
 Abstract – Many reliability databases are used to pool 
event data for components across power plants, both 
within and between organizations. The intention is to 
share data across common equipment and similar 
operating environments to provide better estimates of 
reliability and availability. However frequentist methods 
for such estimation can be poor when few events occur, 
even when the equipment are observed over long 
exposure times. This paper proposes an alternative 
estimation approach based upon Empirical Bayes and 
illustrates its application to failure data from power 
generation plants. A comparison is made between the 
proposed and classical methods, showing that Empirical 
Bayes is capable of generating more accurate estimates. 
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I.  INTRODUCTION 
 
 Many organizations and industrial sectors have created 
databases containing the event histories of critical issues 
related to items of equipment. The intention is to record and 
maintain data about the exposure of this equipment with 
respect to non-performance and hazards.  Also identified are 
significant events, i.e. failures, inspection, repairs and 
overhauls. In some cases, the databases may be company 
specific, for example, commercial organizations such as 
electronic manufacturers [1]. Some industrial sectors, 
particularly those operating safety-critical equipment, have a 
legacy of pooling and sharing data across plants, 
organizations and even nations [2]. 
 While the raw data may reside in such databases in the 
form of a historical sequence of events, it is common for 
summaries such as failure and repair, or restoration, rates 
plus uncertainties to be computed for each class of 
equipment operating under nominally similar conditions.  
The information generated through analysis can be used in a 
variety of ways. For example, to monitor the level and 
patterns in reliability and availability of the equipment from 
which the data has been collected and hence used to flag 
areas where improvements are required. Other uses include 
providing input data to models of new processes or designs.  
For example, use of failure and repair rates within process 
simulation models or within fault tree models for new 
system design.   
 There exist methods for computing summaries, such as 
point and interval estimates of failure rates [3]. Often in 

practice, these summaries are based upon classical statistical 
methods and use only the observed data concerning the 
number of failures and the relevant exposure time. While 
easy to implement and well understood, these frequentist 
approaches may not provide reliable estimates if there are 
few events and indeed will fail to provide useful estimates if 
there are no observed events. Yet this corresponds to the 
very conditions that the plant operators want to achieve. In 
some cases Bayesian approaches have been adopted. These 
have the advantage that the epistemic uncertainty in the 
parameter of interest can be expressed through a prior 
distribution and combined with the observed data through 
the likelihood function to obtain an improved posterior 
estimate. Hence Bayesian methods are capable of dealing 
with the no observed events scenario by relying upon 
engineering judgment to inform the prior. However, the 
prior distribution should be specified by an expert prior to 
observing any data that will be used to obtain the posterior 
distribution. As such, specifying a subjective prior for a 
parameter can challenge the cognitive abilities of 
engineering experts. 
 In this paper we propose to develop and apply a method 
based upon the principles of Empirical Bayes [4, 5]. This is 
a statistical philosophy that combines frequentist and 
Bayesian ideas that is regarded [6] as being a powerful 
approach for dealing with real data problems in science and 
engineering. Section II describes the proposed Empirical 
Bayes method for the problem of estimating failure rates 
using data across classes of equipment such as we find in 
reliability databases. Section III illustrates the application of 
the method to de-sensitized data from power generation 
plants. An empirical comparison of the proposed approach 
against the more conventional frequentist based estimates is 
given in Section IV. We conclude by identifying the 
potential strengths and limitations of Empirical Bayes for 
this type of problem. 
 

II.  EMPIRICAL BAYES METHODOLOGY FOR 
ESTIMATING FAILURE RATES 

 
The prior distribution describes the variability in the rate 

of occurrence of failure for an item of equipment within a 
pool of plants, prior to observing any data. The prior is 
denoted by π(λ), which is the probability density function 
measuring the likelihood of a failure, chosen at random 
having a rate of occurrence denoted by λ. Data are used for 
the item of interest from each specific plant to update the 
prior, refining the estimate uniquely for each plant. The 
updated prior is referred to as the posterior distribution. 
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 It is assumed that failures occur at a constant rate 
through time, which implies a Homogeneous Poisson 
Process for the times between failures. The distribution 
of iN , the number of failures that are realized when ki 
operational hours have been accumulated, is Poisson: 
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An assumption about the parametric form of the prior 
distribution is made for numerical convenience. Since the 
number of failures is assumed to follow a Poisson Process, a 
computationally convenient distribution to describe the prior 
is a Gamma distribution with density function: 
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The rate of occurrence for any particular failure is not 

known, only that the rate has been selected at random from a 
Gamma distribution. We take an average of the Poisson 
distributions; weighted against the prior distribution. This 
provides the probability distribution of the number of 
failures that will occur for plant i, based only on our 
knowledge of the pool, i.e. the prior distribution. The 
following result due to [7] shows that the distribution of Ni 
is Negative Binomial:   
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            (3) 
As Poisson random variables are closed under 

convolutions the aggregate observed failure data on each 
hazard can be treated as though independent Negative 
Binomial random variables.  This will be used to construct a 
likelihood function to support inference on the 
parameters  and α β .  

 
A. Point Estimate of Failure Rate 
   

Once an estimate of the prior distribution is obtained, 
Bayes Theorem is used to update the prior for each 
individual precursor to obtain the posterior distribution.  The 
posterior distribution for the ith event is: 
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 The Empirical Bayes estimate of λi is the mean of the 
posterior distribution. It is easily shown that the Empirical 
Bayes estimate of the ith rate of occurrence of failure is can 
be expressed as (5). 
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The Empirical Bayes estimate is a weighted average 
between the estimates from the pool (i.e. ˆˆ /α β ) and the 
traditional estimate of the individual plant (i.e. i in k ).  As 
more data are obtained, ki increases, and more weight is 
applied to the observed frequency. 
 
B. Interval Estimate for Failure Rate 

 
If the true values of α and β are known, then the posterior 

distribution could be used to assess the uncertainty in 
estimating λi.  However, α and β have been estimated and so 
the uncertainty in these estimates must be considered when 
developing true confidence intervals.  Not accounting for the 
variability in the estimation of the posterior results in 
“naïve” intervals. 

 Quigley et al [8] propose the following method for 
estimating confidence intervals, which  makes use of the 
limiting distribution of –2 times the natural logarithm of the 
relative likelihood function, which has a χ2 distribution with 
2 degrees of freedom.  This is expressed in (7) where ( )ˆˆ ,α β  

are the Maximum Likelihood Estimators. Alternative 
methods such as Bootstrapping are considered in [9].   

( )
( )

( )^

1 2
2^

^

^ ^^
1

!
2 ln ~

!

i

i

nm
i i

i i i i

n
im

i

i
i ii

n k
n k k

n
k

k kn

α

α

α β
α β β

χ
α

β

β βα

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟Γ + ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟Γ + +⎝ ⎠ ⎝ ⎠− ⎜ ⎟

⎛ ⎞⎜ ⎟Γ + ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ + +Γ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠⎝ ⎠

∏

∏

    (7) 

  
This result can be used to construct a joint confidence 

region for the parameters. To construct a tolerance interval 
about (4) first determine the locus of point points for α and 
β such that the Cumulative Distribution Function (CDF) of 
(7) does not exceed a specified value assuming only one 
degree of freedom rather than two.   
 There is no closed form solution for this approach to 
obtaining intervals and computationally it can be intensive. 
However, this approach uses the correlation between the 
estimates in estimating the intervals. If we are interested in 
obtaining intervals estimates on a one dimensional metric, 
such as failure rate at each plant, then we use one degree of 
freedom, which corresponds to a χ2 value of 3.84. A region 



 

is then obtained from finding the set of all points ( ),α β  
that bound (7) to be less than or equal to 3.84.  We then 
evaluate the maximum and minimum value of the metric of 
interest using the points in the region to obtain the 9%% 
Confidence Interval.  The acceptable region in an α-β plane 
can be obtained using standard software packages such as 
the solver tool in Excel. It is likely that the exposure time of 
an item of equipment will be different at each plant, hence 
the maximum and minimum confidence bounds for the 
failure rates have to be calculated at different α and β values. 
The solver tool in Excel can be used to maximize and 
minimize the condition that the parameters must sit within 
the specified elliptical region. For metrics which are 
monotonic transformations of the input parameters the 
extreme values will lie on the perimeter of the acceptable α-
β region.  The likelihood ratio test for the failure rate bounds 
finds those values that are not significantly different from 
the mean at a 95% level. 
 
III. APPLICATION TO FAILURE DATA FROM POWER 

GENERATION PLANT 
 
 The methods described in section II have been applied 
to data from several power generation plants of the same 
type and have been implemented in models that draw upon 
the organization’s reliability database. The intention is to 
obtain a pooled estimate of the failure rate for the equipment 
of interest and to assesswhether there is any variation in the 
rate of failure between different plants.  
 
A. Equipment Types and Data Structures 
 

With its large product portfolio, ALSTOM has decades 
of specialized turnkey experience in Engineering 
Procurement and Construction (EPC) contracting. This 
includes developing constructing, erecting and 
commissioning efficient power plants worldwide. Further, 
ALSTOM does modernizing (i.e. retrofitting) and servicing 
power plants with the main aim of providing the market with 
the best technology in terms of efficiency and output. The 
focus of this study involved Combined Cycle Power Plants 
(CCPP), which are at the front of technology due to their 
increasing efficiency (www.alstom.com). The main source 
of power output for a CCPP is from the Gas Turbine (GT) 
that operates on the ignition of the input fuel. The exhaust 
heat that is emitted on completion of this cycle is used to 
produce steam for the Steam Turbine (ST) cycle.  

The data that are analyzed have been  collected from 
event logs recorded at each of the  plants The data recorded 
for the CCPP includes, for example, the times and dates 
when the plants are first disconnected from the grid and the 
time when they are up and running at required capacity 
again. From this log entry it is possible to know the 
observed downtimes, type of failure, action taken. A textual 
description of the outage is also provided by the engineer.  It 
provides valuable experience and information, especially to 
an engineering department. Note that the system refers to the 
whole Combined Cycle Power Plant; sub-system refers to a 

number of major arrangements, which combine to make the 
whole system (e.g. Gas Turbine, Generator, Steam Turbine, 
Heat Recovery Steam Generator); and component represents 
a single part or the smallest breakdown that is analyzed.  
The data selected for this study represents records that have 
been verified for 19 power plants which have a total of 76 
unit years of operating experience. 

 
 B. Validity of Empirical Bayes Assumptions 

The Empirical Bayes method described in section II 
makes three main assumptions that we seek to assess for the 
power plant data.  Typically, for each piece of equipment, 
there are few observed events relative to exposure time; 
hence there is insufficient information to reject the 
assumption of a Poisson process at this level of analysis. 
However it is possible to compare the distribution of the 
total number of events per plant with the assumed Poisson. 
If it is accepted that these two distributions are not 
significantly different then the Gamma distribution is 
assumed a reasonable prior. Graphical analysis and formal 
Chi-squared goodness-of-fit tests indicate that this Poisson 
assumption is reasonable. The assumption of independence 
requires to be considered from the engineering perspective 
as well as statistically. For example, if a component is 
replaced on failure due to a fault or breakage then it may be 
considered ‘as new’. However in many cases a component, 
and certainly not an entire sub-system, will not be replaced 
when an outage occurs. Engineering insight was used to 
screen data, as far as possible, to extract any dependent 
failures and statistical analysis implied that the assumption 
of independence was acceptable. 
 
C.  Empirical Bayes Estimates of Failure Rate  
  
 An example of the application of Empirical Bayes is 
given for one component of type X. Table 1 provides the 
raw data plus the Empirical Bayes estimates of the failure 
rate. Note that z is a measure of credibility of the estimate 
obtained from the individual plant failure rate rather than the 
pooled estimate.  

The MLE estimate of the parameters of the prior gamma 
distribution for component X are found to be α̂ = 0.6956 
and β̂ = 12235. As z is a function of the exposure time, each 
plant has a different zi. This differs from Quigley et al. 
(2005), whose study considered an exposure period of the 
same length. A large value of z implies that the variability 
within the pool is large and the estimate for the individual 
plant should place more weight on the individual data 
observed at that plant. A low value of z will occur when 
there is less exposure time observed and hence the failure 
rate estimate will be drawn towards the pooled data 
estimate.   

Table 1 shows the expected number of failures 
estimated under Empirical Bayes and can be compared with 
the observed number. Note that those plants with no 
observed failures but accumulated operating experience 
have failure rate estimated informed by the pool. 



 

A confidence interval can be computed using the 
procedure outlined in section IIB. Fig. 1 shows an oval-
shaped region arising from the use of the limiting 
distribution given in equation (7). All values of α and β 
which result in the limiting distribution being less than the 
critical value lie within this 95% confidence region. The 
lower and upper bounds, which intuitively should lie on this 
boundary, can be computed for each plant since the optimal 
estimates of α and β will change due to the different 
exposure times. Table 2 gives the upper and lower failure 
rate bounds and the values of α and β where they occur. 
 Fig. 2 shows the comparison between the initial 
estimates of the failure rate and the Empirical Bayes 
estimates, with 95% confidence bounds, for component X 
across the 19 plants.  It is shown that the initial estimate lies 
outwith the Empirical Bayes confidence band when there 
have been no observed failures (e.g. plants 1, 2, 4, 5, 6, 11, 
14, 15, 16) and a relatively high number of failures (e.g. 
plants 10, 18). This is a feature of the Empirical Bayes 
estimates being pulled towards the pooled mean. 
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  TABLE I 
DATA & EMPIRICAL BAYES ESTIMATES FOR COMPONENT X 

 
Plant Total 

Exposure 
Time 

Observed 
Number of 
Failures 

z Empirical 
Bayes 

Failure Rate 

Expected 
Number of 
Failures 

1 32976 0 0.729 1.539E-05 0.5074 
2 33027 0 0.730 1.537E-05 0.5076 
3 30312 4 0.712 1.104E-04 3.3453 
4 33323 0 0.731 1.527E-05 0.5088 
5 33926 0 0.735 1.507E-05 0.5112 
6 10866 0 0.470 3.011E-05 0.3272 
7 10610 1 0.464 7.422E-05 0.7875 
8 9171 1 0.428 7.921E-05 0.7264 
9 36794 2 0.750 5.498E-05 2.0229 
10 15568 3 0.560 1.328E-04 2.0704 
11 33146 0 0.730 1.533E-05 0.5081 
12 32232 3 0.725 8.311E-05 2.6788 
13 33076 2 0.730 5.949E-05 1.9677 
14 38899 0 0.761 1.360E-05 0.5292 
15 23463 0 0.657 1.949E-05 0.4572 
16 19326 0 0.612 2.204E-05 0.4260 
17 37774 6 0.755 1.339E-04 5.0575 
18 24408 5 0.666 1.554E-04 3.7938 
19 36176 1 0.747 3.503E-05 1.2671 

  .   
TABLE 2 

EMPIRICAL BAYES 95% INTERVAL ESTIMATES FOR 
COMPONENT X 

 
 Lower Upper 

Plant Alpha Beta Failure 
 Rate 

Alpha Beta Failure Rate 

1 0.2249 4355 6.023E-06 2.7620 43371 3.618E-05 
2 0.2249 4357 6.015E-06 2.7617 43363 3.615E-05 
3 2.1832 52526 7.464E-05 0.4106 3287 1.313E-04 
4 0.2248 4351 5.968E-06 2.7645 43441 3.601E-05 
5 0.2248 4340 5.874E-06 2.7740 43706 3.573E-05 
6 0.2447 6166 1.437E-05 1.9009 24428 5.386E-05 
7 1.2154 35950 4.758E-05 0.5387 4414 1.024E-04 
8 1.2853 37396 4.907E-05 0.4721 3794 1.135E-04 
9 1.0587 32530 4.412E-05 1.3270 14674 6.464E-05 

10 2.2130 52922 7.609E-05 0.3439 2842 1.815E-04 
11 0.2249 4354 5.996E-06 2.7648 43450 3.610E-05 
12 1.7818 46513 6.073E-05 0.5881 4911 9.660E-05 
13 1.1706 34998 4.658E-05 1.1150 11515 6.986E-05 
14 0.2244 4265 5.198E-06 2.8310 45348 3.360E-05 
15 0.2268 4633 8.073E-06 2.5664 38351 4.152E-05 
16 0.2289 4866 9.461E-06 2.4258 35089 4.458E-05 
17 2.4266 55520 9.032E-05 0.3669 2979 1.562E-04 
18 2.4534 55813 9.291E-05 0.3353 2796 1.961E-04 
19 0.4655 16134 2.802E-05 2.2354 30986 4.817E-05 

 

IV. COMPARISON OF FREQUENTIST AND 
EMPIRICAL BAYES ESTIMATES 

 
We extend the comparison of traditional and Empirical 

Bayes estimation through further analysis of component X 
and others from the 19 plants to develop an understanding of 
their relative performance.  For example, we have found that 
that 95% confidence intervals for the failure rate based on 



 

Empirical Bayes are consistently within the 95% bounds 
computed using the usual frequentist Chi-Square intervals 
assuming exponentially distributed times between failures.  
This is expected given the latter are usually computed for 
60% confidence levels for small samples. For example, the 
EIReDA database implements this for equipment with 5 or 
less failures otherwise the width of the computed intervals 
tends not to be practically credible.  

It is also interesting to compare the rankings of the 
plants in terms of failure rates to examine where reliability is 
best or worst. If there is no difference in ranking between 
traditional and Empirical Bayes estimates then it could be 
argued that the EB method had added no real value to the 
analysis. A shortcoming of the traditional approach to 
estimation is that it will rank the hazards the same that have 
no failures regardless of the exposure accrued by each; 
Empirical Bayes does not suffer from this.  Fig. 3 shows the 
comparative ranking for component Y across the 19 plants 
and provides an example of major changes, unlike 
component X which has only a marginal shift in ranks, 
partly because of the high percentage of plants with no 
observed failures. 

The Mean Square Error (MSE) is a conventional 
measure of the accuracy of an estimator and examines the 
average deviation between the true and the estimated value. 
We assume that the failure rate for each plant is plant is 
selected from a gamma prior with parameters α and β. A 
random failure rate is simulated from this prior and 
converted to the number of failures expected within the 
exposure period for each plant. This value is treated as the 
mean of the plant Poisson Process from which a random 
number of events are simulated. For the data generated, 
three estimates of the expected number of failures for each 
plant are computed: the MLE; the pooled average of the 
dataset for the plant; and the Empirical Bayes estimate, 
which uses a combination of the pooled estimate and the 
individual estimate at each plant. The different weight 
values (z) calculated for the point estimation of the failure 
rates is again used at each plant. Table 3 shows the averaged 
MSE values based on 500 simulation runs for five 
components across the 19 plants. This illustrates that the 
accuracy is best for the Empirical Bayes estimator and 
summarizes our findings at the disaggregated level when 
examining the MSE of the estimates for each component at 
each plant. 
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Fig. 3 Differences in frequentist and Empirical Bayes rank 

order for unreliability of plants for component Y  
 

TABLE 3 
AVERAGE MSE FOR ALTERNATIVE ESTIMATORS FOR SELECTED 

COMPONENTS ACROSS ALL PLANTS  
 

Average MSE Component 

MLE Pool EB 

A 2.091943 1.714102 1.046302 
X 1.487919 4.178242 1.293668 
B 1.676045 2.362794 1.133338 
C 2.652285 5.51873 2.187533 
D 1.271349 0.838775 0.564449 

 
 

V. SUMMARY & CONCLUSION 
  

This paper has implemented an Empirical Bayes method 
for estimating the failure rate of equipment whose 
operational experience is pooled across different 
environments.  The method has been implemented for field 
data for power plants and has given practical insights into 
the reliability of components and a simulation study has 
shown that the Empirical Bayes estimates are more accurate 
then the usual frequentist methods. However all analysis has 
been implemented in a spreadsheet model and the software 
limitations become apparent in the complexity of the 
calculations. For example, although credible solutions have 
been found, the application of the solver to obtain the 
maxima and minima involved trial and error. While 
elaborations in modeling will result in more computational 
challenges, accurate approximations continue to be 
developed (Quigley and Walls 2007). 
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