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Abstract. Quantifying experimentally created entanglement could in principle

be accomplished by measuring the entire density matrix and calculating an

entanglement measure of choice thereafter. Due to the tensor structure of the

Hilbert space, this approach becomes unfeasible even for medium-sized systems.

Here we present methods for quantifying the entanglement of arbitrarily large

two-colorable graph states from simple measurements. The presented methods

provide non-trivial bounds on the entanglement for any state as long as there

is sufficient fidelity with such a graph state. The measurement data considered

here is merely given by stabilizer measurements, thus leading to an exponential

reduction in the number of measurements required. We provide analytical results

for the robustness of entanglement and the relative entropy of entanglement.
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1. Introduction

Detecting [1] and quantifying entanglement [2] is one of the major tasks in quantum information

science. Experimentally created entanglement can in principle be quantified by determining

the quantum state via full tomography, and calculating an entanglement measure of choice

for this state. Apart from exceptions such as negativity, entanglement measures usually

involve optimization problems, which makes them hard to calculate. Another issue is the

tensor structure of the Hilbert space, which implies that the number of measurement settings

grows exponentially with the number of constituents involved in the system. Despite recent

developments in efficient tomography [3], the determination of the full quantum state appears to

involve an unnecessary overhead given that only a single number, the value of the entanglement

measure, is required. For this reason, more sophisticated methods for the direct quantification

of entanglement in many-body systems are required.

Here we present direct and experimentally efficient methods for quantifying the

entanglement of quantum many-body systems. We put the emphasis on two-colorable graph

states, which represent a vast resource for applications in quantum information science. They

encompass Greenberger–Horne–Zeilinger (GHZ) states [4], Calderbank–Shor–Steane (CSS)

error correction codeword states and cluster states [5]. Due to the importance of graph states,

a considerable experimental effort has been made to realize them using photons [6]–[10] and

cold atoms [11]. Proposals for trapped ions are also pursued [12]–[14].

We show that the entanglement—according to a variety of entanglement measures [2]—of

such two-colorable graph states can be estimated efficiently via measurements of the stabilizer

operators only, thus reducing the experimental effort in measuring the state exponentially.

Furthermore, our method of entanglement estimation is purely analytic, thus avoiding

computationally costly post-processing of measurement data.

2. Entanglement estimation

Graph states of n qubits correspond to a graph G of n vertices, with n binary indices (k1, . . . , kn).

We denote the Pauli matrices at the i th qubit by X i , Yi , Z i . One can show that the 2n graph

states |Gk1,...,kn
〉 are the simultaneous eigenstates of the n mutually commuting operators: Ki :=

X i

⊗

Ngb(i) Z j , i = 1, . . . , n, where Ngb denotes the set of all neighbors of qubit i defined by the
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graph. Graph states satisfy the following eigenvalue equation: Ki |Gk1,...,kn
〉 = (−1)ki |Gk1,...,kn

〉.
The n operators Ki generate an Abelian group S, called the stabilizer. The elements of the

stabilizer will be denoted by g j , j = 1, . . . , 2n. An experimentally created graph state could

in principle be verified by measuring the 2n elements of the stabilizer. As mentioned in the

introduction, full-state tomography is not an option for determining the properties of a quantum

many-body system due to an exponentially fast growing measurement effort. We will see that

merely the measurement results of the generators of the stabilizer suffice to attain highly useful

bounds on entanglement measures.

Let us suppose that the goal of an experiment is the creation of a two-colorable graph

state, and the generators of the stabilizer are measured with outcomes ai = tr(ρKi), i =
1, . . . , n. As the convention for the coloring we use |A| Amber and |B| Blue qubits, taking

|A|> |B|. A generator Ki is said to be Amber (Blue) if i corresponds to an Amber (Blue)

qubit.

Given this tomographically incomplete data, one is now interested in finding the minimal

entanglement (according to a certain entanglement measure) compatible with the measurement

data. Mathematically, this is formulated as the semidefinite program [15, 16]:

Emin = min
ρ

{E(ρ) : tr(ρKi) = ai , ρ > 0}, (1)

where E(ρ) is a convex entanglement quantifier of choice. We will consider the following

entanglement measures. The relative entropy of entanglement is defined as [17]

ER(ρ) = min
σ∈SEP

tr[ρ(log2 ρ − log2 σ)], (2)

where SEP denotes the set of fully separable states. The global robustness of entanglement is

given by the minimum amount of an unnormalized state σ that has to be mixed into the given

state ρ to wash out all entanglement [18]:

R(ρ) = min
σ

{

tr(σ ) :
ρ + σ

1 + tr(σ )
∈ SEP

}

. (3)

Let us return to the estimation of entanglement measures from stabilizer measurements.

The crucial point is that the minimization (1) does not need to be carried out over all states ρ.

Instead, it suffices to minimize the entanglement quantifier over stabilizer diagonal states only.

This can be seen in the following way. Since the stabilizer operators are mutually commuting,

the measurement outcomes tr(ρKi) are invariant under any rotation of the density matrix of

the form ρ → g jρg j , g j ∈ S. Due to convexity of the entanglement quantifier, it is legitimate

to apply a local symmetrization procedure, colloquially referred to as ‘twirling’, to the state.

This is performed by averaging over all stabilizer rotations ρ → 1

2n

∑2n

j=1 g jρg j . In so doing,

the optimization is restricted to stabilizer diagonal states of the form

ρ =
1

2n

1
∑

i1,...,in=0

ci1...in
K

i1

1 . . . K in

n , (4)

where some coefficients are determined by the measurement outcomes, while the rest are

variables. Since the stabilizer operators are mutually commuting, and their spectrum is given by

{−1, +1}, it is straightforward to compute the eigenvalues of ρ as λEj = 1

2n

∑

Ei(−1)
Ei ·Ej cEi . Note that
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a stabilizer diagonal state corresponds to a mixture of graph states generated by these stabilizer

operators. These facts can easily be seen in the following way:

ρ =
∑

Ek

λEk|GEk〉〈GEk| =
∑

Ek

λEk

1

2n

∑

Ei

(−1)
Ei ·k K

i1

1 · · · K in

n (5)

=
∑

Ei

cEi K
i1

1 · · · K in

n , with cEi =
1

2n

∑

Ek

(−1)
Ei ·EkλEk. (6)

3. Estimating the robustness of entanglement

In order to estimate the global robustness of entanglement, we begin by bounding it from below

in the following way. For any mixed state that can be written as a convex mixture of other mixed

states as ρ =
∑

k λkρk , and any index m, it holds that [19]

R(ρ)> λm(1 + R(ρm)) − 1. (7)

To see this, consider the state ρ, a real and positive number t and another state κ , which fulfill

ρ + tκ ∈ SEP (up to normalization). It follows that

λ0ρ0 + tκ +
∑

k>0

λkρk ∈ SEP (8)

⇒ ρ0 +

((

t +
∑

k>0

λk

)

/λ0

)

κ̃ ∈ SEP, (9)

with κ̃ = (tκ +
∑

k>0 λkρk)/(t +
∑

k>0 λk). Using this result and the definition of the robustness,

one finds
(

t +
∑

k>0

λk

)

/λ0 > R(ρ0), (10)

⇒ t > λ0 R(ρ0) −
∑

k>0

λk, (11)

⇒ t > λ0 R(ρ0) − (1 − λ0), (12)

⇒ R(ρ)> λ0(1 + R(ρ0)) − 1. (13)

As shown in section 2, we need to consider only twirled states of the form ρ =
∑

Ek λEk|GEk〉〈GEk| in

the minimization of the robustness. At this point, note that ρ is a sum of graph states with equal

entanglement, since those states are equivalent up to local unitaries. In [19], it is shown that the

robustness of a pure two-colorable graph state is 2|B| − 1. Hence, the estimation of the robustness

reduces to a fidelity estimation of the desired graph state. In an experiment that aims at creating

the graph state |G(k1,...,kn)〉, it is then possible to estimate the fidelity of the experimentally

created state with the target state from stabilizer measurements. The minimization of the least

fidelity compatible with stabilizer measurements reads F = minρ[tr(ρ|G(k1,...,kn)〉〈G(k1,...,kn)|) :

tr(ρKi) = ai , ρ > 0]. As a convention we use K0 = 1 and a0 = 1. By Lagrange duality, one finds

the dual problem: F = maxµi
[
∑

i µiai : |G(k1,...,kn)〉〈G(k1,...,kn)| −
∑

i µi Ki > 0]. As described

in [16], a solution to the primal is given by ρ = 1

2n

∑

Ei cEi K
i1

1 . . .K in
n , where the coefficients are
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given by cEi =
∑n

k=1 ikak −
∑n

k=1 ik + 1. And one can show that a solution to the dual problem

is provided by choosing µ0 = 1 − N

2
and µi = 1

2
for i > 1. Since primal and dual objective

functions coincide, they must be optimal, and we attain the following analytic solution for the

fidelity estimation: F = max[0, 1

2
(
∑

i ai − n + 2)]. Combining this with equation (7) and using

the fact that the robustness of a pure two-colorable graph state is 2|B| − 1 [19] provides us with

the following lower bound on the global robustness of entanglement that can be achieved from

stabilizer measurements:

Rmin(ρ)>max

{

0, 2|B| max

[

0,
1

2

(

∑

i

ai − n + 2

)]

− 1

}

. (14)

4. Estimating the relative entropy

In a similar fashion, we now calculate the lower bound on the relative entropy on entanglement

in the case of stabilizer measurements. First, note that once more the optimization may be

restricted to stabilizer diagonal states, resp. mixtures of graph states. Then, the lower bound

on the relative entropy is given by

ERmin(ρ)>max{0, |B| − max[S(ρ) : tr(ρKi) = ai , ρ > 0]}. (15)

We can prove this in the following way. First, note that the two-coloring divides the system in

the two partitions A and B. Now one uses the fact that the relative entropy is lower bounded by

the difference between the entropy of system A, resp. B, and the entropy of the total system [22]:

ER(ρAB)>max{S(ρA), S(ρB)} − S(ρAB). (16)

In our case, we consider only mixtures of two-colorable graph states, so that tracing out

system A results in a maximally mixed state with entropy |B|. Hence, the minimization

of the relative entropy involves an entropy maximization. This can be achieved as outlined

in [20]: measuring the generators of the stabilizer group gives rise to probability distribution

p
(±)

k = 1±ak

2
for the projections upon the stabilizer eigenspaces. Furthermore, we denote

the probability distribution of the joint state of the system by λi1...in
. A crucial feature of

the entropy is subadditivity: S(λi1...in
)6

∑n

k=1,s=± H(p
(±)

k ), where H denotes the classical

entropy function. A little thought shows that the above inequality holds with equality for the

probability distribution given by λi1...in
=
∏n

k=1
1+(−1)ik ak

2
, thus giving the exact maximal entropy

Smax = −
∑1

i1...in=0 λi1...in
log λi1...in

. To conclude, the lower bound on the relative entropy of

entanglement that can be inferred from stabilizer measurements is computed as

ERmin >max

{

0, |B| +

1
∑

i1...in=0

λi1...in
log λi1...in

}

. (17)

5. Upper bounds

In the previous paragraphs we have derived lower bounds on the minimal entanglement that

is consistent with the statistics obtained from measuring individual stabilizer operators. It is

also of use to derive upper bounds. A simple approach to doing this is available using the results

of [19]. The total Hilbert space can be divided up into subspaces, where each subspace is labeled
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by a deterministic outcome for all the Amber stabilizers. For any pure two-colorable graph state

the entanglement ER is given by |B|, and the robustness of entanglement is given by 2|B| − 1.

In [19], it was shown that for a mixed (twirled) state supported entirely in such a subspace, ER

is given by ER(ρ) = |B| − S(ρ), whereas R(ρ) = 2|B| max λEk − 1. Let us use the symbol a to

denote a possible set of outcomes for the Amber measurements, and let b denote a possible

set of outcomes for the Blue measurements. Hence any state that is diagonal in the graph state

basis can be described as a probability distribution p(a, b) = p(a)p(b|a) corresponding to the

probabilities for getting the various possible stabilizer outcomes. We can partition such a state

into a mixture of states that are individually supported on each of the Amber subspaces, such

that ρ =
∑

p(a)ρa, where a is a bit string corresponding to the positive/negative stabilizer

subspaces of the Amber qubits. By concavity of the entropy function and convexity of ER, we

find that ER(ρ)6 |B| −
∑

a p(a)S(ρa). But S(ρa) is given by a classical entropy H(p(b|a))

where p(b|a) is the conditional probability distribution for getting outcomes b upon finding a.

Thus we obtain

ER(ρ)6 |B| −
∑

a

p(a)H(p(b|a)). (18)

Similarly, since the A subspace entanglement is given by R(ρa) = 2|B|(λmax(ρa) − 1), we find

R(ρ) + 16 2|B|
∑

a

p(a) max
b

p(b|a). (19)

Hence to get upper bounds to the minimal entanglement consistent with the measurement

outcomes, we need to pick the p(a, b) consistent with the marginal distributions that

minimize these expressions. The relative entropy can now be estimated by noticing that the

conditional entropy is upper bounded by H(p(b)) and choosing a product distribution p(b) =
p(b1) . . . p(b|B|), for which it is well known that it maximizes H(p(b)). Thus, we obtain

ERmin
(ρ)6 |B| − H(p(b)). (20)

We need to minimize
∑

a

p(a) max
b

p(b|a) (21)

given fixed marginals p(a), p(b). The solution is as follows. Let b∗ be the string of b

outcomes that has maximal probability p(b). For a given value of a, we always have that

p(a)maxb p(b|a)> p(a)p(b∗|a) = p(a, b∗), simply because b∗ is a particular value of b. Hence

we have that
∑

a

p(a) max
b

p(b|a)>
∑

a

p(a, b∗) = p(b∗). (22)

This is true whatever the joint distribution p(a, b) is, provided that it is consistent with the

marginals p(a), p(b). But this lower bound can be attained by simply selecting p(a, b) =
p(a)p(b). Hence we have that

min
∑

a

p(a) max
b

p(b|a) = p(b∗). (23)

Since we do not have complete information about p(b∗), we need to minimize it subject to the

individual stabilizer statistics p(b1), . . . , p(b|B|). This problem is equivalent to minimizing the
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Figure 1. Upper and lower bounds on the estimate of the logarithmic global

robustness of entanglement for linear graph states subject to local dephasing. A

non-zero estimate of the entanglement is possible as long as a non-zero fidelity

with the graph state may be inferred from the stabilizer measurements.

l∞ norm of a joint probability distribution p(b) = p(b1, . . . , b|B|) constrained to fixed marginals

p(b1), . . . , p(b|B|), which is equivalent to the fidelity minimization (only considering the Blue

stabilizers). Hence we obtain

Rmin(ρ) + 16 2|B| max

{

0,
1

2

(

∑

i∈B

ai − |B| + 2

)}

. (24)

6. Quality and scaling of the bounds

In order to check the quality of the entanglement estimates, we consider noisy two-colorable

graph states. Assuming the experiments start from a perfect graph state, which is then subjected

to local dephasing for a certain time, we can take the density matrix time evolution to be

governed by the following master equation:

ρ̇ = −
γ

2

(

∑

i

Z iρZ i − ρ

)

, (25)

where γ is the dephasing constant. The effect of such noise on graph states has been studied

in detail in [21]. Due to the dephasing, the stabilizer coefficients suffer a decay exponential

in the dephasing constant. For our test we consider a linear chain of qubits subject to this

noise. It can be shown that the stabilizer coefficients obey the following time evolution in this

noise model: ci1...in
(t) = exp(−γ t

∑

k ik). Estimates according to the described methods for the

logarithm of the global robustness of entanglement and the relative entropy of entanglement

are shown in figures 1 and 2, respectively. The robustness of entanglement can be estimated

up to a certain number of qubits, for which a non-zero fidelity can be inferred with the target

state. This effectively sets a threshold to the estimation. For the noise model considered here,

the minimal fidelity F consistent with stabilizer measurements is given by F =
∑n

i=1 ai −n+2

2

with ai = exp(−γ t). It can easily be seen that the minimal fidelity F is positive as long as
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Figure 2. Upper and lower bounds on the estimate of the relative entropy of

entanglement for linear graph states up to 1000 qubits subject to local dephasing.

In contrast to the robustness of entanglement there is no limit to the lower bound,

but the difference between upper and lower bounds grows with system size.

exp(−γ t)> 1 − 2

n
. For a fixed dephasing time γ t , this condition will be violated when the

number n of vortices in the graph is increased. In contrast, the relative entropy may be estimated

even for larger noisy systems without suffering from the threshold problem. However, the

difference between lower and upper bounds apparently grows with system size.

In many cases, stabilizer measurements are carried out via local measurements. This

local information on the quantum state could in principle be used to improve the bounds on

minimization of entanglement measures from incomplete information on the density matrix,

since they restrict the set of compatible states involved in the optimization. Note, however,

that local measurement operators generally do not commute with the stabilizer operators.

This implies that symmetries cannot be exploited. For this reason we do not consider local

measurement data in our scheme.

7. Conclusion

Here we have shown how entanglement of arbitrarily large graph states can be estimated

from simple measurements. High-quality bounds on the robustness of entanglement and the

relative entropy of entanglement have been derived for stabilizer measurements. The stabilizers

of two-colorable graph states can be measured in two measurement settings (assuming the

measurements can be performed simultaneously); thus our scheme avoids the exponential

overhead required by full-state tomography. In addition, the results presented here are of an

analytical form that allows for extremely efficient post-processing. In contrast, quantum state

tomography requires computationally hard post-processing of the measurement data to create an

estimate of the real density matrix, and schemes for entanglement estimation from incomplete

measurement data usually rely on numerical methods such as convex optimization which is

limited to systems no larger than 20 qubits—even if symmetries can be exploited. Our scheme

should therefore be invaluable for future graph-state experiments.
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Our results may also be interesting to study the effects of various noise models on the

entanglement dynamics of two-colorable graph states. One step in this direction has been made

in [23], where the entanglement of graph states under the influence of Pauli maps is investigated.
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