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Abstract: 
 

A novel approach to reducing the unbalance rotor loads 
by pitch control is presented in this paper. Each blade 
has its own actuator, sensors and controller. These 
localised blade control systems operate in isolation 
without need of communication with each other. This 
single blade control approach to regulation of 
unbalanced rotor loads has several advantages 
including being straightforward to design and easy to 
tune. Furthermore, it does not affect the operation of the 
central controller and the latter need not be re-designed 
when used in conjunction with the single blade 
controllers. Their performance is assessed using 
BLADED simulations. 
 

Keywords— Control, individual pitch, unbalanced rotor loads 

 

1. Introduction 
 
Largely driven by concerns over the environment, wind 
energy has developed rapidly in recent years. Wind 
turbine size has increased with the machines becoming 
more flexible and dynamic. This has lead to greater 
demands being placed on the control system including 
the reduction of structural loads.  The focus of current 
developments is on the alleviation of asymmetric loads 
on the rotor. 
 
As a wind turbine blade sweeps through the wind-field, it 
experiences loads caused by the rotational sampling of 

the wind-field. These 0Ωn  loads are concentrated at 

integer multiples (n) of the rotor speed ( 0Ω ) and consist 

of both deterministic and stochastic components. The 
stochastic component largely arises from the turbulence 
of the wind. The deterministic loads largely arise from 
wind shear, tower shadow and blade imbalance [1].  
 
Since the wind-field is continuously changing in time and 
over the swept area, each blade of the rotor experiences 
slightly different loads resulting in load imbalance across 
the rotor. These imbalances not only impact on the rotor 
but on the rest of the wind turbine structure and the  

 
drive-train. The most significant components of these 

unbalanced load are typically those at 01Ω  and 02Ω . 

 
Individual blade pitch control has demonstrated great 
potential to alleviate rotor loads in above rated wind 
speed operation [2, 3, 4]. While they may differ in 
structure or implementation details, all aim to reduce the 
asymmetric loads by varying the pitch angle of each 
blade individually in response to some suitable 
measurement such as blade bending moments. 
Improvements in sensor technology are now making 
these individual pitch control algorithm a practical 
possibility [2]. In Bell et al [2] significant reductions in 
fatigue equivalent loads on the blade, the main shaft and 
the yaw bearing are reported.   
 
In previously reported approaches to individual pitch 
control, individual pitch control is realised through the 
wind turbine central controller. The loads on each blade 
are measured, communicated to some controller which 
then determines the pitch angle demand for each blade 
using all the measurements. The direct-quadrature (d-q) 
axis transformation is central to this procedure. In this 
paper a novel approach to reducing the unbalanced rotor 
loads by individual pitch control is presented. Each blade 
has its own pitch control system operating in isolation 
from the wind turbine central controller. The objective for 
this SISO feedback loop is chosen so that only the 
contribution to rotor imbalance is regulated. An 
incremental adjustment to the pitch demand from the 
collective pitch demand from the central controller is 
determined for the blade using only the measurement of 
the load on that blade. The instrumentation required for 
each blade is bending moment sensors, typically optical 
fibre sensors, and linear and angular acceleration 
sensors to determine the tower motion.  
 
The paper is structured as follows. In section 2, 
individual pitch control design based on the d-q axis 
transformation is discussed. In Section 3, the dynamic 
model for a single blade in an inertial reference frame is 
derived. The controller for the blade is designed using 
this simple model. However, all the blades of the rotor 
couple to the dynamics of the whole wind turbine. The 

Alleviation of Unbalanced Rotor Loads by Single 
Blade Controllers 

W.E. Leithead V. Neilson S. Dominguez 
University of Strathclyde University of Strathclyde MLS 

w.leithead@eee.strath.ac.uk 
Glasgow,  G1 1QE , UK 

victoria.neilson@eee.strath.ac.uk 
Glasgow, G1 1QE, UK 

sdominguez@mls-control.com 
Madrid 28037, Spain 

 

des0pt
Text Box
Presented at EWEC2009,
 Marseille, France,
April 2009



 

 

required modification to the dynamics of the blade can 
be expressed in terms of fictitious forces dependent on 
measured accelerations only. The derivation of the 
fictitious forces is discussed in Section 4 and the 
dynamic model of the blade in a non-inertial frame 
moving with the wind turbine described in Section 5. The 
complete scheme based on single blade control is 
discussed in Section 6. and conclusions drawn in 
Section 7. 
 

2. d-q Axis Transformation 
 
The d-q transformation has its origins in three-phase 
electrical machine theory [3]. It is the co-ordinate system 

transformation from the three-vector, 
T

cba XXX ][ , 

to the two-vector, 
T

qd XX ][ , such that 
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The inverse transformation is 
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The application of this technique on a three bladed 
turbine is shown in Figure 1.   

 

The angle,θ , parameterising the transformation is the 

azimuth angle. The dynamics between the three blade 

bending moments, blade 1 yM , blade 2 yM  and blade 3

yM , and the three pitch demands, Blade Pitch 1 

Demand, Blade Pitch 2 Demand, Blade Pitch 3 Demand, 
consists of the complete wind turbine dynamics. The 
transformation achieves a degree of separation of 
design of the two controllers, Controller 1 and Controller 
2. 
 

3. Single Blade Model 
 

Consider the situation depicted in Figure 2. The root of a 
turbine blade is fixed at the origin of the stationary axes 
such that the blade initially lies along the x-axis in the x-y 

plane. The blade is pitched by angle, α , about the x-
axis. The in-plane and out-plane angles of deflection of 

the blade are Rθ  and Rφ  as shown. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
The Lagrangian for the blade, ignoring external forces, is 
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where 
2

EE Jk ω= , 
2

FF Jk ω= , )sin(αα =s , 

)cos(αα =c , J is blade inertia and Eω  and Fω  are 

blade and flap frequencies, respectively. It follows that 
the equations of motion for the blade are 
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where 
RAM θ and 

RAM φ  are the in-plane and out-of-

plane aerodynamics moments. The in-plane and out-of-

Figure 2: Single Blade Motion 
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Figure 1: Individual Pitch Control Loop using d-q 
Axis Transformation [2] 
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plane blade root bending moments, PIM /  and POM / , 

are 
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However, the axes shown in Figure 2 are not stationary. 
The axes rotate with the hub and origin moves with the 
tower. Hence, the axes set depicted in Figure 2 are non-
inertial. The modification to the dynamics required to 
account for the axes being non-inertial are the fictitious 
forces arising from the acceleration of the axes relative 
to some inertial reference frame such as earth axes.  
 

4 Fictitious Forces 
 
The linear and rotational acceleration of the tower are 
considered in separately. Four sets of coordinate 
systems are used to represent the dynamics of the 
single turbine blade. They are defined in Figure 3.  

 
 

Figure 3: Axes sets 
 
The axes sets are defined as follows. 
 
1. Earth frame (X-Y-Z) 

 
2. Tower frame (XT-YT-ZT): Parallel to the earth frame 

but with the origin coinciding with the hub and 
moving linearly with the top of the tower.   
 

3. Rotor frame (XR-YR-ZR): Rotates with the drive shaft 
and its axis ZB is aligned with the drive-shaft. 

 
4. Blade body centred frame (XB-YB-ZB): The axis  XB  

is aligned with the blade and the origin coincides 
with the hub centre. 

 
The rotations for all the axes sets are defined using 
Euler angles. The notations used in this Section are 
defined in Table 1. 
 

 
Symbol Description 

Ω%  

Angular velocity components of the body 
centred frame relative to the earth frame 
represented in the body centred frame.  

RΩ%  
Angular velocity components of the rotor 
frame relative to the earth frame 
represented in the rotor frame 

'Ω%  

Angular velocity components of the rotor 
frame relative to the earth frame 
represented in the body centred frame  

Tω%  
Angular velocity components of the tower 
frame relative to the earth frame 
represented in the tower frame 

Rω%  
Angular velocity components of the rotor 
frame relative to the tower frame 
represented in the rotor frame 

Bω%  
Angular velocity components of the body 
centred frame relative to the rotor frame 
represented in the body centred frame 

Rr
~

 

Displacement from the origin of the blade 
centre of mass in the tower frame 

Rr
&&~  

Linear acceleration of the blade centre of 
mass in the tower frame  

Ror&&~  
Linear acceleration of the tower frame in 
the earth frame  

1R  
Euler angle (3-2-1) rotation from the tower 
frame to the rotor frame 

2R  

Euler angle (3-2-1) rotation from the tower 
frame to the rotor frame. The yaw and pitch 
Euler angles are θ  and φ  

3R
 

Euler angle (3-2-1) rotation from the rotor 
frame to the blade body centred frame. The 
yaw and pitch Euler angles are θ  and φ  

 
Table 1: Key Notations 

 

4.1 Linear Fictitious Forces 
 
The linear motion of the blade centre of mass has only 
two degrees of freedom due to the blade root being 

Tφ - Tower fore-aft angle 

Tθ - Tower side-to-side angle 

Tς - Tower torsional angle 

ωRx, ωRy - Nacelle motion  
ωRy - Rotor/drive shaft speed  

φ - The pitch Euler angle 

θ – The yaw Euler angle 
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attached to the hub, see Figure 4. Hence, TotalF
~

, the 

total force exerted on the blade centre of mass in the 
rotor frame, is  
 

RTBTotal rFFF ~2
~~~

λ++=  

 

where BF
~

 is the force on the blade with respect to the 

inertial reference frame instantaneously coinciding with 

the rotor frame, TF
~

 is the fictitious force associated with 

the linear acceleration of the rotor frame and Rr
~2λ  is the 

modification required to meet the constraint on the linear 

motion with λ a suitable Langrange multiplier. The linear 
acceleration of the rotor frame is due to the tower 
motion.  
 

 
 
The fictitious force on the blade arising from the tower 
motion is determined by 
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where Bm  is the blade mass. The torque, TM
~

, in earth 

axes, corresponding to the fictitious force, is 
 

RoRBRRTRTRT rrmrrFrFrM &&~~~~2
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which becomes in body centred axes 
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with 
T

RoRoRoRo zyxr ][~ =  and 
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where l is the distance between the blade’s centre of 

mass and the centre of rotation of the rotor. 
 
These generalised forces have a simple interpretation. 
The linear acceleration of the tower frame in the body 
centred frame is 
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Hence,  

[ ]TBBbT aalmM
R 230

~
−⋅=  

where 2Ba  is the acceleration of the centre of rotation of 

the blade perpendicular to the blade in the plane of 

rotation and 3Ba  is the acceleration of the centre of 

rotation of the blade perpendicular to the plane of 

rotation. It is straightforward to measure both 2Ba  and 

3Ba  using appropriately aligned accelerometers. Note 

that 2Ba  also picks up gravity effects of the blade, hence 

gravity doesn’t appear as part of the potential energy 
term in the Lagrangian of the single blade. 
 

4.2 Rotational Fictitious Forces 
 

The total torque TotalM
~

 on a rotating blade in the blade 

body centred frame is  
 

BTTotal MMM
~~~

+=

  

where BM
~

 is the torque on the blade with respect to the 

inertial reference frame instantaneously coinciding with 

the rotor frame, TM
~

 is the fictitious rotational force 

associated with the angular acceleration of the rotor 
frame. The angular acceleration of the rotor frame is due 
to the tower motion. 
 
The fictitious force on the blade arising from the tower 
motion is determined by 

�� 

Blade CoM Path of blade CoM 

�� 

�� 

�� 

�� 

�� 
� 

o 

� 

	 

Figure 4: Motion of Blade's Centre of Mass 
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where BI  is the inertia matrix of the blade in the blade 

body frame. Since  
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Given that the rotational velocity components of the body 
centred frame can be expressed through the Euler’s 
angles:  
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TM
~

can thus be expressed as:  
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The two terms ' '

1 3
JΩ Ω and ' '

1 2J− Ω Ω  can be interpreted as 

centrifugal stiffening of the blade, see Appendix They 
can thus be ignored for the rest of the analysis. 

Furthermore, the term, ( )BBB I ωω ~~ × , can be ignored 

since each element is the square of small terms. It 
follows that 
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Note that yRxR cs Ω+Ω− &&
θθ  and 

zRyRxR csscs Ω+Ω+Ω &&&
φθφθφ  are the rotational 

acceleration components of the rotor frame relative to 

earth frame RΩ&
~

, transformed into the body centred 

axes.  

 
Thus the rotational fictitious torque is expressed in the 
rotor frame as followed.  
 

[ ]TyRzRT JM
R

ΩΩ= &&0
~

 

 

where zRΩ& and yRΩ& are rotational accelerations 

measured at the origin of the rotor plane (hub).  
 

5 Full Blade Model 
 
The full non-linear model of the blade including the 
coupling to the rest of the wind turbine dynamics is:  
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With the fictitious forces: 
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More appropriately for the purpose intended here, this 
model can also be expressed in terms of the namely in-
plane and out–of-plane moments: 
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where  
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The derivation of this model is explained in Appendix B. 



 

 

 
Now, the control system should be modified by 
subtracting the contribution of the fictitious forces from 
the measured bending moment as shown in Figure 5. 
The fictitious forces are derived directly from measured 
accelerations.  
 

 

 

 

6 Control System Design 
The controller for the blade is designed to achieve the 
following objectives:  
 
1. The blade out-of-plane bending moment is regulated 

to follow a set point derived from the central 
controller pitch demand. The pitch of the blade is 
adjusted to compensate for the disturbance to the 

out-of-plane bending moment at 01Ω and 02Ω .  

 
2. The dynamics of the actuator must appear 

unchanged to the central controller.  
 

3. Aerodynamic non-linearity is counteracted by global 
non-linear control.  

 
4. Smooth switching between below-rated and above-

rated must be achieved.  

 
One possible controller structures is shown in Figure 6.  
 

 
 
PP represents the pitch actuator dynamics and the blade 
dynamics with the fictitious forces added to the 
measured out-of-plane bending moment to decouple 
their dynamics from the rest of the wind turbine 
dynamics.  
 

CB2 is the pitch controller for the local feedback loop at 
the blade. If the sole objective of the blade controller is 

to reduce the unbalanced loads in the vicinity of 01Ω
then the pitch controller would be a form of band pass 

filter centred on 01Ω . 

 
CB3 is the compensation for the aerodynamics non-
linearity. Together with the switching position, velocity 
and acceleration of the actuator output are all 
constrained. Priority is given to the central controller 
demand. When the pitch position, velocity and the 
acceleration of the central controller demand approach 
their limits, the action of the local feedback loop is 
reduced accordingly.  

 
Figure 7: Actuator Position, Velocity and Acceleration 

Outputs 
 

In Figure 7, a slowly varying pitch demand from the 
central controller is modified by rapidly varying increment 
due to the local feedback loop. Smooth switching in and 
out of the local feedback loop at 65 seconds and 93 
seconds caused by the central control demand 
approaching and going below zero degrees. It can also 
be seen that the pitch velocity and acceleration limits are 
respected.  
 
CB4 compensates the pitch demand from the central 
controller to counteract the change in the actuator 
dynamics caused by the local feedback loop. The local 
feedback loop is thereby made invisible to the central 
controller. The turbine speed controller sets the average 
demand for the pitch angles as required to control the 
speed; the blade controllers make incremental 
adjustments to this average. The former is an outer 
feedback loop; the latter are inner feedback loops. The 
actuator plus blade feedback loop can be considered to 
be a modified actuator. As long as it has 0dB at low 
frequency, the outer feedback loop continues to regulate 
the speed as required. The only consequence would be 
that the dynamics of this modified actuator might be 
different from the original actuator but this is 
compensated by block CB4.  
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Feedback loops as described above were applied to all 
three blades on a BLADED simulation of a large multi-
MW wind turbine. To focus the assessment on the 
stochastic components rather than the deterministic 
components which can also be reduced by cyclic pitch 
control, the results are obtained with both tower shadow 
and wind shear turned off. The controller is active over a 

frequency range including 01Ω and 02Ω but with wash-

out at low frequency and roll-off at high frequency. For a 
mean wind speed of 18m/s and turbulence intensity at 
17%, the out-of-plane root bending moment is reduced 
by 12%. The tower torsional moment is reduced by 17%. 
The main bearing tilt moment is reduced by 23% and the 
main bearing yaw moment by 22%. 
 

7. Conclusions 
 
The role of the wind turbine controller has recently been 
extended to include the alleviation of structural loads. 
The alleviation of the rotor loads by pitch control has 
recently been investigated. By separately adjusting the 
angle of pitch of each blade, the unbalanced loads on 
the rotor could be reduced. A novel approach to 
reducing the unbalance rotor loads is presented in this 
paper. Each blade has its own actuator, sensors and 
controller. These localised blade control systems 
operate in isolation without need of communication with 
each other. The controller for a single blade is designed 
on the basis of the blade dynamics alone to determine 
the adjustment in pitch angle required to counteract the 
component of the blade bending moment contributing to 
unbalanced rotor loads. The following issues are 
discussed, the decoupling of the blade dynamics from 
the dynamics of the rest of the wind turbine, the dynamic 
model of the single blade, the nonlinear aspects of the 
controller design. This single blade control approach to 
regulation of unbalanced rotor loads has several 
advantages: there is no need to communicate with the 
central controller in the nacelle; the presence of the local 
blade controllers is invisible to the central controller; the 
controller, being dependent on the blade dynamics 
alone, is straightforward to design and easy to tune 
(indeed, re-tuning is not required if applied to a different 
wind turbine with the same blade). The performance of 
the single blade controllers is assessed using BLADED 
simulations. 
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10. Appendix A: centrifugal stiffening 
 
Centrifugal stiffening is the restoring moment on the 
blade that opposes the blade flap or edge motions. This 
is caused by the rotational motion of the rotor.  
 

The rotational tower fictitious load is expressed as 
followed.  
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In which terms ' '

1 3JΩ Ω and ' '

1 2J− Ω Ω  are the blade 

centrifugal stiffening. They are also the components of 
the following cross-products. 
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The first term of the cross product is the angular 
momentum components of the rotor frame represented 
in the body centred frame relative to earth frame. To 
show the effect of the resultant moment graphically, refer 
to the blade body centred frame as shown in Figure 8.   
 

The cross product of Ω′~
BI and the component of Ω′~ in 

the �� 
 �� plane (
BB YZ 32 Ω′+Ω′ ) is zero, hence the cross 

product ( ) Ω′×Ω′ ~~
BI  is reduced down to the following 

cross products representing the moments in directions of 
�� and ��.  
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Moments 

cyM and 
czM are in opposite directions to the 

blade flap and edge motions. They are the restoring 
moments in the blade flap and edge directions, i.e. the 
blade centrifugal stiffening.  

 

 
 
This analysis shows that the centrifugal stiffness of a 
rotating blade can be calculated from multiplying the 
blade inertia by the products of the angular velocity 
components both along the blade and perpendicular to 
the blade.  
 

8. Appendix B: derivation of the final 
model 
 
Given the blade non-linear model:  
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Now let:  
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The equation of motion can thus be re-written as 
followed.  
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Multiply both sides of the equation above by αT gives the 

following.   
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let:  
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αθR
&& and αφR

&& can also be expressed by the in-plane and 

out-plane moments (
PIM /
 and 

POM /
)as followed.  
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Figure 8: Graphical interpretation of the cross product 
between angular momentum and velocity components 
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Combined with the equation derived previously, the 
following expression for the in-plane and out-plane loads 
can be derived.  
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The aerodynamic loadings are functions of wind speed, 
time derivatives of in-plane, out-plane angles and the 
pitch angle.  
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The derivatives of the in-plane and out-plane angles can 
be derived from the in-plane and out-plane moments as 
followed.  
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The non-linear single blade model can thus be 
expressed in a simpler form which makes linearisation 
easier.  
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