has proved to be popular is the (G′/G)-expansion method
originally proposed by Wang et al. [1]. The solutions delivered by this method look
rather cumbersome; furthermore, they appear to have more free parameters than
solutions delivered by other methods. This has led to two unfortunate phenomena:
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(i) some authors claim that the (G′/G)-expansion method delivers solutions that
are ‘more general’ than those delivered by other methods;

(ii) some authors go on to claim that they have found ‘new’ solutions when often
the truth is that the so-called ‘new’ solutions are merely disguised versions of
previously known solutions that may be found by more efficient methods.

The claim in phenomenon (i) was shown to be false independently in three recent
papers [2–4]; in each of these papers it is shown that the (G′/G)-expansion method
is entirely equivalent to the extended tanh-function expansion method originally
proposed by Fan [5]. Furthermore, in [4] we showed that the latter method is more
efficient and more user-friendly than the former method. This was illustrated with
reference to the KdV equation.

To illustrate both phenomena we focus on a paper that appeared recently in this
journal [6]. In [6], the (G′/G)-expansion method was applied to three nonlinear evo-
lution equations that arise in the mathematical modelling of fluids. For illustrative
purposes we consider the solutions only for the first of these equations, namely the
transformed reduced Ostrovsky equation (dubbed the Vakhnenko–Parkes equation
in [6])

uuxxt − uxuxt + u2ut = 0; (1)

similar observations may be made about the solutions to the other two equations,
namely the regularized long wave (RLW) equation and the symmetric RLW equa-
tion.

In [7] we summarized the derivation of nine solutions to Eq. (1) that are delivered
efficiently by the extended tanh-function expansion method, namely

u11 = 6K2 sech2(K�), (2)

u12 = −6K2 cosech2(K�), (3)

u13 = −6K2 sec2(K�), (4)

u14 = −6K2 cosec2(K�), (5)

u21 = −4K2 + 6K2 sech2(k�), (6)

u22 = −4K2 − 6K2 cosech2(k�), (7)

u23 = 4K2 − 6K2 sec2(K�), (8)

u24 = 4K2 − 6K2 cosec2(K�), (9)

u3 = −6/�2, (10)

where � := x− ct−x0, and K, c and x0 are arbitrary real constants. (Note that use
of a computer takes the drugery out of applying expansion methods by hand. For
example, the basic tanh-function method may be applied with minimal effort by use
of the automated tanh-function method [8] which uses the Mathematica package
ATFM.) In [7], we also described where these solutions have appeared before in the
literature.
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In [6] it is shown that the solution to Eq. (1) is given by

u(x, t) = −6k2

⎡

⎣

(

G′

G

)2

+ �

(

G′

G

)

+ �

⎤

⎦ , (11)

where k, � and � are arbitrary constants, and (G′/G) has three different forms
depending on whether �2 − 4� is positive, negative or zero. For example, when
�2 − 4� > 0,

G′(�)

G(�)
=

√
�2 − 4�

2

(

C1 sinh � + C2 cosh �

C1 cosh � + C2 sinh �

)

− �

2
, (12)

where � =
√
�2 − 4� �/2, � = kx + !t, and !, C1 and C2 are arbitrary constants.

In this case (11) becomes (18a) in [6], namely

u(x, t) =
3k2(�2 − 4�)(C2

1
− C2

2
)

2(C2 sinh � + C1 cosh �)2
. (13)

If C2

1
> C2

2
, then (13) may be rewritten as

u(x, t) =
3

2
k2(�2 − 4�) sech2(� + �0), (14)

where tanh �0 := C2/C1; if C
2

1
< C2

2
, then (13) may be rewritten as

u(x, t) = −3

2
k2(�2 − 4�) cosech2(� + �0), (15)

where coth �0 := C2/C1.

The solutions given by (14) and (15) are equivalent to (18b) and (18c) in [6]. Note
that, apparently, these two solutions have six free parameters, namely k, !, �, �,
C1 and C2. However, if we introduce the quantities c, K and x0 defined by

c = −!

k
, K =

k
√
�2 − 4�

2
, Kx0 = −�0, (16)

then (14) and (15) reduce to u11 and u12, respectively. In this form the solutions
have only three free parameters, namely c, K and x0. Similarly, with

c = −!

k
, K =

k
√
4�− �2

2
, Kx0 = −�0, (17)

the solutions given by (19b) and (19c) in [6] can be rewritten as u13 and u14,
respectively. A fifth solution is given by (20) in [6]; apparently it has four free
parameters. However, with c = −!/k and x0 = −C1/(kC2), the solution reduces to
u3 which has only two free parameters, namely c and x0. Solutions corresponding
to u21, u22, u23 and u24 were not presented in [6].
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The foregoing illustrative discussion exemplifies two deficiencies of the (G′/G)-
expansion method: firstly, that the method delivers solutions in a cumbersome form
(see (11) with (12), or (13), for example) and secondly, that the solutions appear
to contain more free parameters than is actually the case. Typically, each solution
can be manipulated into a neater form which displays the correct number of free
parameters. These neat forms are the ones that are delivered directly and more
efficiently by the extended tanh-function method.

It is of interest to note that the introduction of the parameter k into the (G′/G)-
expansion method as presented in [6] is superfluous. This embellishment is not
present in the descriptions of the method in [1–4]. Furthermore, as has been pointed
out in [9], the parameter � is superfluous at least as far as the basic method is
concerned. These observations are exemplified by setting k = 1 and � = 0 in the
above argument: the generality of the solutions is unaffected.

Finally, we make some additional pertinent comments regarding Eq. (1). In [10], the
Exp-function method was used to derive two solutions to Eq. (1). These solutions
are rather cumbersome but, as shown in [11], they may be reduced to u11 and u21

respectively. Reference to [10] is also made in [6]; in the latter it is shown that, by
use of particular values of some of the parameters, (14) reduces to a special case
of u11 which is also one of the special cases mentioned in [10]. In [12], an auxiliary
equation method was used to solve Eq. (1). Twenty eight solutions were derived
including ‘many new’ solutions. However, in [11] we showed that all twenty eight
solutions may be reduced to u11 or u12. In [13], the solutions u11, u21 and u3 were
derived via a method involving Laurent series.

In [13], periodic-wave solutions to Eq. (1) in terms of the Jacobi elliptic cn function
were derived by direct integration. These solutions may also be derived easily by
the Jacobi elliptic-function expansion method as outlined in [14], for example. We
have used the semi-automated procedure that we described in [14] to obtain the
aforementioned solutions in a more user-friendly form, namely

u(x, t) = 6mK2 cn2(K�∣m) + 2
(

1− 2m±
√
1−m+m2

)

K2, (18)

where K, c and x0 are arbitrary, and m is a parameter such that 0 < m ≤ 1. In the
limit m → 1, the two solutions given by (18) reduce straightforwardly to u11 and
u21, respectively.
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