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Abstract 

A general low-order fluid-structure interaction model capable of evaluating the multi-mode 

interactions in vortex-induced vibrations of flexible curved/straight structures is presented. 

Cross-flow motions due to unsteady lift forces of inclined sagged cables and tensioned beams 

in uniform currents are investigated. In contrast to a linear equation governing the transverse 

motion of straight beams or cables typically considered in the literature, coupled 

horizontal/vertical (axial/transverse) displacements and geometric nonlinearities of curved 

cable (straight beam) are accounted for. A distributed nonlinear wake oscillator is considered in 

the approximation of space-time varying hydrodynamics. This semi-empirical fluid force 

model in general depends on the mass-damping parameter and has further been modified to 

capture both the effects of varying initial curvatures of the inclined cylinder and the Reynolds 

number. Numerical simulations are performed in the case of varying flow velocities and 

parametric results highlight several meaningful aspects of vortex-induced vibrations of long 

flexible cylinders. These comprise multi-mode lock-in, sharing, switching and interaction 

features in the space and time domains, the estimated maximum modal and total amplitudes, 

the resonant nonlinear modes of flexible cylinders and their space-time modifications, and the 

influence of fluid/structure parameters. A shortcoming of single-mode or linear structural 

model is underlined. Some quantitative and qualitative comparisons of numerical/experimental 

results are discussed to demonstrate the validity and required improvement of the proposed 

modelling and analysis predictions. 

 

Keywords: vortex-induced vibration, nonlinear wake oscillator, flexible cylinder, multi-mode 

interaction, geometric nonlinearities, inclined curved cable, tensioned beam  
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Nomenclature t time 

A, B first-order forms in low-order model T (TH) axial (horizontal) static tension 

Af area of displaced fluid volume Ta tension at maximum sag of cable 

A/D experimental maximum amplitude u horizontal or axial displacement 

An/D (AR/D) maximum modal (total) amplitudes unm (vnm) normalized nonlinear modes 

ARMS/D root-mean-squared amplitudes Ur reduced flow velocity parameter 

c structural damping coefficient v vertical or transverse displacement 

C1, C2 coefficients in static shape analysis V current velocity 

CA added mass coefficient WE structural effective weight 

CL fluctuating lift coefficient x horizontal or axial coordinate 

CL0 lift coefficient of static cylinder x* normalized x/D, 1 being maximum 

D hydrodynamic diameter XH (YH) horizontal offset (water depth) 

EAr axial stiffness y vertical or transverse coordinate 

EI bending stiffness ε (σ) Cauchy bending strain (stress) 

F, G empirical wake coefficients φ horizontal (axial) modal shape 

fd natural frequency of mode 

predominating in VIV 
ρ fluid density 

fn, dn generalized displacement variables ξ modal damping 

H1, H2 lift force components ∆ tensioned-beam parameter 

k coordinate transformation parameter ωs  vortex shedding frequency 

L (L/D) cylinder length (aspect ratio) ωs,A  vortex frequency at maximum A/D 

m (ma) cylinder mass (potential added mass) ωn (ωosc) natural (oscillating) modal frequency 

m*(α*) mass ratio (mass-damping parameter) 

by Williamson and co-researchers 
Πni (ℜnijk) linear (cubic nonlinear) coefficients 

in wake equations 

N number of considered modes Λnij (Γnijk) quadratic (cubic) nonlinear 

coefficients in cylinder equations 

pn, en generalized velocity variables µ Skop-Griffin mass ratio 

Qx, Qy fluid wake variables α, β, δ mechanical parameters 

Re Reynolds number γ stall parameter 

s arc-length coordinate 
δA, XA,Ψ A variables in deriving formulae for 

wake coefficients 

SG Skop-Griffin mass-damping 

parameter 
θ (θr) local (global) inclination angle 

St Strouhal number of static cylinder φ vertical (transverse) modal shape 
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1. INTRODUCTION 

 Vortex-induced vibration (VIV) of flexible cylindrical structures such as risers, mooring 

cables, tethers and pipelines exhibits intriguing fluid-solid interaction phenomena in many 

offshore engineering applications. When exposed to current flows, these slender bodies 

undergo nonlinear finite-amplitude oscillations due to the space-time varying hydrodynamics 

associated with vortex shedding. Because VIV results in an increased mean drag and high 

oscillating stress-induced fatigue in long flexible structures, VIV is one of the utmost concerns 

in deepwater developments. In general, the VIV fatigue accumulation depends on a number of 

mechanical, physical and fluid-solid parameters. In essence, it is a function of structural 

vibration characteristics including natural frequencies, modes, amplitudes and curvatures. 

Depending on the relationship between vortex-shedding and natural frequencies, different 

modes can be concurrently or non-concurrently excited in a distributed-parameter or infinite-

dimensional system. These entail an intrinsic feature of multi-mode interactions in the coupled 

fluid-structure system. To examine a variety of dynamic scenarios caused by the 

hydrodynamics and structural geometric nonlinearities, a computationally-robust model and 

systematic approach to the VIV of flexible structures with different curved/straight 

configurations is needed. 

 Many studies have attempted to numerically investigate VIV of rigid and flexible cylinders 

(Gabbai and Benaroya 2005; Sarpkaya 2004; Williamson and Govardhan 2004). For flexible 

cylinders, the VIV predictions are accomplished by employing either computational fluid 

dynamics (CFD) or a semi-empirical approach (Chaplin et al. 2005a; Larsen and Halse 1997). 

The main difference between these two approaches is the modelling of the hydrodynamics. 

Usually, the CFD-based procedure solves the Navier-Stokes equations to obtain the time-

dependent fluid forces in two-dimensional planes which are, in turn, integrated into a finite-

element structural model (Willden and Graham 2003). This method, albeit convincingly 

capturing the fluid physics, requires a large amount of data storage and computational effort in 

numerical simulations in order to handle multi-degree-of-freedom motions of long flexible 

structures and a series of parametric studies with varying parameters. Owing to the limited 

computer technology at the present time, the CFD-based approach is not yet a practical solution 

to actual analysis and design involving a large number of variables. Consequently, several 

exiting commercial codes still rely upon a semi-empirical approach in which the accuracy of 

VIV response prediction is strongly related to experimental data applicable to the modelling 

conditions. Based on a recent comparison of several numerical tools, Chaplin et al. (2005a) 

showed that the semi-empirical approach is more successful than the CFD-based approach in 
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evaluating the VIV response of a vertical straight beam in a stepped current.   

 With regard to the semi-empirical approach, various low-order fluid models have been 

proposed in the literature and the so-called nonlinear wake oscillators are perhaps the simplest 

low-computational models (Gabbai and Benaroya 2005). Being phenomenological, a wake 

oscillator is generally based on a van der Pol equation which captures such fundamental VIV 

phenomena as lock-in and self-limiting amplitudes. As regards the wake characterization, an 

attempt to derive the wake oscillator from the fluid mechanics of vortex shedding street has 

been presented and discussed by Iwan and Blevins (1974). Nevertheless, some assumptions are 

kept in mind when utilizing the wake oscillator. These comprise, for instance, the consideration 

of nominal two-dimensional flow, the full correlation length of vortex shedding along the 

length of flexible cylinder during the lock-in and the omitted effect of end boundaries on flow 

behaviour. Since the pioneering idea of Bishop and Hassan (1964) and the subsequent work of 

Hartlen and Currie (1970), many wake oscillator models have been introduced and modified 

mostly to approximate the unsteady lift fluid forces acting on rigid cylinders in uniform flows 

(Gabbai and Benaroya 2005). Recently refined wake oscillators are given by Skop and 

Balasubramanian (1997) and Facchinetti et al. (2004). New models overcome a limitation of 

older models in view of evaluating the self-limiting response at zero structural damping. They 

also have successfully been applied to VIV analyses of flexible cylinders such as a horizontally 

suspended cable (Kim and Perkins 2002) and a catenary-shaped riser (Srinil et al. 2009) based 

on a single modal expansion analysis, and vertical tensioned beam (Violette et al. 2007) based 

on a finite difference discretization.  

 In spite of previous extensive investigations, insights into nonlinear multi-mode dynamics of 

long flexible structures undergoing VIV, even in uniform flow cases, are lacking. With 

reference to recent large-scale or in-situ experimental observations, some interesting aspects 

comprise the space/time sharing, switching and interaction of multiple modes in different lock-

in or synchronization regimes along with the estimation of response amplitudes (Chaplin et al. 

2005b; Jaiswal and Vandiver 2007; Trim et al. 2005), the dependence of VIV on Reynolds 

number (Swithenbank et al. 2008), the influence of cylinder initial curvatures resulting in 

modal interactions (Hover et al. 1997a; 1997b) and the highly-modulated responses (Chaplin et 

al. 2005b; Chasparis et al. 2009). These aspects will be discussed in this paper based on a low-

order multi-mode model and numerical approach. Recently, Violette et al. (2010) have 

performed a linear stability approach to identify the mode switching with varying flow velocity 

and the time sharing of two excited modes in VIV of a straight cable. Nevertheless, owing to 

the employed linearized structural and wake oscillator models, the estimation of maximum 
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amplitudes and the effect of geometric/wake nonlinearities in both space and time were 

disregarded in their studies. These issues will be accounted for and discussed herein. 

 This paper presents a general low-order fluid-solid interaction model capable of evaluating 

the nonlinear multi-mode dynamics and interactions of flexible curved/straight structures 

undergoing VIV. Cross-flow motions due to distributed lift forces of inclined sagged cables 

and tensioned beams are investigated. The paper is organized as follows. In Section 2, the 

nonlinear equations of structural motions based on a flexural curved cable model and the 

empirical hydrodynamic model based on a modified wake oscillator are summarized. A low-

order multi-mode wake/cylinder interaction model is then developed in Section 3, along with a 

discussion on wake coefficients. Based on numerical investigations, several features are 

highlighted in Section 4, including the modal characteristics of curved/straight structures (4.1), 

the nonlinear time histories of the cylinder/fluid wake (4.2), the response amplitude diagrams 

(4.3), the resonant nonlinear modes of flexible cylinder (4.4), the influence of Reynolds 

number (4.5) and the role of geometric nonlinearities (4.6). Some numerical/experimental 

comparisons are discussed (4.7), along with some aspects on VIV modelling and predictions 

(4.8). The paper ends with a summary and concluding remark in Section 5. 

 

2. NONLINEAR STRUCTURAL/HYDRODYNAMIC MODELS  

 A great majority of research literature dealing with VIV modelling and analysis of flexible 

cylinders considers a linear equation governing the transverse motion of straight tensioned 

beams or cables. This model is limited from a practical viewpoint since there are different 

kinds of curved structures in actual applications. In addition, the effect of geometric 

nonlinearities (i.e. structural nonlinear stiffness) on VIV of long flexible cylinders may be 

considerable depending on the system parameters, vibration amplitudes and multi-mode 

interactions. To fully capture both the effects of varying initial curvatures and geometric 

nonlinearities, a general nonlinear fluid/structure model – valid for both inclined curved and 

straight cylindrical structures – is considered.  

 With reference to a fixed Cartesian coordinate system, Fig. 1a (1b) displays a fully-

submerged inclined sagged cable (vertical tensioned beam) model having an equilibrium length 

L and being connected from a stationary floating structure to the seafloor with pinned-pinned 

supports. The incoming flow is considered to be spatially uniform and aligned with the Z-

direction (see also a remark in Section 4.8). In Fig.1a, XY denotes the plane of initial static 

equilibrium and cross-flow motions of cable, with horizontal offset XH and water depth YH 

defining a global chord inclination angle as θr=tan-1(YH/XH).  
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 Based on finite-amplitude vibrations, the geometrically nonlinear partial-differential 

equations describing cross-flow motions about the static configuration of a flexural inclined 

curved cable in water are expressed in a general dimensional form as (Srinil et al. 2007; 2009) 
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in which s denotes arc-length coordinate and t denotes time, x and y are the static coordinates 

with u and v being the associated dynamic displacements in the horizontal (X) and vertical (Y) 

directions, respectively. The flexible cylinder properties, including the mass (m), viscous 

damping (c), bending (EI) and axial (EAr) stiffness, are assumed to be spatially uniform. The 

fluid properties comprise potential added mass (ma = CAρAf), density (ρ), cross-sectional area 

of displaced volume (Af) and added mass coefficient (CA). T denotes the varying axial tension 

while H1 and H2 represent the components of space-time varying lift forces leading to cross-

flow VIV. Note that the effects of shear, torsion, seabed interaction, surface waves, support 

movement, tangential drag forces and in-line VIV in the Z-direction are herein neglected. 

Moreover, the EI(∂4x/∂s4) and EI(∂4y/∂s4) terms governing the bending effect on a static curved 

configuration are omitted from Eq. (1) and (2), respectively, in order to arrive at a closed-form 

formula for a catenary cable (see Eq. 6). A complete three-dimensional equations of structural 

motion subject to both cross-flow/in-line VIV can be found in Srinil et al (2009).  

 For convenience in the low-order modelling which relies on continuous functions of curved 

static profiles and linear modal shapes, the s coordinate is projected onto the horizontal x 

coordinate through the transformation
  

      ( )1/ 22

1 1 ,
1

x
s ky

∂
= =

∂ ′+       (3)
 

where a prime denotes differentiation with respect to x which is now utilized as a new 

independent variable. By substituting Eq.(3) into Eqs. (1-2) and normalizing all the 

displacement-related variables/derivatives with respect to the hydrodynamic diameter (D), the 
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geometrically nonlinear equations of cross-flow motions of an inclined cable become 

( ) ( ) ( ) ( )
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where overdot denotes differentiation with respect to t. The mechanical parameters are δ = 

EI/(m+ma)D4, β=TH/(m+ma)D2, α=EAr/TH, with TH = T/k being a constant horizontal 

component of cable tension. By assuming that a planar static configuration of cable is only due 

to its effective weight (WE) accounting for the buoyancy force, an exact closed-form 

hyperbolic function describing y = y(x) reads  

              
1 2( ) cosh ,                                           (6)H E

E H

T W Dy x x C C
W D T

 −
= + + 

                   

where C1 and C2 are determined based on boundary conditions. By using the cosine law, the 

horizontal and vertical components (H1, H2) of normal lift force (CL) in Eqs.(4-5) are given by 

                                     2 2
1

1 1sin ,
2 2L LxH DV C DV Cρ θ ρ= − =

 
                                  (7) 

 
2 2

2
1 1cos
2 2L LyH DV C DV Cρ θ ρ= = ,                                                (8) 

in which V is the flow velocity, the associated lift coefficients CLx = Qx - 2γ u /ωs and CLy = Qy - 

2γ v /ωs (Srinil et al. 2009), γ the so-called stall parameter (Skop and Balasubramanian 1997), 

ωs the vortex-shedding frequency (rad/s) with ωs = 2πStV/D (Sumer and Fredsoe 2006), St the 

Strouhal number and θ the cable local inclination angle measured clockwise from the X-axis. 

The assumed variables Qx and Qy are governed by the following companion distributed wake 

oscillators (Srinil et al. 2009),  

                                
2 2 2

0
3

4 ,
sin sin sin sin sin

x s L x s x x s x sQ GC Q GQ Q Q Fuω ω ω ω
θ θ θ θ θ

− + + =
  



                             (9) 

                                
2 2 2

0
3

4
,

cos cos cos cos cos
y S L y S y y S y SQ GC Q GQ Q Q Fvω ω ω ω
θ θ θ θ θ

− + + =
  

                            (10) 
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where CL0 is the lift coefficient of a stationary cylinder, F and G are the two variable empirical 

wake coefficients which depend on system parameters (see Section 3). It is worth noting that 

Eqs. (9) and (10) resemble the original wake oscillator of Skop and Balasubramanian (1997), 

with the space-dependent (sinθ, cosθ) terms being incorporated into the former in an attempt to 

capture both the effect of varying initial curvatures on the wake and the concurrent 

horizontal/vertical dynamics of cable through Eqs.(4-5).  

 Note that, at a discrete x position, the local inclination angle θ(x) is arbitrary since               

θ ≈ tan-1(y′). Depending on an inclined curved static configuration (Eq. 6), the spatial gradient 

y′(x) may be positive, negative or even zero (i.e. at cable maximum sag). Accordingly, a 

mathematical singularity occurs in Eq.(9) or (10) when θ becomes, e.g., 0o or 90o, respectively. 

Nevertheless, it will be shown in Section 3 that such singularity can be overcome through the 

Galerkin-based procedure whereby the continuous θ(x) function based on Eq.(6) is 

incorporated into the ensuing integrals involving modal shape functions (see Eqs. 17 and 20). 

 There has also been a discussion in the literature on the choice of coupling term (structural 

displacement, velocity and acceleration) in the wake oscillator (i.e. the right term in Eq. 9 or 

10). Based on some comparisons with experimental results of rigid cylinders, Facchinetti et al 

(2004) recommended the acceleration coupling model. However, this model has recently been 

commented by Farshidianfar and Zanganeh (2010) who showed, on the other hand, the superior 

results of the velocity coupling model. Hence, the velocity coupling term is herein chosen by 

considering and modifying the Skop and Balasubramanian’s model. Other modifications of the 

Skop-Balasubramanian wake oscillator can be found in the paper of Kim and Perkins (2002) 

where some additional nonlinear terms have been included to account for the coupling of 

lift/drag forces, and in the work of Balasubramanian et al. (2000) where a diffusion term has 

been included to account for a cellular vortex shedding in sheared flows.  

 Equations (1-10) are considered for arbitrarily inclined cables. In the case of uniform- 

tension beam whose coordinate system is shown in Fig. 1b, the condition ∂s ≈ ∂x is applied     

to Eqs.(4-5) with y′ = 0 (k = 1), H1 = 0 and TH = T. Thus, u and v in the reduced Eqs. (4) and 

(5) describe axial and transverse motions of straight tensioned beam, respectively. In turn, only 

Eq.(10) with cosθ = 1 is considered for the lift force. Overall, Eqs. (4) and (5) account for the 

longitudinal inertia effect and quadratic/cubic nonlinear terms due to the dynamic extensibility, 

even in the absence of initial curvatures (Srinil et al. 2007). Many VIV studies have neglected 

the geometric nonlinearities. Yet, as recently remarked by Bearman (2009), their potential 

effects might be considerable and cannot be ruled out. They will be highlighted in Section 4.6 
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and 4.7 based on a comparison of linear vs. nonlinear cylinder models. 

 

3. LOW-ORDER MULTI-MODE WAKE/CYLINDER INTERACTION MODEL  

We aim to numerically investigate multi-mode VIV responses of curved/straight structures 

through a systematic low-order model. This computationally-robust model is practically useful 

when dealing with large parametric studies. Due to the commensurability of vortex-shedding 

and natural frequencies, certain modes may take part in the coupled fluid-structure system, 

even in the case of uniform flow with a single velocity (Chaplin et al. 2005b; Willden and 

Graham 2003). Because some recently observed VIV of full-scale drilling pipes tends towards 

standing wave responses with increasing amplitudes (Tognarelli et al. 2008), standing wave 

characteristics are herein assumed. The travelling wave responses would become more relevant 

at higher-order modes and/or in sheared flow cases (Vandiver et al. 2009). In fact, the 

travelling wave behavior is the expected response of slender structures with high aspect ratios 

(Lie and Kaasen 2006).  

By rearranging Eqs. (4-5) and (9-10) in their first-order forms (A, B) and assuming that the 

wake oscillates modally and concurrently with the cylinder, both cylinder and wake variables 

are postulated in terms of a full eigenbasis by letting  
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∑ ∑
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where φn and ϕn are synchronized horizontal (axial) and vertical (transverse) displacement 

shape functions of nth cable (beam) modes, respectively. These eigenfunctions have been 

obtained based on a Fourier sine-based series in conjunction with a hybrid analytical-numerical 

eigensolution of linear equations of free undamped motions in Eqs. (4-5) (Srinil et al. 2007; 

2009). In Eq. (11) ((12)), fn (dn) and pn (en) denote, respectively, the generalized displacement 

and velocity of the cylinder (wake). By substituting Eqs. (11-12) into (4-5) and (9-10), 

applying the Galerkin procedure with pinned-pinned boundary conditions and 

orthonormalization of modes, and assuming the lock-in condition (ωs≈ωn) through Eqs.(7-8), a 

low-order model describing the multi-mode interaction in the VIV of a coupled cylinder/wake 
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system is given by the following nonlinear ordinary-differential equations, 

2 2
G

1 1

,                                                                                                                                      (13)

2 S ( 2 / )
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n n n n n n n n s nij i j
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where ωn are the natural frequencies in still water, SG the mass-damping or so-called Skop-

Griffin parameter with SG = ξ/μ (Skop and Balasubramanian 1997), μ the fluid-to-cylinder 

mass ratio with ( )2 2 28 St aD m mµ ρ π= + , and ξ the modal damping. In the above system, ξ 

and thus SG (as well as F and G) are assumed to be mode-independent. Overall, the linear 

(Πni), quadratic (Λnij) and cubic (Γnijk, ℜnijk) nonlinear coefficients – which govern the multi-

mode contributions and interaction effects – are given, respectively by    
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  
ℜ = + +  ′ ′   

∫ ∫          

 
 Depending on a number of considered modes N, the total N linear and N2 (N3) nonlinear 

quadratic (cubic) coefficients in each modal equation can be calculated a priori, by numerically 

integrating Eqs. (17-20) with 64-point Gaussian Quadrature. In the case of straight beams, 

XH/D becomes L/D. Eq.(16) results in N coupled van der Pol oscillators having a unique 

vortex-shedding frequency ωs, which, in turn, interacts with different cylinder frequencies ωn 

in Eq.(14). This accounts for an inherent detuning of system frequencies during VIV. For given 

initial displacement/velocity conditions (fn, pn, dn, en), the 4N nonlinear equations are 

simultaneously solved by direct numerical integrations with a sufficiently small time step 

(Srinil and Rega 2008b). Overall, the coupled wake/cylinder system depends on the input 

parameters (δ, β, α, ξ, μ, SG), the curved static configuration profile y(x), modal shape functions 
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and characteristics (ωn, φn, φn), strength of geometric/wake nonlinearities (Eqs. 18-20) and the 

empirical parameters (St, CL0,γ, F, G).  

 As regards the wake coefficients, F and G may be derived as functions of system parameters 

defining both the flow and cylinder properties in the experiments. Typically, cross-flow VIV of 

spring-mounted rigid cylinders in uniform flows have been tested, and the associated steady-

state solutions of coupled linear (cylinder) and nonlinear (wake) oscillators are determined. 

These entail a relationship of wake coefficients to fluid-cylinder parameters and measured 

responses. Following Skop and Balasubramanian (1997), F and G depend on the measured 

maximum amplitude A/D of cylinder and frequency ratio ωs,A/ωn with ωs,A being the vortex 

frequency at maximum A/D. Some relevant formulae are summarized as follows. In Eq.(16), 

the velocity coupling (pn) terms are dependent on F which reads 

                                      ( ) ( )( )
2

G 2S
4

2 A A AF
µ γ

δ δ
+

= + Ψ − ,                                    (21) 

 
whereas the wake damping terms depend on G given by 
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,                                                 (22) 

in which 
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( )

,

G
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S

s A
A

n

ω
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 
Ψ = − +  

.                                       (25) 

 
Apart from the explicit (implicit) empirical parameters CL0 and γ (St) in the above expressions, 

A/D and ωs,A/ωn are described by the following SG-based functions (Skop and 

Balasubramanian 1997) 

                
( )1 22

G

0.385

0.12 S

A
D

=
+

,                                                         (26) 

                ,
2
G

0.0841.216
1 2.66S

s A

n

ω
ω

= +
+

.                                                 (27) 

 These analytical expressions (Eqs. 21-27) reveal the highly-nonlinear relationships between 

wake coefficients and system parameters. One may examine a priori the influence of 

individual parameter on coefficients F and G through a graphical plot. As exemplified by Srinil 
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et al. (2009), F (G) nonlinearly increases (decreases) as SG increases with decreasing µ while 

keeping ξ and other parameters constant. In previous studies based on a single-mode cross-

flow VIV (Kim and Perkins 2002; Srinil et al. 2009), F and G were kept constant when 

parametrically varying V; thus, the influence of Re was neglected. To further account for the 

Re effect in the VIV prediction model, a recent empirical formula given by Govardhan and 

Williamson (2006) is considered in place of Eq. (26). The relevant equation reads 

                                     ( ) ( )2 0.361 1.12 * 0.30 * log 0.41ReA
D

α α= − + ,                                (28) 

 

in which the mass-damping parameter is α* = (m*+CA)ξ and the cylinder-to-fluid mass ratio is 

m*= m/(πρD2/4), which are defined differently from SG and μ (Skop and Balasubramanian 

1997), respectively. With Eq.(28), both F and G values can be recalculated when varying V. In 

Section 4.5, the models with fixed and varied wake coefficients (defined herein as Fixed-FG 

and Varied-FG models) will be considered and compared to highlight the effect of Re on multi-

mode VIV predictions. It is worth emphasizing that establishing the dependence of empirical 

wake coefficients on system parameters is theoretically and practically useful because different 

cylindrical structures having different properties can be straightforwardly analyzed without 

demanding a new experimental setup and testing involving high costs and times. Conversely, 

more experimental tests are needed to calibrate the variable hydrodynamic coefficients for a 

more complex model involving a higher number of influencing parameters.  

 

4. PARAMETRIC INVESTIGATIONS AND DISCUSSION 

To examine the multi-mode VIV characteristics of different curved/straight structures, an 

inclined cable and two tensioned beams (beam1 and beam2) having the properties given in 

Table 1 are investigated based on Eqs. (13)-(16). Other constant parameters are CA =1, CL0 = 

0.28 and γ = 0.183 (Skop and Balasubramanian 1997). Note that while in principle being 

dependent on Re (Norberg 2003), CL0 and St are kept fixed when varying V. Both the cable and 

beam1 have the same properties (Srinil and Rega 2007), except that θr = 30o for the cable. 

Beam2 is the pipe used in an ExxonMobil experimental campaign whose post-processed data 

have been reported by Tognarelli et al. (2004). This beam2 is compared with beam1 (Section 

4.5 and 4.6) and used in a comparison between numerical/experimental results (4.7). While the 

cylinder slenderness is described by an aspect ratio (L/D), the tension vs. bending contributions 

may be characterized by the dimensionless tensioned-beam parameter aL T EI∆ = where Ta is 

a tension at maximum sag (average tension) of the cable (beam) (Srinil et al. 2009). Note that 
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Ta is herein considered as a reference value but this may alternatively be, e.g., the maximum 

(minimum) tension at the top (bottom). As shown in Table 1, cable/beam1 are more slender and 

dominated by tension than beam2 since the former have greater L/D and ∆, respectively. In 

addition, cable/beam1 have larger mass (m*) and damping (ξ) ratios. Depending on SG, the 

fixed F and G values of cable/beam1 and beam2 are different. These overall distinctions will be 

kept in mind when making a discussion and comparison of prediction results.  

 In the following, the modal characteristics of the cable/beams are first analyzed. By 

focusing on the VIV prediction for the curved nonlinear cable, the analyses of time histories, 

modal amplitudes and space-time displacement profiles are discussed in Section 4.2, 4.3 and 

4.4, respectively, based on the Fixed-FG model. To highlight the Re effect, results from Fixed- 

and Varied-FG models are compared in Section 4.5. The influence of geometric nonlinearities 

is emphasized in Section 4.6. The numerical predictions are validated by experimental results 

in Section 4.7. Finally, some aspects on the VIV modelling and predictions are drawn in 

Section 4.8. 

 

4.1 Modal Characteristics of Flexible Curved/Straight Structures 

 The dependence of VIV on modal characteristics distinguishes flexible cylinders from rigid 

cylinders, and the dependence of VIV on initial curvatures distinguishes curved cylinders from 

straight cylinders. Based on 20 sine series considered in the linear dynamic analysis, the natural 

frequencies and associated normalized modal shape functions are shown in Table 2 and Fig. 2, 

respectively, for the lowest 8 modes of the cable and beams. In Fig.2, x* indicates how the 

coordinate x, which has initially been non-dimensionalized by D, is further normalized such 

that the maximum value – being XH/D (L/D) in the cable (beam) case – becomes unity. 

Consistently, this normalization is also applied to shape functions depicted in Fig. 2, with 

dashed and solid lines denoting horizontal (φn) and vertical (φn) displacement components of 

the cable, respectively. For straight beam1 and beam2, the normalized mode shapes are 

identical, and only transverse components (φn) are displayed by dotted lines since axial (φn) 

components appear at higher-order modes.  

 Figure 2 reveals that the curved cable exhibits asymmetric mode shapes due to the effect of 

varying initial curvatures, whereas the straight beams exhibit typical string modes, both 

symmetric and anti-symmetric. These qualitative differences affect the multi-mode interaction 

coefficients through Eqs.(17-20). In fact, owing to the zero initial curvatures and/or the 

orthogonality properties of symmetric/anti-symmetric transverse modes (Srinil and Rega 
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2007), the linear Πni (Eq. 17) and quadratic Λnij (Eq. 18) coefficients, and some of the cubic 

Γnijk and ℜnijk coefficients (Eqs. 19 and 20 with k = 1 and without y′ terms) of beams are trivial. 

However, if axial modes come into play, Λnij becomes significant (Srinil and Rega 2008a). 

Furthermore, one cannot rule out axial modes by considering, e.g., a linearized tensioned-beam 

equation. On the contrary, overall coefficients of the inclined cable are non-trivial due to the 

interactions of different asymmetric modes.  

 Because beam2 is more dominated by bending than cable/beam1, the natural frequencies of 

beam2 are much higher and more widely-spaced. As shown in Table 2, the differences in 

frequencies between the cable and beam1 are relatively small due to a small inclination of cable 

whereas those between beam1 and beam2 are considerable, being by an order or even two 

orders of magnitude. Overall, some of the frequencies are commensurable as nearly integer 

ratios. For instance, the ω6:ω5 (ω5:ω2 and ω6:ω2) ratio is about 1:1 (2:1) for the cable, 

whereas the ω6:ω2 (ω7:ω3) ratio is about 3:1 for beam1 (beam2). These sample frequency (1:1, 

2:1, 3:1) ratios (see Table 2), together with the associated geometric nonlinearities, would lead 

to a so-called internal or auto-parametric resonance condition (Nayfeh 2000), which, in turn, 

adds to the complexity of VIV prediction of flexible structures. Indeed, depending on vortex-

shedding frequency (ωs), both external (ωs vs. ωn) and internal (amongst ωn) resonances may 

be simultaneously activated. This represents a precarious dynamic scenario responsible for 

large-amplitude VIV responses as will be further investigated in Section 4.5. In the following, 

the nonlinear time histories of cylinder and fluid wake are first discussed. 

 

4.2 Time Histories of Resonantly Coupled Cylinder/Wake with Mode Switching 

 Numerical integrations of nonlinearly coupled Eqs.(13-16) are performed to determine the 

steady-state responses of the cylinder (fn, pn) and wake (dn, en) modal coordinates, prior to 

evaluating relevant response amplitudes. The time simulations depend on the input parameters, 

the number of modes and assigned initial displacement/velocity conditions. By way of 

example, the inclined cable subject to V = 0.734 m/s (ωs ≈ 2.4 rad/s) is considered and the time 

series of cylinder (fn) and wake (dn) displacements with N=5 (n = 2-6) are displayed in Fig.3 

based on very small initial condition values from the cable static equilibrium.  

 As shown in Fig.3, a beating phenomenon with continuous amplitude modulations occurs in 

the modal time histories of both cylinder and fluid wake. The beginning dynamics (t < 800 s) 

are governed by the 6th-mode response having steady amplitudes. As time progresses (t > 800 

s), other modal responses grow considerably and the dominant mode switches from the 6th 
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mode to the 4th and 5th modes (t > 1600 s). At this time, all modes are resonantly coupled, 

becoming energetic and periodically interacting amongst themselves. The 4th mode response 

appears to be the most stable and steady. Note also that modal responses of the cylinder prevail 

over those of wake during the multi-mode interactions: this may be attributed to the fact that 

the structure usually controls the fluid when the lock-in or synchronization takes place (Sumer 

and Fredsoe 2006). The “mode switching” feature along the time coordinate for a specified 

flow velocity, as in Fig. 3, has recently been observed in the experiments of a vertical beam 

partially subject to uniform flow by Chaplin et al. (2005b). Therein, the dominant 8th mode 

switches to the 6th and 7th modes in cross-flow VIV. Violette et al. (2010) have theoretically 

explained this behaviour based on the linear stability approach. Because different modes can be 

excited at different (t < 800 vs. t > 1600 s) and coincident (t > 1600 s) time instants, the 

associated concepts of “time sharing” (Jaiswal and Vandiver 2007) and “space sharing” 

(Tognarelli et al. 2004) are, respectively, relevant to the time series in Fig. 3.  

 By performing a fast Fourier transform to the steady-state responses (t > 2400 s), the modal 

oscillating frequencies ωosc of cylinder/wake are also reported in Fig.3. These should be 

compared with ωn in Table 2 and ωs = 2.4 rad/s based on the Strouhal law. It is evident that the 

coupled cylinder-wake responses of each vibration mode have the same ωosc. This highlights 

how multi-mode lock-in occurs, with wake modal frequencies locking onto cylinder modal 

frequencies, and qualitatively confirms what has been experimentally observed by Hover et al. 

(1997a) for inclined cables subject to flows perpendicular to the equilibrium plane. Overall, the 

computed ωosc values (.753, 1.118, 1.478, 1.841, 2.185 rad/s) in Fig. 3 are less than the 

associated ωn (1.033, 1.461, 1.755, 2.168, 2.228 rad/s) due to the effect of varying added mass 

during VIV (Sumer and Fredsoe 2006). The frequency ratios ωosc/ωn of all 5 modes are less 

than 1, decreasing consecutively from 0.98, 0.85, 0.84, 0.77 to 0.73 as the mode number 

increases. This further highlights how, in addition to the mass/damping parameter (Williamson 

and Govardhan 2004), the hydrodynamic added mass is also mode-dependent for a flexible 

cylinder. 

 Based on other numerical simulations, it has been found that the mode switching, space/time 

sharing characteristics for a given flexible cylinder and V depend on both the number of 

interacting modes and the assigned initial conditions. The latter, in turn, affect the onset of 

limit cycles or steady-state responses and, of course, the computational time. To conduct a 

series of parametric studies with varying V, it is necessary to assign the initial conditions based 

on the maximum or steady-state modal responses obtained from the previous V case. In the 

following Section, the response amplitude diagrams of flexible cylinder are discussed. 
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4.3 Response Amplitude Diagrams of Flexible Cylinder 

 It is now of interest to estimate the maximum modal and total (superimposed) amplitudes of 

the flexible curved cylinder, and also varying flow velocity (V) and considering different low-

order (N) models. As remarked by Williamson and Govardhan (2004), one of the fundamental 

questions deals with the maximum attainable amplitudes of cylinders subject to VIV. In this 

study, the maximum amplitudes based on each individual mode (An/D) and all superimposed 

modes (AR/D) are both evaluated. Note that the An/D are useful in the analysis of multi-mode 

contributions and interactions, as well as the determination of dominant mode(s) in VIV. On 

the other hand, AR/D is useful in evaluating the total response which is in turn meaningful for 

the ensuing stress and fatigue analyses.  

 The An/D of the flexible cylinder are approximated by 
                    

         𝐴𝑛 𝐷⁄ = ��𝑓𝑛,𝑚𝑎𝑥∅𝑛,𝑚𝑎𝑥�
2

+ �𝑓𝑛,𝑚𝑎𝑥𝜑𝑛,𝑚𝑎𝑥�
2
,                       (29) 

 
where, for the nth vibration mode, fn,max is the maximum value of fn obtained from the steady-

state time histories (e.g. Fig.3 for t > 2400 s), and φn,max (φn,max) is the spatially-maximum 

horizontal or axial (vertical or transverse) displacement of the mode shape functions of the 

cable or beam, respectively. Depending on the number of modes considered N=(N2-N1)+1, the 

space-time (i, j) varying displacement profiles accounting for all modal contributions are 

expressed as 
 

  𝑢�𝑥𝑖, 𝑡𝑗� = ∑ 𝑓𝑛 �𝑡𝑗�∅𝑛(𝑥𝑖)
𝑁2
𝑛=𝑁1

, 𝑣�𝑥𝑖 , 𝑡𝑗� = ∑ 𝑓𝑛 �𝑡𝑗�𝜑𝑛(𝑥𝑖)
𝑁2
𝑛=𝑁1

.            (30) 
 
 Accordingly, AR/D are determined based on the spatially and temporally maximum values 

of √𝑢2 + 𝑣2. In some cases, the root-mean-squared (RMS) amplitude at a specific cylinder 

position ARMS(xi)/D and the overall spatially-maximum value ARMS,max/D are computed through 

Eq.(30), by accounting for a standard deviation in fn (tj). 

 By way of example, the inclined cable is again considered with 0.1 < V < 1 m/s. Figures 4a 

and 4b depict the An/D diagrams obtained by the single-mode (N = 1, where n =1, 2…7) and 

multi-mode (N = 7, n=1-7) models, respectively. Note that results from 7 single-mode analyses 

are jointly plotted in Fig.4a, in contrast to results from one multi-mode analysis plotted in 

Fig.4b. As shown in Fig. 4, both quantitative and qualitative differences take place in between 

single-mode (4a) and multi-mode (4b) models, even though all 7 modes are consecutively 

excited as V increases. In particular, the single-mode model overestimates An/D with a 

maximum value reaching 2.32 corresponding to either the 4th or 5th mode (Fig. 4a). This is 

different from the multi-mode model where the maximum An/D is about 1.44 corresponding to 
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the 6th mode (Fig.4b). Moreover, the single-mode model widens all modal lock-in ranges, 

resulting in a large overlapping area of modal amplitudes. A hysteresis effect, where the modal 

response reaches its peak and suddenly jumps down prior to switching to a new modal response 

as V increases, is captured by the multi-mode model (see, e.g., A1/D, A2/D and A6/D). In 

accordance with Fig. 3, three dominant modes (A4/D, A5/D and A6/D) appear at V ≈ 0.73 m/s 

and the multi-mode lock-in involving two or three modes occurs over a particular V range in 

Fig. 4b. The 5th and 6th modal responses are strongly coupled since their natural frequencies 

(2.168 and 2.228 rad/s) are nearly 1:1 resonant (Table 2). The coupling in VIV of two cable 

modes having nearly identical frequencies has been experimentally discussed by Hover et al. 

(1997a).  

 Corresponding to Fig. 4b, Fig. 5 displays An/D versus the reduced flow velocity parameter 

Ur = 2πV/ωnD based on each modal frequency ωn. These plots are useful in comparing the 

extent of lock-in associated with different excited modes. Overall, the maximum An/D are in 

the range of 1 < An/D < 2 and synchronization occurs in the range of 5 < Ur < 8. These 

predictions of curved cable are in good quantitative and qualitative agreement with well-known 

cross-flow VIV characteristics of flexible cylinders (Fujarra et al. 2001).  
 To determine how many modes are actually required in obtaining a low-order multi-mode 

solution, it is necessary to perform a convergence study by varying N in the determination of 

AR/D, which accounts for overall modal superimposition. The solution converges when AR/D 

remains unchanged with increasing N. By considering the cable with N = 2 (n=1-2), 3 (n=1-3), 

5 (n=1-5), 7 (n=1-7) and 9 (n=1-9), the AR/D are jointly plotted in Fig. 6 for 0.1 < V < 1 m/s. It 

can be seen that the two- and three-mode models are only valid in the low V range (V ≤ 0.3 

m/s). More modes are required when further increasing V. With five-mode and seven-mode 

models, the solution convergence is satisfied in the higher ranges of V ≤ 0.5 and 0.95, 

respectively, in comparison with the nine-mode model. 

 Overall, the mode switching with varying V, the multi-mode sharing and interactions 

whereby modal amplitudes overlap in different V ranges are systematically captured by the 

multi-mode model (Fig.4b). A sufficient number of considered modes are required in the low-

order model of flexible cylinder (Fig. 6). The single-mode model may lead to both quantitative 

as well as qualitative errors in VIV predictions (Fig. 4a). Therefore, it is suggested considering 

the multi-mode model by simultaneously simulating all modal nonlinear differential equations. 

In the following, resonant nonlinear modes of flexible cylinder are discussed. 
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4.4 Resonant Nonlinear Modes of Flexible Cylinder 

 As highlighted in Section 4.2 and 4.3, the multi-mode lock-in, sharing, switching and 

interaction features in VIV of flexible cylinder occur in a specific period of time and V range. 

Depending on modal characteristics (Fig. 2) and participating VIV amplitudes (Fig. 4b), the 

space-time varying profiles of u and v displacements are now constructed based on Eq. (30) 

and normalized such that the spatially maximum amplitudes are equal to 1 (unm, vnm,). In the 

event of lock-in where vortex-shedding and cylinder oscillating frequencies are resonant, such 

displacement profiles are herein defined as “resonant nonlinear modes” of flexible cylinder. 

They are useful in the ensuing analyses of curvatures, stress and fatigue, and may be further 

useful in a framework of nonlinear modal reduction technique (Srinil and Rega 2007).    

 Based on An/D of inclined cable in Fig.4b with N=7, the unm (dashed lines) and vnm (solid 

lines) profiles at different four time snapshots (t1-t4) are plotted in Fig. 7 for given V = 0.339, 

0.595 and 0.739 m/s, respectively. With V=0.339 m/s, there are two interacting 1st and 2nd 

modes in VIV with A1/D = 0.276 and A2/D = 0.774 (Fig.4b). As a result, both unm and vnm 

profiles exhibit either a predominant 1st-mode (t1), 2nd-mode (t2, t3) or likely a combination of 

both (t4), with respect to linear mode shapes in Figs.2a and b. The two-mode interaction feature 

is also shown when V = 0.595 m/s. In this case, the predominant modes are the 3rd and 4th 

modes with A3/D = 1.285 and A4/D = 0.298 (Fig. 4b). Because of the much greater 

contribution from the 3rd mode than the 4th mode, resonant nonlinear modes are predominated 

by either the former (t1, t2) or the combination of both (t3, t4), whereas a pure 4th-mode 

response is not found. When further increasing V, the modal interaction effect becomes greater 

due to the increasing modal density at higher-order modes. This is highlighted by the three-

mode interaction when V=0.739 m/s. In this case, the nearly-comparable participating 

amplitudes are A4/D = 0.894, A5/D = 0.735 and A6/D = 0.626 (Fig. 4b). As a result, the 

asymmetry in nonlinear mode shapes is remarkable: the locations of minimum (node) and 

maximum (anti-node) amplitudes spatially and temporally vary. The largest curvatures appear 

near the seabed (x*=1) which is the region of primary concern in the design of curved cylinder 

such as catenary riser. 

 Hitherto, the attention has been placed on the analysis of inclined cable due to the fact that a 

very few papers have investigated VIV of flexible curved cylinders. Yet, the methodologies 

applied to inclined cable are the same as those applied to straight beam. These should involve a 

complete study of time histories (Section 4.2), modal amplitudes (Section 4.3) and resonant 

nonlinear modes (Section 4.4), by also varying V and N. Owing to multi-mode interactions, 

nonlinear and linear modes are in fact different, since the former can vary with space and time. 
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Depending on modal contributions, the space-time evaluation of cylinder maximum amplitudes 

is very useful as relevant experiments need a realistic positioning of strain sensors measuring 

the peak fatigue. In the following, the effects of fluid/structure parameters on VIV predictions 

are investigated, by considering all cable/beams with reasonable low-order models. 

 

4.5 Influence of Reynolds Number 

 It is now of importance to examine the influence of Re on multi-mode VIV predictions of 

flexible cylinders. In so doing, all curved cable and straight beams with geometric 

nonlinearities are analyzed and the modal amplitudes (An/D) with Fixed- and Varied-FG 

models are compared. By accounting for the Re effect (Eq. 28) in the derivation of wake 

coefficients, some varying F and G values with Re are given in Table 3 for cable/beam1 and 

beam2. Note that the sub-critical flow range is considered with the assumed maximum Re ≈ 

3x105 (Sumer and Fredsoe 2006). As Re increases, Table 3 shows that F slightly increases 

whereas G decreases more noticeably. This entails how the coupled wake/cylinder system is 

mostly controlled by damping terms in Eq.(16) which, in fact, regulate the self-limiting 

character in VIV. Thus, as G decreases (Re increases), it is expected to come across greater 

response amplitudes due to the diminishing damping effect, and this is consistent with 

experiment results of Govardhan and Williamson (2006). By comparing between Tables 1 and 

3, the fixed F and G (Skop and Balasubramanian 1997) in Table 1 correspond to the estimated 

F and G in Table 3 in the Re < 2.5x104 range.  

 It is worth mentioning that the formula in Eq.(28) is based on experimental forced vibrations 

of rigid cylinder in the range of 500 < Re < 3.3x104, and it is presently unknown whether this 

formula continues to be valid at higher Re (Govardhan and Williamson 2006). Nonetheless, 

based on recent experiment results of flexible cylinder, Swithenbank et al. (2008) showed a 

significant trend of increasing amplitudes with Re up to 2x105. For this reason, it is herein 

assumed that Eq.(28) holds towards the upper limit of sub-critical flow range, with the aim of 

determining whether and how incorporating the Re dependence into the theoretical model 

could qualitatively and quantitatively affect the associated VIV predictions. 

 By considering now the inclined cable (beam1) with N=9, 0.1 < V < 1 m/s and 3x104 < Re < 

3x105, Figs. 8a (8c) and 8b (8d) display the An/D diagrams with Fixed- and Varied FG models, 

respectively. It can be seen that both quantitative and qualitative differences occur between the 

two models neglecting or accounting for the Re effect (i.e., Figs. 8a vs. 8b and 8c vs. 8d). For 

both curved/straight cylinders, the amplitudes – as well as the resulting modal interactions – 
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predicted by the Varied-FG model become greater than those predicted by the Fixed FG model. 

This is expected from the decreasing G in Table 3. The maximum An/D of cable (beam1) is 

about 1.41 (1.33) by the Fixed-FG model, whereas it reaches about 2.3 (1.88) by the Varied-FG 

model. Interestingly, for cable with Varied-FG model, the 2nd-mode is excited in two different 

– primary (0.3<V< 0.5 m/s) and secondary (0.7<V<1.0 m/s) – lock-in regimes, as highlighted 

by the shaded areas in Fig. 8b. In the secondary lock-in region, there are as many as 6 

interacting modes in VIV responses. For instance, with V = 0.845 m/s (Re ≈ 2.5x105), the 

underlying modes are A2/D = 1.86, A3/D = 0.33, A4/D = 0.97, A5/D = 1.63, A6/D = 1.86 and 

A7/D = 0.38. These observed responses are in contrast to the Fixed-FG model (Fig. 8a) where 

only primary lock-in region of 2nd mode occurs (see the shaded area) and, with V = 0.845 m/s, 

there are fewer 3 excited modes with A4/D = 0.16, A5/D = 1.19 and A6/D = 1.21.  

 The participation of 2nd mode into the curved cylinder response giving rise to its secondary 

lock-in regime at higher V may be attributed to the effect of 2:1 internal resonances since both 

ω5 (2.168 rad/s) and ω6 (2.228 rad/s) frequencies are nearly twice that of ω2 (1.033 rad/s), see 

Table 2. Both higher modes are in fact strongly coupled and can excite the lower one through 

geometric nonlinearities of initial curved structure (Srinil and Rega 2007). Thus, the Varied-FG 

model in Fig. 8b highlights the occurrence of simultaneous external/internal resonances due to 

the interactions of cylinder vs. vortex-shedding and cylinder vs. cylinder frequencies, 

respectively. These numerical outcomes entail large-amplitude VIV predictions at high Re 

range, though relevant experimental confirmation is still unavailable.  

 When considering beam1, the modal interaction effect again becomes more manifest as Re 

(G) increases (decreases), as shown by the Varied-FG model in Fig. 8d in comparison with the 

Fixed-FG model in Fig. 8c. Nevertheless, the secondary lock-in of any mode is not observed. 

This is because, even though system natural frequencies are commensurable as integer ratios 

(Table 2), the nonlinear orthogonality properties of symmetric (e.g. 3rd) vs. anti-symmetric (e.g. 

6th) modes prevent the internal resonance from being activated (Srinil and Rega 2007). Thus, 

the differences between Figs. 8a (8b) and 8c (8d) are due to the effect of varying initial 

curvatures of cable since other input parameters are identical (Table 1).  

 Beam2 which has a greater bending stiffness (∆) than beam1 is now considered with 

0.1<V<2.0 m/s and 2x103 < Re < 3x104. The An/D results with N = 9 are plotted in Fig.9. In 

contrast to beam1, the Re effect on VIV prediction is seen to be relatively small for beam2. 

Both Fixed-FG (Fig. 9a) and Varied-FG (Fig. 9b) models reveal similar An/D diagrams with a 

high degree of multi-mode contributions throughout the V range. With V > 0.5 m/s, there is no 
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clear synchronization or lock-in condition found in either Fig.9a or 9b, and the time histories 

are indeed non-periodic and highly modulated as illustrated by the first 4 modal (f1-f4) 

responses in Fig.10 with V = 1.11 m/s (Fig. 9b). Recall also that beam2 has high and widely-

spaced values of natural frequencies (Table 2). By considering a larger mass-damping 

parameter (α*) with increasing either the mass (m*) or damping (ξ) ratio, numerical results 

with Varied-FG model (not shown herein) still reveal non-periodic features although with 

smaller amplitudes. The occurrence of highly-modulated responses of straight beam in uniform 

flow has been observed, e.g., by Chaplin et al. (2005b). Recently, Chasparis et al. (2009) 

defined the non-periodic as chaotic response and suggested several excited modes in chaotic 

VIV. Based on available experiment results (Tognarelli et al. 2004), the validation of numerical 

results of beam2 will be discussed in Section 4.7, by also recognizing the high fluctuating 

responses as in Fig. 10 and thus considering the RMS amplitudes. 

 

4.6 Influence of Structural Geometric Nonlinearities 

 The influence of geometric nonlinearities on VIV predictions of flexible cylinders is now 

highlighted. By considering linear curved/straight cylinder models which disregard the modal 

interaction terms in Eq. (14), all inclined cable, beam1 and beam2 are again analyzed. With 

Varied-FG model and N = 9, the predicted maximum An/D are displayed in Figs. 11a (cable), 

11b (beam1) and 11c (beam2), in comparison with nonlinear model results in Figs. 8b, 8d and 

9b, respectively. Overall, there are quantitative and qualitative differences between nonlinear 

and linear models. In particular, the secondary lock-in regime of cable 2nd mode is not detected 

by linear model in Fig. 11a. This justifies how the observed 2:1 internal resonances in Fig. 8b 

are associated with geometric nonlinearities. With regard to beams, overall modal amplitudes 

(An/D ≈ 1.5-2.5) in Figs.11b (beam1) and 11c (beam2) are considerably greater than those in 

the associated Figs. 8d and 9b due to the neglected multi-mode interactions in the former. As a 

result, a single-mode lock-in is clearly seen throughout the V range in both Figs.11b and 11c. 

Because only the wake nonlinearities (Eq.20) are taken into account in the results of Fig.11, the 

observed hysteresis effect in modal responses is solely associated with the fluid mechanism. 

This is in good qualitative agreement with experimental results by Brika and Laneville (1993).  

 By superimposing all modal amplitudes and accounting for their standard variations, the 

plots of ARMS/D versus varying V and x* are now illustrated in Fig. 12, by comparing between 

nonlinear and linear models of cable (12a vs. 12b) and beam2 (12c vs. 12d). Both Figs. 12a and 

12b appear qualitatively similar in terms of overall amplitude variations although there are 
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some differences in spatial profiles at high V (> 0.7 m/s) due to different modal contributions 

shown in between Figs.8b and 11a. On the contrary, both quantitative/qualitative differences in 

spatial profiles are remarkable for beam2 when comparing between nonlinear (Fig.12c) and 

linear (Fig.12d) cylinder models. The nonlinear (linear) model entails smaller (greater) 

ARMS,max/D = 0.593 (0.694). According to a single-mode lock-in feature in Fig. 11c, Fig. 12d 

shows a regular pattern of spatial profiles with increasing number of half-sine waves as V and 

mode number increase. This is in contrast to Fig. 12c where a dominant mode cannot be 

characterized in a wide V range due to high multi-mode contributions and fluctuation of 

response amplitudes as shown in Figs. 9b and 10, respectively. 

 

4.7 Numerical and Experimental Comparisons 

 The presented low-order wake/cylinder interaction model is now validated by performing 

numerical and experimental comparisons of VIV predictions. Owing to the varying modal 

interaction effect, the comparisons within a whole V range, rather than a specific V, should be 

made. In this study, the experimental results of beam2 post-processed by Tognarelli et al. 

(2004) are referenced, by only considering cross-flow VIV. Of importance from a design 

viewpoint, the numerical-experimental comparisons are made in terms of spatially-maximum 

values of RMS amplitudes (ARMS,max/D) and “fatigue damage index” (FDImax). Following 

Tognarelli et al. (2004), FDI may be approximated as 3FDI df ε≈ , where fd is herein the 

natural frequency (Hz) of a mode predominating in VIV response and ε is the micro bending 

strain calculated based on a RMS value of cylinder dynamic curvature. Note that the estimation 

of fatigue damage is usually based on a ratio of the number of stress cycles incurred over the 

number of stress cycles to failure. This could be evaluated through the S-N curve which may 

entail the proportionality relationship: fatigue damage ∝ fdσ3 (Baarholm et al. 2006). Because 

the stress (σ) is proportional to the bending strain that can be directly measured from 

experiments via strain gauges, Tognarelli et al. (2004) have introduced FDI to simply 

approximate the fatigue damage with a slope of 3 from S-N curve. This is convenient in the 

parametric studies and further comparisons with industrial tool predictions (Yang et al. 2008). 

In fact, the FDI is independent of a stress concentration factor or S-N curve intercept, but 

providing these values would give rise to actual fatigue damage being proportional to FDI by a 

constant factor. 

 In Fig.13, both linear (L) and nonlinear (NL) structural models are analyzed, by also 

accounting for the Re effect (Varied-FG model). By varying V, Fig.13a compares the variation 
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of ARMS,max/D with different low-order (N=8, 9, 10) models and with NL vs. L (N=9) models. 

Correspondingly, Fig.13b compares the variation of FDImax. It can be seen in Fig. 13a that, in a 

low V range, all numerical models yield good agreement with experiment results. For V > 0.8 

m/s, the differences increase: the predicted amplitudes by NL models are lower than the 

experimental amplitudes whereas those by L model (N=9) are more comparable to the latter. 

On the contrary, as V increases in Fig. 13b, the L model provides considerably overestimated 

FDImax results whereas all NL models entail better quantitative predictions. Such greater 

discrepancies given by the L model increase with V and persist in spite of varying N, as shown 

in Fig. 13c. Therefore, Figs. 13a, b and c highlight the effect of geometric nonlinearities on 

numerical predictions as well as their comparisons with experimental post-processed results.  

 Overall, Figs. 13b and 13c show how both numerically and experimentally predicted fatigue 

damage progressively increases with increasing V. A better quantitative comparison of FDImax 

between numerical NL model and experimental results is plausible since bending strains have 

been directly measured and used in the FDI approximations. This is in contrast to the 

experimental amplitudes whose values have been post-processed based either on double 

integrations of strains/accelerations or a linear modal analysis in frequency domain. For this 

reason, a poorer (better) comparison of fatigue damage indices (response amplitudes) is found 

by the L model. Because such post-processing procedure for the estimated displacements 

overlooks the effect of geometric nonlinearities as well as multi-mode interactions, it may be 

more worthwhile relying on a comparison of bending strains or damage indices rather than 

amplitudes. Yet, quantitative errors are still seen by numerical results of NL model in Fig. 13b 

and these may be due to the wake oscillator’s inability to capture actual flow mechanisms in 

the wake and to the fact that the considered low-order model excludes the effect of in-line VIV.  

 To show the possible effect of other input parameters, Figure 13d compares ARMS,max/D 

results with different given St, by considering the NL model with N=8. Recall also that, in 

contrast to coefficients F and G, the St value is fixed when varying V (Re). The St effect on 

VIV prediction and comparison with experiment result is studied due to the fact that the 

reported St values in the literature are different though post-processing the same ExxonMobil 

experimental data. For instance, St = 0.21 in Tognarelli et al. (2004) whereas St = 0.14 in Yang 

et al. (2008). In Figs. 13a-c, results are based on the averaged St = 0.17 (Table 1). Because St 

has been incorporated into theoretical model (implicitly through µ) and governing formulae 

(Eqs. 21-28) deriving the varying wake coefficients, the predicted numerical results are 

influenced by St. Indeed, these are shown in Fig. 13d where, in a high V range, ARMS,max/D 

increase with decreasing St and results with St = 0.14 become less quantitatively different from 
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experimental results. This emphasizes that the accurately referenced value of St, apart from 

other influencing parameters (such as ξ and its mode dependence), is also important in the 

comparison of numerical and experimental predictions. 
 

4.8 Discussion 

 To further improve numerical results and their comparisons with experimental data, some 

aspects on the VIV modelling and predictions of flexible curved/straight structures are 

summarized as follows. 

i. The effect of in-line motions which has been herein neglected should be also accounted 

for in the upcoming model development since coupled cross-flow/in-line VIV are mostly 

realistic (Jauvtis and Williamson 2004; Sarpkaya 2004). Indeed, there are a very few wake 

oscillators for in-line VIV in the literature (Currie and Turnbull 1987). For this reason, a new 

wake oscillator model for in-line VIV is needed along with its set of empirical coefficients. A 

complete study of cross-flow/in-line multi-mode VIV would allow us to identify the real extent 

of the underlying effects of geometric nonlinearities and multi-mode interactions. 

ii. As regards curved cylinder, the uniform flow perpendicular to its initial equilibrium 

plane has been herein considered. This is plausible because, in such a case, cross-flow wake 

dynamics of curved cylinder behaves qualitatively similar to those of straight cylinder (Miliou 

et al. 2003). To capture the effect of varying curvatures, the wake oscillator has been modified 

to account for the local angle between wake and cylinder axis. This might not be applicable to 

the case of flow being aligned with (or non-perpendicular to) the curvature plane where wake 

dynamics change dramatically, depending on the cylinder configuration being, e.g., convex or 

concave with respect to the incoming flow (Miliou et al. 2007). For flexible curved and 

inclined structures subject to non-perpendicular flows, the associated VIV dynamics have been 

found to be quite irregular and exhibit a hybrid standing-travelling wave behaviours with 

significant phase differences in motion along the structural axis (Moe and Teigen 2004).  

iii. Depending on the number of interacting modes and system parameters, approximate 

closed-form solutions for the autonomous system Eqs. (13-16) may be derived based on, e.g., 

the method of multiple scales (Srinil et al. 2007). This would enlighten a variety of coexisting 

stable/unstable (periodic/chaotic) responses through bifurcations within the lock-in regimes. In 

addition, it would also be possible to determine a generic criterion on the minimum mode 

number required in the VIV analysis of flexible cylinders without performing time-consuming 

numerical simulations. The coexisting responses are practically useful in identifying a 

parametric range of unwanted dynamic scenarios leading to large-amplitude VIV whereas the 
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minimum mode number is theoretically important from a low-order modelling viewpoint.  

iv. On the other hand, it is worthwhile directly integrating the coupled Eqs.(4-5) and (9-10) 

without modal expansion (Srinil and Rega 2008b) to capture actual infinite-dimensional nature 

of distributed-parameter system and allow for the space-time modification of both 

fluid/structural properties. In so doing, a discrete x position where sinθ = 0 (Eq.9) or cosθ = 0 

(Eq.10) should be first examined. This is because, to avoid a breakdown during numerical 

simulations owing to the zeroing denominator, such x position will not be taken into account in 

the associated spatial discretization by, e.g., a finite difference approach.  

v. The empirical wake coefficients, even in the case of pure cross-flow VIV, could be 

further improved and calibrated with additional new experimental results. In particular, the 

formula (Eq. 28) given by Govardhan and Williamson (2006) to capture the Re dependence 

should be validated whether it remains valid at high Re (> 3.3x104) or a new formula should be 

proposed. In addition, it would be also worthwhile determining the Re dependence of the 

frequency ratio term given by Eq. (27). Numerical results in Section 4.6 have highlighted both 

quantitative and qualitative effects of Re on multi-mode VIV predictions of curved cylinder, 

and the relevant experimental investigations verifying these observations are also needed.  

 

5. SUMMARY AND CONCLUDING REMARKS 

Multi-mode interactions in VIV of flexible curved/straight cylindrical structures with 

geometric nonlinearities have been numerically investigated through a systematic low-order 

coupled wake-cylinder model. Cross-flow motions due to unsteady lift forces of inclined cable 

and straight tensioned beams in uniform currents have been analyzed. The nonlinear equations 

of structural motions are based on a general pinned-pinned flexural curved cable model. The 

empirical hydrodynamic forces are based on the distributed van der Pol wake oscillators which 

capture both the effects of varying initial curvatures of inclined cylinder and Re. Numerical 

simulations have been performed in the case of varying flow velocities V. Depending on 

system fluid-structure parameters, empirical coefficients, vortex-shedding/natural frequencies, 

modal characteristics, multi-mode contributions and assigned initial conditions, parametric 

results highlight several meaningful aspects of VIV of long flexible cylinders which have been 

experimentally observed in the literature. The main features are summarized as follows. 

• Multi-mode lock-in, switching, sharing and interaction features take place both in 

response time histories (for a given V) and amplitude diagrams (with increasing V). In time 

histories, the beating phenomena with continuous amplitude modulations are observed in both 
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cylinder/wake modal responses. In amplitude diagrams, multiple modal responses overlap in 

specific V ranges. The lock-in bandwidth and hydrodynamic added mass are found to be mode-

dependent. The transition and superimposition of modes are displayed through the space-time 

varying displacement profiles which are herein defined as resonant nonlinear modes associated 

with lock-in conditions. 

• Maximum modal and total amplitudes of flexible cylinders have been estimated. The 

lowest single-mode model may lead to quantitative/qualitative discrepancies when compared to 

multi-mode models. To obtain solution convergence of amplitudes, a proper number of 

potentially-excited modes should be considered in low-order models. 

• For inclined curved nonlinear cable, a new qualitative feature in VIV of flexible 

cylinder is found when accounting for the Re effect in the theoretical model and analysis. As V 

increases, simultaneous external/internal resonances – giving rise to primary/secondary lock-in 

regimes – take place, with the secondary lock-in involving large-amplitude responses due to 

strong multi-mode interactions. For tensioned beam with significant multi-mode contributions, 

the dynamic responses are highly non-periodic and modulated, and the Re is seen to play a 

minor role in response predictions.  

• Overall, the geometric nonlinearities of flexible cylinders play a significant role both in 

VIV numerical predictions and comparisons with experimental results. The linear structural 

model provides overestimated modal amplitudes and ignores the meaningful effect of multi-

mode interactions.  

Apart from making use of a general low-order wake/cylinder interaction model and 

systematic approach in the analysis of flexible curved/straight structures undergoing multi-

mode VIV, numerical results complement several experimental observations and furnish the 

improved understanding of multi-mode interaction features. The empirical wake oscillator 

could be further calibrated and modified in many ways along with new experimental and/or 

CFD-based hydrodynamics. It is felt that the presented low-order multi-mode model and 

numerical time-domain approach will be very helpful in the development of industrial 

prediction tools for the analysis and design of actual slender offshore structures involving 

hydrodynamic/geometric nonlinearities due to the space-time fluid/structure interactions.  
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FIGURE 

1 A model of flexible (a) curved and (b) straight cylindrical structures in uniform currents 

 

2 Normalized continuous shape functions of lowest 8 modes (a-h respectively): solid 

(dashed) lines denote vertical (horizontal) displacements of curved cable; dotted lines 

denote transverse displacements of straight beam1 or beam2  

 

3 Nonlinear time histories and associated oscillating frequencies of cylinder (fn) and wake 

(dn) multi modal coordinates of curved nonlinear cable with N=5 (n=2-6), V=0.734 m/s 
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4 Maximum multi modal amplitude diagrams of curved nonlinear cable with N=7 (n=1-7) 

and varying V: (a) single-mode vs. (b) multi-model models 

 

5 Individual plots of maximum modal amplitudes vs. Ur of curved nonlinear cable in Fig.4b 

with N=7 (n=1-7) 

 

6 Maximum total amplitude diagrams of curved nonlinear cable with varying N and V 

 

7 Space-time varying displacement profiles with multi-mode superimposition of curved 
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8 Maximum multi modal amplitude diagrams of curved nonlinear cable (a, b) and nonlinear 

beam1 (c, d) with N=9 (n=1-9), varying V and models accounting for (b, d) or neglecting 

(a, c) the Re effect (i.e., a vs. b and c vs. d) 

 

9 Maximum multi modal amplitude diagrams of nonlinear beam2 with N=9 (n=1-9), 

varying V and models accounting for (a) or neglecting (b) the Re effect 

 

10 Example of non-periodic and highly-modulated modal responses of nonlinear beam2 in 

Fig.9b with V=1.11 m/s 

 

11 Maximum multi modal amplitude diagrams of curved cable (a),  beam1 (b) and beam2 (c) 

with N=9 (n=1-9), varying V and neglected geometric nonlinearities 

 

12 Spatial variation of RMS amplitudes with nonlinear (a, c) and linear (b, d) structural 

models of curved cable (a, b) and beam2 (c, d) with N=9 (n=1-9) and varying V (i.e., a vs. 

b and c vs. d) 

 

13 Comparison of predicted numerical and post-processed experimental results of beam2: (a) 

ARMS,max/D with nonlinear (varying N) vs. linear models; (b) FDImax associated with (a); 

(c) FDImax with linear model and varying N; (d) ARMS,max/D with different St 

 

 



 

 

 

 

Table 1 

 

 

Parameters Cable/Beam1 Beam2 

∆ 272 22 

L/D 2581 482 

µ 0.044 0.173 

m* 8.14 2.23 

ξ 0.01 0.003 

St 0.20 0.17 

SG 0.227 0.017 

F 0.644 0.319 

G 0.489 1.887 

                 

 

 

Table 2 

 

 

Frequency (rad/s) Cable Beam1 Beam2 

ω1 0.719 0.365 8.662 

ω2 1.033 0.730 17.840 

ω3 1.461 1.095 28.004 

ω4 1.755 1.461 39.544 

ω5 2.168 1.827 52.762 

ω6 2.229 2.194 67.883 

ω7 2.622 2.562 85.066 

ω8 2.948 2.931 104.424 

Frequency ratio Cable Beam1 Beam2 

1:1 ω6:ω5 - - 

2:1 

ω3:ω1 

ω5:ω2 

ω6:ω2 

ω8:ω3 

ω2:ω1 

ω4:ω2 

ω6:ω3 

ω8:ω4 

ω2:ω1 

ω7:ω4 

 

3:1 ω5:ω1 
ω3:ω1 

ω6:ω2 

ω5:ω2 

ω7:ω3 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3 
 

 

Re 
Cable/Beam1 Beam2 

F G F G 

5000 0.641 0.597 0.307 3.191 

10000 0.644 0.470 0.315 2.267 

25000 0.647 0.357 0.322 1.594 

50000 0.648 0.297 0.326 1.278 

75000 0.649 0.268 0.327 1.137 

100000 0.650 0.251 0.328 1.052 

250000 0.651 0.205 0.331 0.838 

300000 0.651 0.197 0.331 0.804 
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