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A note on “New travelling wave solutions to

the Ostrovsky equation”

E.J. Parkes a

aDepartment of Mathematics & Statistics, University of Strathclyde, Livingstone

Tower, Richmond Street,Glasgow G1 1XH, UK

Abstract

In a recent paper by Yaşar [E. Yaşar, New travelling wave solutions to the Ostro-
vsky equation, Appl. Math. Comput. 216 (2010), 3191–3194], ‘new’ travelling-wave
solutions to the transformed reduced Ostrovsky equation are presented. In this note
it is shown that some of these solutions are disguised versions of known solutions.
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Over the past two decades or so several methods for finding travelling-wave solutions
to nonlinear evolution equations have been proposed, developed and extended. The
solutions to dozens of equations have been found by one or other of these methods.
References [1–5] and some of the references therein mention some of this activity.
Unfortunately, one unwanted consequence of this work is the large number of papers
in which authors claim to have found ‘new’ solutions which, in truth, are just
disguised versions of previously known solutions. Recently, in a series of enlightening
papers [6–12], Kudryashov and co-workers have warned researchers and referees of
the danger of not recognizing that apparently different solutions may simply be
different forms of the same solution. In these papers, numerous examples are given
to illustrate this phenomenon. Some other recent examples are given in [13–18].

In [14] we discussed ‘disguised’ solutions of an equation that we have dubbed the
‘transformed reduced Ostrovsky equation’, namely

uuxxt − uxuxt + u2ut = 0. (1)

In this note we reveal yet more such solutions, this time as presented by Yaşar [1].
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In passing we note that Eq. (1) is a transformed form of the Vakhnenko equation
[19] which, in turn, is a transformed version of the reduced Ostrovsky equation [20].
Misleadingly, in [1–4], Eq. (1) is referred to as the Ostrovsky equation.

First we summarize a derivation of some distinct solutions to Eq. (1). For this
purpose we have used the extended tanh-function method for finding travelling-
wave solutions which we summarized in [16]. A tedious but routine application of
the method to (1) gives

u = 6k2 − 6Y 2 or u = 2k2 − 6Y 2, (2)

where Y is one of five possible functions of � := x − ct − x0, and k, c and x0 are
constants. If k2 > 0 (so that k is real), then Y := k tanh(k�) or Y := k coth(k�);
if k2 < 0 (so that k is imaginary), let k = iK (so that K is real) and then Y :=
−K tan(K�) or Y := K cot(K�); if k = 0, then Y := 1/�. These results lead to the
following solutions to (1):

u11 = 6k2
− 6k2 tanh2(k�) = 6k2 sech2(k�), (3)

u12 = 6k2 − 6k2 coth2(k�) = −6k2 cosech2(k�), (4)

u13 = −6K2 − 6K2 tan2(K�) = −6K2 sec2(K�), (5)

u14 = −6K2 − 6K2 cot2(k�) = −6K2 cosec2(K�), (6)

u21 = 2k2 − 6k2 tanh2(k�) = −4k2 + 6k2 sech2(k�), (7)

u22 = 2k2 − 6k2 coth2(k�) = −4k2 − 6k2 cosech2(k�), (8)

u23 = −2K2 − 6K2 tan2(K�) = 4K2 − 6K2 sec2(K�), (9)

u24 = −2K2 − 6K2 cot2(k�) = 4K2 − 6K2 cosec2(K�), (10)

u3 = −6/�2. (11)

We note that all these solutions may also be derived via the basic tanh-function
method. The basic tanh-function method (also summarized in [16]) delivers the
solutions u11 and u21. These may be obtained by hand or with minimal effort by
use of the automated tanh-function method [21] which uses ATFM, a Mathematica
package designed to take the drudgery out of applying the tanh-function method
by hand. We may obtain u12 and u22 by replacing kx0 by kx0+ i�/2 in u11 and u21,
respectively, and then using (A.1). We may obtain u13 and u23 by replacing k by
iK in u11 and u21, respectively, and then using (A.2). We may obtain u14 and u24

by replacing k by iK in u12 and u22, respectively, and then using (A.3). We may
obtain u3 from u12 or u22 by taking the limit k → 0.

In [19], we derived u11 via Hirota’s method. This solution played an important role
in the investigation of N loop-soliton solutions of the Vakhnenko equation [19,22].
In [2], the solutions u11 and u21 with x0 = 0 were derived by both the basic tanh-
function method and the equivalent exponential rational function method. In [14],
we derived u11, u21, u12 and u22 via the basic tanh-function method. In [3], the
authors derived twenty eight solutions by using the Sirendaoreji auxiliary equation
method. In [14], we pointed out that all these solutions are just disguised versions
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of one or other of u11 or u12 with appropriate choices of x0. In [4], two solutions
were derived via the Exp-function method. In [14], we showed that these are just
disguised versions of u11 and u21, respectively, with an appropriate choice of x0. In
[5], the (G′/G)-expansion method is applied to the modified generalized Vakhnenko
equation. In the notation of [5], with p = q = 1 and � = 0, the solutions for
u expressed as a function of X and T are solutions to the transformed reduced
Ostrovsky equation. By using the results in [16], we may show that, in [5], (26)
corresponds to u11 or u12, (27) corresponds to u21 or u22, (32) corresponds to u23 or
u24, (33) corresponds to u13 or u14, and (35) corresponds to u3.

In [1], the author derives thirteen solutions by using an ‘improved tanh-function
method’. The ones given by (19), (20), (23), (24) and (25) in [1] are respectively
u11, u12, u13, u14 (all with x0 = 0) and u3. The remaining eight solutions are claimed
to be ‘new’ and ‘important’; they are as follows:

u(x, t) =
3

2
�2

(

1− [tanh(��)± i sech(��)]2
)

, (12)

u(x, t) =
3

2
�2

(

1− [coth(��)∓ cosech(��)]2
)

, (13)

u(x, t) = −
3

2
�2

(

1 + [sec(��)± tan(��)]2
)

, (14)

u(x, t) = −
3

2
�2

(

1 + [cosec(��)∓ cot(��)]2
)

, (15)

where � is an arbitrary constant and � := x− ct. However, on using (A.4), we find
that the two solutions in (12) are just u11 and u12 with k = �/2 and kx0 = −i�/4.
Similarly, with (A.5), the two solutions in (13) are just u11 and u12 with k = �/2
and x0 = 0; with (A.6), the two solutions in (14) are just u13 and u14 with k = �/2
and kx0 = −�/4; with (A.7), the two solutions in (15) are just u13 and u14 with
k = �/2 and x0 = 0. Note that the solutions u21, u22, u23 and u24 are not given in
[1].

Appendix: Identities

tanh(� − i�/2) = coth(�), (A.1)

tanh(i�) = i tan(�), (A.2)

coth(i�) = −i cot(�), (A.3)

tanh(�) + i sech(�) = tanh
[

1

2

(

� +
i�

2

)]

, tanh(�)− i sech(�) = coth
[

1

2

(

� +
i�

2

)]

,

(A.4)

coth(�)− cosech(�) = tanh(�/2), coth(�) + cosech(�) = coth(�/2), (A.5)

sec(�) + tan(�) = tan
[

1

2

(

� +
�

2

)]

, sec(�)− tan(�) = cot
[

1

2

(

� +
�

2

)]

, (A.6)

cosec(�)− cot(�) = tan(�/2), cosec(�) + cot(�) = cot(�/2). (A.7)
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