
Strathprints Institutional Repository

Lamb, Wilson and Mcbride, Adam (2011) A distributional approach to fragmentation equations.
Communications in Applied Analysis, 15. pp. 511-520. ISSN 1083-2564

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9031023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


A DISTRIBUTIONAL APPROACH TO FRAGMENTATION
EQUATIONS.

WILSON LAMB1 AND ADAM C MCBRIDE2

Department of Mathematics and Statistics, University of Strathclyde,
Glasgow, G1 1XH, UK.

E-mail: w.lamb@strath.ac.uk a.c.mcbride@strath.ac.uk

To Professor Jeff Webb on his retirement, with best wishes for the future.

ABSTRACT. We consider a linear integro-differential equation that models multiple fragmentation
with inherent mass-loss. A systematic procedure is presented for constructing a space of generalised
functions Z ′ in which initial-value problems involving singular initial conditions such as the Dirac
delta distribution can be analysed. The procedure makes use of results on sun dual semigroups
and quasi-equicontinuous semigroups on locally convex spaces. The existence and uniqueness of a
distributional solution to an abstract version of the initial-value problem are established for any
given initial data u0 in Z ′.

AMS (MOS) Subject Classification. 47D06, 46F05, 45K05.

1. Introduction

Fragmentation processes arise in a number of physical situations such as polymer

degradation, liquid droplet breakup, combustion, and the crushing and grinding of

rocks. In many cases, when modelling such processes, it is assumed that the total

mass in the system is a conserved quantity. However, as pointed out in [1], there

are situations where mass-loss can occur in a natural manner. Motivated by this,

Edwards et al [1] - [3] introduced the linear rate equation

∂tu(x, t) = −a(x)u(x, t) +

∫ ∞

x

b(x|y)a(y)u(y, t)dy + ∂x[r(x)u(x, t)], u(x, 0) = u0(x)

(1.1)

to describe fragmentation with mass-loss. This equation involves a particle mass

distribution function u, a fragmentation rate a, a continuous mass-loss rate r, and a

non-negative measurable function b that describes the distribution of particle masses

x spawned by the fragmentation of a particle of mass y > x. The continuous mass-

loss rate r is defined so that r(m(t)) = −dm/dt for a particle of time-dependent mass
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m(t), while the normalizing condition
∫ y

0

xb(x|y) dx = y − λ(y)y, (1.2)

where 0 ≤ λ(y) ≤ 1, allows for so-called discrete mass-loss to occur in the fragmen-

tation process.

Initial investigations into (1.1) concentrated on finding exact and asymptotic so-

lutions, usually for specific choices of a, b and r; see, for example [1] - [3]. More

recently, in [4] and [5], the theory of semigroups of operators has been applied to an

abstract formulation of equation (1.1) and this has led to existence and uniqueness re-

sults being established for solutions arising from initial data belonging to a physically

relevant Banach space.

A common strategy used in several papers to obtain exact solutions to fragmen-

tation equations is to begin by looking at the case of mono-disperse initial conditions

which are modelled using Dirac delta functionals; see [6] - [8]. Formal arguments, in

which the Dirac delta is treated as a conventional function, are used to find a solution

of these singular initial-value problems and then a solution for general initial condi-

tions is obtained by superposition. In two recent papers [9], [10], we have succeeded in

presenting these arguments within the mathematically rigorous framework of distri-

bution theory, in which the Dirac delta is treated properly as a singular distribution.

Unfortunately, the method we used required us to have an explicit formula for the

semigroup of operators associated with the fragmentation equation and, because of

this, we were only able to cater for a restricted class of fragmentation rate functions,

namely

a(x) = xα+1, b(x|y) = (ν + 2)

(
x

y

)ν
1

y
, r(x) ≡ 0.

Our aim in the present paper is to show that an alternative method, which we devel-

oped in [11] and [12] to deal with photon transport problems involving point sources,

can also be applied to a far more general class of fragmentation equations with mono-

disperse initial conditions.

We begin in Section 2 by describing how the initial-value problem (1.1) can be

expressed as an abstract Cauchy problem (ACP) posed in a physically relevant Banach

space X, and for completeness, give a summary of existing Banach space results that

we require later. In Section 3, we establish analogous results on the sun dual space

X¯ and, in particular, define a subspace Y of X¯ that consists of suitably restricted

continuous functions. A systematic procedure that is based on this Banach space Y

is then used in Section 4 to produce a space of test-functions Z and corresponding

space of generalised functions Z ′. Finally, results on semigroups of operators on

locally convex spaces are used in Section 5 to prove the existence and uniqueness of a

solution u : [0,∞) → Z ′ to an appropriate generalised ACP version of equation (1.1).



DISTRIBUTIONAL FRAGMENTATION EQUATIONS 3

2. Abstract Formulation of the Problem

We shall make the following assumptions on the fragmentation model.

(A1) a ∈ C(R+), where R+ = [0,∞), and a(x) ≥ 0 ∀x ≥ 0.

(A2) b(x|y) ≥ 0 ∀x, y ≥ 0, b(x|y) = 0 for y ≤ x and, for all y ≥ 0,
∫ y

0

b(x|y) dx ≤ n0,

∫ y

0

xb(x|y) dx = y(1− λ(y)),

where n0 is a positive constant and 0 ≤ λ(y) ≤ 1.

(A3) r(x) = r0 ∀x ≥ 0, where r0 is a positive constant.

(A4) The maximum size that a particle can attain is N , where N is a positive

constant.

It follows from (A3) that we are assuming that the continuous mass-loss occurs at a

constant rate r0. We make this assumption only to keep technicalities to a minimum.

The method we describe below will also cater for cases when the continuous mass-loss

rate is size-dependent.

Under these assumptions, equation (1.1) becomes

∂tu(x, t) = −a(x)u(x, t) +

∫ N

x

b(x|y)a(y)u(y, t)dy + r0∂xu(x, t), 0 < x < N, (2.1)

with initial condition

u(x, 0) = u0(x) ∀x ∈ [0, N ]. (2.2)

Also, because of the maximum size restriction, it is appropriate to impose the bound-

ary condition

u(N, t) = 0 ∀t > 0. (2.3)

Our aim is to show that the initial-boundary value problem (2.1) - (2.3) can be

analysed in a rigorous manner when u0(x) = δ(x− `), where ` > 0 and δ is the Dirac

delta distribution. First, however, we summarise what is known about the problem

when u0 is a conventional function. For this, we require the following notation.

Throughout X will denote the Banach space L1([0, N ]) with norm

‖ψ‖
X

:=

∫ N

0

|ψ(x)| dx.

The operators A, T0, T and B are defined by

(Aψ)(x) := −a(x)ψ(x), D(A) := X, (2.4)

(T0ψ)(x) := r0ψ
′(x), D(T0) := {ψ ∈ X : ψ ∈ AC([0, N ]), ψ(N) = 0}, (2.5)

T := A + T0, D(T ) := D(T0), (2.6)

(Bψ)(x) :=

∫ N

x

b(x|y)a(y)ψ(y) dy, D(B) := X. (2.7)
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Note that ψ ∈ AC([0, N ]) indicates that ψ is absolutely continuous on [0, N ]. Also,

routine calculations show that both A and B are bounded on X with

‖Aψ‖
X
≤ aN ‖ψ‖

X
, ‖Bψ‖

X
≤ n0 aN‖ψ‖

X
∀ψ ∈ X, (2.8)

where aN = max {a(x) : 0 ≤ x ≤ N}.

Theorem 2.1. The operator (T,D(T )) is the infinitesimal generator of a strongly

continuous positive semigroup of contractions {exp (tT )}t≥0 on X. Moreover,

(exp(tT )ψ)(x) = exp

(
− 1

r0

∫ x+r0 t

x

a(s) ds

)
ψ(x + r0 t) χ

IN
(x + r0 t), (2.9)

where χ
IN

is the characteristic function of the interval IN = [0, N ].

Proof. This follows from [5, Theorem 9.5 and Corollary 9.6].

Theorem 2.1 and the fact that B is a bounded positive operator on X lead to

the following existence and uniqueness result for the problem (2.1) - (2.3).

Theorem 2.2. Let K := T+B with D(K) := D(T ). Then the operator (K, D(K)) is

the infinitesimal generator of a strongly continuous positive semigroup {exp (tK)}t≥0

on X. Consequently, the ACP

d

dt
u(t) = Ku(t) (t > 0); u(0) = u0, (2.10)

has a unique non-negative, strongly differentiable solution u : [0,∞) → D(K) for all

non-negative u0 ∈ D(K), given by

u(t) = exp (tK)u0, t ≥ 0. (2.11)

Proof. The bounded perturbation theorem [5, Theorem 4.9] establishes that K =

T + B with D(K) = D(T ) is the infinitesimal generator of a strongly continuous

semigroup {exp (tK)}t≥0 on X. Moreover, for non-negative ψ ∈ D(T ),
∫ N

0

[(Tψ)(x) + (Bψ)(x)] dx ≤ (n0 − 1)

∫ N

0

a(x)ψ(x) dx− r0ψ(0) (2.12)

and therefore, from the Kato-Voigt perturbation theorem [5, Corollary 5.17], we can

deduce that the semigroup {exp(−n0aN t) exp(tK)}t≥0 is a strongly continuous pos-

itive semigroup of contractions on X, with generator K − n0aNI. The positivity of

{exp (tK)}t≥0 follows immediately.

It should be noted that, by working in the space X, both the total number and

the total mass of particles in the system at any time are controlled, since
∫ N

0

x|u(x, t)| dx ≤ N

∫ N

0

|u(x, t)| dx < ∞ if u(·, t) ∈ X.
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3. The Adjoint Transport Semigroup

In this section, our aim is to produce an operator, say L, defined in some Banach

space Y of continuous functions on [0, N ] such that L generates a C0-semigroup on

Y and is adjoint to the operator K = T + B of the previous section in the sense that
∫ N

0

(Lη)(x)ψ(x) dx =

∫ N

0

η(x)(Kψ)(x) dx, ∀η ∈ D(L) ⊂ Y, ψ ∈ D(K) ⊂ X.

Due to the fact that X is not a reflexive Banach space, the approach we use involves

the theory of sun dual semigroups [13, pp 62–63].

In the usual manner, the dual space X∗ can be identified with L∞([0, N ]) with

norm

‖η‖∞ := ess sup
x∈[0,N ]

|η(x)| ,

via the duality pairing

(η, ψ) :=

∫ N

0

η(x)ψ(x) dx, η ∈ L∞([0, N ]), ψ ∈ X. (3.1)

Let the family of operators {W (t)}t≥0 be defined on X∗ by

[W (t)η](x) := exp

(
− 1

r0

∫ x

x−r0 t

a(s) ds

)
η(x− r0 t) χ

IN
(x− r0 t). (3.2)

Since

(η, exp(tT )ψ) = (W (t)η, ψ), ∀η ∈ X∗, ψ ∈ X,

it follows that

W (t) = (exp(tT ))∗, ∀t ≥ 0,

where (exp(tT ))∗ is the adjoint of the operator exp(tT ). Standard duality arguments

show that the algebraic semigroup properties of {exp(tT )}t≥0 on X are inherited by

{W (t)}t≥0 on X∗. However, to obtain a strongly continuous adjoint semigroup, each

operator W (t) must be restricted to the sun dual (or semigroup dual) X¯ ⊂ X∗ of

X defined by

X¯ :=

{
η ∈ X∗ : lim

t↓0
‖W (t)η − η‖X∗ = 0

}
.

As discussed in [13, pp.62-63], the space X¯ = D(T ∗), and so X¯ is a closed subspace

of X∗. Moreover, if we denote the restriction of W (t) to X¯ by exp(tT¯), then

{exp(tT¯)}t≥0 (the sun dual semigroup of {exp(tT )}t≥0) is a C0-semigroup on X¯

and has generator (T¯, D(T¯)) defined by

T¯η = T ∗η , D(T¯) = {η ∈ D(T ∗) : T ∗η ∈ X¯} .

We now define the space Y by

Y := {η ∈ C([0, N ]) : η(0) = 0}. (3.3)
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This space is clearly a closed subspace of X∗ and, since (W (t)η)(x) = 0 for all

x ∈ [0, N ], t > N/r0 and, for t ≤ N/r0,

[W (t)η](x) =

{
exp[− 1

r0

∫ x

x−r0 t
a(s) ds] η(x− r0 t) r0 t ≤ x ≤ N,

0 x < r0 t,

it follows that W (t)η ∈ Y for each t ≥ 0 and η ∈ Y . Moreover, for η ∈ Y and

t ≤ N/r0,

‖W (t)η − η‖
X∗ = max

0≤x≤N
|(W (t)η)(x)− η(x)|

= max
r0 t≤x≤N

∣∣∣ exp[− 1

r0

∫ r0 t

0

a(x− s) ds] η(x− r0 t)− η(x− r0 t)
∣∣∣

+ max
0≤x≤N

|η(x− r0 t)χ
IN

(x− r0 t)− η(x)|

≤ ‖η‖
X∗ max

r0 t≤x≤N

∣∣∣ exp[− 1

r0

∫ r0 t

0

a(x− s) ds]− 1
∣∣∣ (3.4)

+ max
r0 t≤x≤N

|η(x− r0 t)− η(x)|+ max
0≤x≤r0 t

|η(x)|. (3.5)

Since a, η are continuous, and η(0) = 0, the three terms in (3.4) and (3.5) all tend to

zero as t → 0+ and therefore Y is also a closed subspace of X¯.

The fact that Y is a closed subspace of X¯ means that the restrictions, say

exp(tG), of exp(tT¯) to Y form a C0-semigroup on Y with generator given by

Gη := T¯η, D(G) := {η ∈ D(T¯) ∩ Y : T¯η ∈ Y } ⊂ Y. (3.6)

As G is a restriction of T ∗, it follows that

(Gη, ψ) = (η, Tψ) ∀η ∈ Y, ψ ∈ D(T ). (3.7)

We now examine the effect of the operator B ∈ B(X) defined by (2.7). As the

adjoint operator B∗ is given by

(B∗η)(x) := a(x)

∫ x

0

b(y|x)η(y) dy, η ∈ X∗, (3.8)

the restriction B∗
|Y of B∗ to Y is a bounded operator on Y . Consequently, (L,D(L)),

where

L = G + B∗
|Y , D(L) = D(G), (3.9)

is the infinitesimal generator of a C0-semigroup {etL}t≥0 on Y . The following theorem

shows that this semigroup is of type M(1, n0aN).

Theorem 3.1. Let

S(t) := exp(−n0aN t) exp(tL), t ≥ 0. (3.10)

Then {S(t)}t≥0 is a strongly continuous semigroup of contractions on Y .
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Proof. This is an immediate consequence of the fact that

{exp(−n0aN t) exp(tK)}t≥0

is a strongly continuous positive semigroup of contractions on X.

Note that the operator L has the desired property of being adjoint to K since

(Lη, ψ) = (Gη + B∗
|Y η, ψ)

= (T ∗η + B∗
|Y η, ψ)

= (η, Tψ + Bψ) = (η, Kψ) ∀ η ∈ D(L), ψ ∈ D(K) .

4. Test Functions and Generalised Functions

We use the Banach space Y and operator L, given by (3.3) and (3.9) respec-

tively, to produce a space of test functions Z, and corresponding space of generalised

functions Z ′, in the following manner. The space Z is defined to be

Z :=
∞⋂

k=0

D(Lk) (⊂ Y ) , (4.1)

where L0 is interpreted as the identity operator. The topology in Z is generated by

the countable collection of seminorms {αk}∞k=0 where

αk(φ) := ‖Lkφ‖Y = ‖Lkφ‖∞, φ ∈ Z.

Since the operator L is the infinitesimal generator of a strongly continuous semigroup

on Y , Z is a Fréchet space and is also a dense subspace of Y ; see [13, p.53] and [14,

Theorem 2.3]. Moreover, it is clear from the topology on Z that L, the restriction

of L to Z, is a continuous linear mapping from Z into Z. Note that an equivalent

topology can be defined on Z via

|φ|k :=
k∑

j=0

αj(φ) , φ ∈ Z , k = 0, 1, 2, . . . ,

and with this topology, Z can also be interpreted as a countably normed space. With

this additional structure we can express Z in the form

Z =
∞⋂

n=0

Zn, where Zn := (D(Ln), | · |n) = (Z, | · |n).

If, for each n, we denote the restriction of exp(tL) to Zn by Sn(t), then it can also

be shown that {Sn(t)}t≥0 is a strongly continuous semigroup on the Banach space Zn

with generator given by the part of L in Zn; see [12, Section 5] for details.
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We define the dual space, Z ′, of Z, equipped with the weak*-topology, to be the

associated space of generalised functions. Note that, from [15, p.34], f ∈ Z ′ if and

only if there exists some non-negative integer r and constant C such that

|〈f, φ〉| ≤ C|φ|r ∀φ ∈ Z ,

where 〈f, φ〉 denotes the action of f ∈ Z ′ on φ ∈ Z. The least such r is called the

order of the functional f . Given ψ ∈ X if we define ψ̃ on Z by

〈ψ̃, φ〉 :=

∫ N

0

ψ(x)φ(x) dx, φ ∈ Z,

then

|〈ψ̃, φ〉| ≤ ‖ψ‖X ‖φ‖Y = ‖ψ‖X |φ|0 , ∀φ ∈ Z ,

and so ψ generates a regular generalised function of order 0 in Z ′. Similarly,

|〈δ(x− `), φ〉| = |φ(`)| ≤ |φ|0 ∀φ ∈ Z,

showing that the Dirac delta functional δ(x− `) is also a generalised function of order

0 in Z ′.

It is now an easy matter to obtain an extension K̃, of the operator K, defined

on Z ′. For each ψ ∈ D(K), we require

〈K̃ψ̃, φ〉 := 〈K̃ψ, φ〉
= (φ,Kψ) = (Lφ, ψ) = 〈ψ̃,Lφ〉, ∀φ ∈ Z.

This leads to the definition

〈K̃f, φ〉 := 〈f,Lφ〉 ∀f ∈ Z ′, φ ∈ Z. (4.2)

Thus K̃ = L′, where L′ denotes the adjoint of L on the complete countably normed

space Z, and therefore, from standard results on adjoints, K̃ is well-defined as a

continuous linear mapping from Z ′ into Z ′.

5. Solution of Fragmentation Equations with Singular Initial Conditions

The mathematical framework is now in place for treating mass-loss fragmentation

processes with mono-disperse initial conditions in a rigorous manner. The abstract

formulation of the problem we consider is

d

dt
u(t) = K̃u(t); u(0) = u0 ∈ Z ′, (5.1)

where the time derivative is interpreted in the weak*-sense in Z ′ and a solution

u : [0,∞) → Z ′ is sought. We shall establish that a unique weak*-differentiable

solution to (5.1) exists for any u0 ∈ Z ′ and hence must also exist for the particular

case when u0 = δ(x− `).
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Theorem 5.1. The operator L is the infinitesimal generator of a uniquely defined

quasi-equicontinuous semigroup {exp(tL)}t≥0 of class C0 on Z. Moreover

exp(tL)φ = exp(tL)φ ∀φ ∈ Z,

where {exp(tL)}t≥0 is the semigroup on Y generated by L.

Proof. To establish that {exp(tL)}t≥0 is quasi-equicontinuous on Z we must find

some positive constant ρ such that {exp(−ρ t) exp(tL)}t≥0 is equicontinuous on Z. Let

{S(t)}t≥0 be the strongly continuous semigroup of contractions on Y defined by (3.10).

The infinitesimal generator of {S(t)}t≥0 is G := L − n0aNI, with D(G) := D(L). If

we denote the restriction of G to Z by G, then for each k = 0, 1, 2, . . . and φ ∈ Z,

αk([I − n−1G]−1φ) = αk(n[nI − G]−1φ) ≤ αk(φ).

Consequently

αk([I − n−1G]−mφ) ≤ αk(φ) , ∀n = 1, 2, 3, . . . , m = 0, 1, 2, . . . ,

and so, from [16, p. 246], G is the infinitesimal generator of an equicontinuous semi-

group {etG}t≥0 of class C0 on Z. Moreover, from [16, p. 248],

etGφ = lim
n→∞

exp(tG[I − n−1G]−1)φ , ∀φ ∈ Z.

Since G is the restriction of G to Z and convergence in Z implies convergence in Y ,

we obtain

etGφ = lim
n→∞

exp(tG[I − n−1G]−1)φ = S(t)φ .

The stated result now follows from the fact that L = G + n0aNI is the infinitesimal

generator of the semigroup {exp(n0aN t) exp(tG)}t≥0.

Theorem 5.2. The abstract Cauchy problem (5.1) has a unique, weak*-differentiable

solution u : R+ → Z ′ for any u0 ∈ Z ′.

Proof. The operator K̃ = L′ is the infinitesimal generator of the weak*-continuous

semigroup of operators {exp(L′t)}t≥0 on Z ′ defined by

〈exp(tL′)f, φ〉 := 〈f, exp(tL)φ〉 ∀f ∈ Z ′, φ ∈ Z.

Standard results concerning semigroups on complete countably normed spaces can

now be applied to deduce that the unique solution of (5.1) is given by

u(t) = exp(tL′)u0, ∀t ≥ 0;

for example, see [12, Theorem 4.2].
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