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A PDE and option-based approach to valuing and
designing stochastic storage for wind-generated

electricity
S. D. Howell, P. W. Duck, H. Pinto, G. Strbac, Member, IEEE, A. Hazel, N. Proudlove and M. Black

Abstract— Significant penetration of wind generation will in-
evitably impose additional requirements on the remaining large
conventional plant to deliver both the flexibility and reserve
necessary to deal with variability and unpredictability of wind
power, which will inevitably have cost implications. Energy
storage systems appear to be an obvious solution for dealing with
the unpredictability of renewable sources: during periods when
intermittent generation exceeds the demand, when the surplus
could be stored and then used to cover periods when the load is
greater than the generation. However, views on the role of bulk
storage remain highly controversial and, somewhat surprisingly,
there has been very little work carried out to demonstrate the ne-
cessity (or otherwise) and economics of storage based applications
in systems with high penetration of wind energy. In this paper we
assess the economic value of such storage by an innovative real-
options method. Solution of the resulting PDE (partial differential
equation) requires novel numerical techniques that are developed
and successfully applied in this paper (and which yield results
in excellent agreement, but at considerably less cost, than full
simulations). This PDE approach may have applications in many
physical, engineering and economic systems.

Index Terms— wind energy, storage value, stochastic storage

I. INTRODUCTION

It seems likely that renewable and other low carbon energy
sources will become a major part of the future electricity gen-
eration system for various reasons. Large penetration of wind
power and other forms of renewable generation by 2020 and
beyond may displace significant amounts of energy produced
by large conventional plant. However as variability and non-
controllability are inherent characteristics of wind energy, the
ability to maintain the balance between demand and supply in
systems with large penetration of wind generation is one of
the main concerns in system operation.

Increased dependence on wind generation will impose addi-
tional requirements on the remaining large conventional plant
to deliver both the flexibility and reserve necessary to maintain
the continuous balance between load and generation, which
will inevitably have cost implications [1]. Recently completed
studies (e.g. SCAR in the UK [2], DENA in Germany [3])
investigated a number of possible scenarios showing that ex-
tending variable renewable generation would increase system
costs associated with the integration of this generation into
the operation and development of the power system. The

S. D. Howell and N. Proudlove are at Manchester Business School, P.
W. Duck and A. Hazel are at the School of Mathematics, University of
Manchester, H. Pinto is at the Accounting and Finance Department, University
of Strathclyde, G. Strbac is at the Department of Electrical and Electronic
Engineering, Imperial College, London and M. Black is at CE Electric UK.

analysis of total costs between (i) balancing and capacity, (ii)
transmission, and (iii) distribution networks, demonstrated that
balancing and capacity costs dominate all other costs.

Managing the control of risk in energy supply has of late
become an important topic in the commercial sector. Various
aspects of the management of supply have been undertaken in
[4], [5], [6], [7] and [8].

The area of focus of this paper is balancing demand and sup-
ply in real time, in systems with significant penetration of wind
power. In order to deal with the corresponding increased un-
certainty, the system will require increased amounts of reserve.
When analysing the need for additional reserve requirements
time horizons of up to several hours are normally considered
[2]. Traditionally required reserves could be provided by a
combination of synchronised and standing reserve. In order
for synchronised conventional plant to provide reserve it must
run part loaded. Thermal units operate less efficiently when
part loaded, with an efficiency loss of between 10% and 20%.
Whenever this reserve is called on, other plant with higher
marginal cost must be run, and this is another source of cost.

In addition to synchronised reserve, provided by part-loaded
plant, the balancing task will also be supported by standing
reserve, supplied by higher fuel cost plant, such as OCGTs
(Open Cycle Gas Turbines) and pump-hydro storage facilities.
The allocation of reserve between synchronised and standing
plant is a trade-off between the cost of the efficiency losses
of part-loaded synchronised plant (plant with relatively low
marginal cost) and the cost of running standing plant with rel-
atively high marginal cost. The balance between synchronised
and standing reserve could be optimised to achieve a minimum
overall reserve cost of balancing [9]. Another possibility is
energy storage at some point(s) in the supply-demand chain.

In this paper we develop a novel technique to assess the
value of a generic, fully flexible, energy storage technology
when used to absorb random fluctuation of wind power in real
time. The paper is not concerned with the cost of particular
storage technology, but rather with quantifying the benefits that
storage technology could bring to the system by increasing the
efficiency of its operation.

The wind-power output is assumed to be subject to Brow-
nian motion (BM) disturbances at short lead times of up to
several hours. In a simplified representation of the operation
of the power system, we assume that the BM disturbance is
absorbed entirely by energy storage. We demonstrate that the
economic value of such a storage system can be evaluated by
an innovative real-options method. Solution of the resulting
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PDE (partial differential equation) requires novel numerical
techniques that are developed and successfully applied in this
paper and which provide results in very close agreement with
a simulation approach, but at a fraction of the cost. The overall
approach developed is then used to analyse the impact of
storage design parameters, such as capacity and power ratings,
on the value of storage.

The results of our present paper are limited to determining
and solving the PDE when the stochastic storage system is
left in an unregulated state, which means that it is left to fill
and empty randomly (following fluctuations in wind in the
time horizon of several hours). Whilst this level of modeling
is mathematically fundamental, and provides many insights in
its own right, it can and should be developed further to include
an optimal control model, in order to maximise the value of
stochastic storage and generators used jointly.

The structure of the paper is as follows: in section II we give
the economic background and develop the model as a system
of stochastic differential equations (SDEs); in section III we
discuss how the same problem may alternatively be solved
by simulation or a PDE specified outside the time domain,
together with the necessary solution procedures for each,
reserving technical detail for the Appendix; in section IV we
present a comparison of results from the SDE simulation and
PDE approaches, showing the dynamics of the uncontrolled
case, varying both the theoretical assumptions and the various
system parameters. Section V presents some conclusions.

II. THE STOCHASTIC STORAGE SYSTEM

We value a stochastic storage system for electricity, intended
to absorb BM disturbances to the forecast of wind power
output. As a base case we assume that the storage unit is
left indefinitely to absorb the disturbances, filling when wind
power exceeds forecast and emptying when it falls short,
bounded only by the unit’s maximum energy capacity and
by its power ratings for charge and discharge (our model
includes different power ratings for charge and discharge,
but for simplicity our worked examples assume these to be
identical). This assumes that an unforeseen surplus of wind
will be wasted if it cannot be stored, and that when the storage
unit meets an unexpected deficit of wind power, it avoids the
use of fossil fuel generation to supply the deficit. The benefit of
storage is equivalent to the cost of fuel saved, to which might
be added the value of emissions saved. An equivalent way of
valuing the storage system that we adopted for the purpose of
this paper, is to calculate the earnings that storage makes while
it is discharging electricity, and the system’s capital value is
the net present value (NPV) of all the electricity it will ever
discharge.

A. Analogy with real options theory

There are two principal approaches (time domain and PDE)
to finding the capital value of the storage system, as defined
above, both of which we will use, and we will show that the
agreement between the two is excellent. In the time domain
approach we start from an identified time origin, for example
t = 0 and sum all expected earnings to t = ∞. This can be

undertaken in principle by direct integration (not analytically
feasible in this case), or by using simulation to sample the
required expectation. This is performed by simulating repeated
long paths through the time domain, summing the NPV of
income over each path, and averaging this NPV over a large
sample of such paths. The result is an estimate of the system’s
value at time t = 0 which we denote as V0.

The second valuation method which we use (and which
turns out to be far superior) is to express the problem as a PDE
which can be solved numerically. The PDE approach gives us
the freedom to eliminate time as an explicit variable (although
we could introduce terms in the time domain to the PDE if
needed, for example to represent daily cycles in electricity
demand). In financial terms, the elimination of time treats the
storage system as a perpetual option, which our PDE method
values directly. More precisely we treat the storage system
as an infinite bundle of options to charge or discharge, one
of which matures at every instant of time out to infinity. Each
such option is exercised automatically at the instant it matures,
but only the discharges ever produce income. The value of this
bundle of options is conditional only on the observed values,
at the moment of valuation, of two related Markovian variables
X and Q, which we next define.

The error in forecasting the rate of wind generation (actual
− forecast) is X , a physical quantity measured in gigawatts.
When X < 0 the storage system discharges, which drives
an instantaneously variable flow of income. This income is
analogous to a flow rate of wealth, or to an instantaneous
rate of income, but not to a stock of wealth, or to a capital
value, which is generally made up of the value of any income
received at the present instant, plus a right to receive some
set of subsequent, possibly stochastic, payments. This is a
different situation from the standard Black-Scholes model,
where the (geometric) BM variable, S, is already a traded
capital value, being the price of a unit of stock, (and hence
in general it is already the integral of the stock’s discounted
future income and capital flows). In our model we must
compute the option’s capital value V directly from its own
income flow, which means simultaneously valuing an infinity
of options, whereas in standard Black-Scholes applications we
can define V in terms of its right to exchange for some other
capital value S whose current value is exogenously given. We
will see below that this actually makes the derivation of our
PDE slightly simpler than that of the standard Black-Scholes
PDE [10].

B. Model development

At the lead times that will eventually be used for optimal
management of the storage unit (several hours) the behavior
of X over the time increment dt can be well approximated
as a BM. The reason for this is the well known persistence
effect, meaning that the short term forecast of future wind
power output is the present output. This is generally valid for a
horizon of up to a few hours [1], which is the typical lead time
considered in this paper. For this to be true at all lead times,
up to some practical horizon, wind strength must be a close
approximation to a BM up to that horizon. However in practice
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the output of the generating system will be adjusted at lead
times of minutes to hours, in response both to the actual wind
power output, and also (if storage is used) to the actual quantity
of electricity in store. At such lesser lead times persistence
applies, and a BM model can be used as an approximation,
namely

dX = σdW, (1)

where σ denotes the volatility of X , and dW denotes a random
variable, drawn from a normal distribution with zero mean and
variance dt, the (small) timestep.

From the viewpoint of option valuation, the system behaves
differently when charging and when discharging. Hence for
PDE purposes (only) we subdivide the function for the sys-
tem’s total value at some time t = 0 (call this V0(X0, Q0)
as at time zero) into two alternative value functions one or
other of which applies at every time t, namely G(X, Q) if
the system is charging (X > 0) and F (X, Q) if the system
is discharging (X < 0). We suppress time dependence for G
and F since we will define them as the values of perpetual
options, but we retain time dependence for V0 since we define
this as an integral in the time domain of expected discounted
income, from t = 0 to infinity. We discuss later why these
alternative specifications give the same value.

C. Charging region: X > 0

When X > 0 the wind power output is larger than forecast.
We assume that the excess electricity is available to charge
the storage system, if not already full, so we call this region
of X the charging region. The quantity of electricity in store
is given by Q ∈ [0, Qmax], and is measured in gigawatt hours;
here Qmax is the maximum capacity of the storage system, and
its minimum capacity is zero.

The charge rate (at which electricity enters the system) is
at every instant a function of X and Q, denoted by Lc(X, Q)
which will depend on the properties of the storage system. All
storage devices, however, must satisfy the physical constraint
that when the storage device is full, the charge rate is zero,
Lc(X, Qmax) = 0. We first assume a simple piecewise linear
form for the charge rate.

Initially we define Lc(X, Q) away from the boundary Q =
Qmax as

Lc(X, Q) = min{X, Xc}. (2)

Here Xc is the maximum rate at which the storage system
can be charged, known as the (charging) power rating. It is
easy to implement more complex specifications in order to
reflect more complex system responses, for example a dead
zone around X = 0, or a more general non-linear Ld(X, Q).

We did in practice implement a further complexity, by
specifying Ld(X, Q) as a function of both X and Q. The
main motive for this was to improve numerical stability (but
this could also model the damped responses by a physical
storage system), as follows:

Lc(X, Q) = min{X, Xc, λc(Qmax − Q)}. (3)

Here λc is a positive constant with dimensions of hours−1

used to adjust the point at which the charge rate begins to

decrease as the storage device approaches full capacity. It
can be justified on a number of grounds, including numerical
expediency (no additional artificial boundary conditions are
required to close the problem). However, in reality, some
intensive numerical testing revealed the solution to be highly
insensitive to the prescribed values. Even by changing the
value by a factor of 20 made less than a 1% change to the
solution.

In the charging region, the dynamics of the quantity in the
storage system, Q, are given by:

dQ = Lcdt. (4)

In the time domain we can use the same notation for value
changes in both the charge region and the discharge region.
For a time origin of t = 0 we have at all times in the charging
region (X > 0)

dV0(X0, Q0) = 0. (5)

Note that the units of V0 are taken to be (net present) gigawatt
hours, because we are not yet assigning a price to electricity.

D. Discharging region: X < 0

When X < 0 the output of wind generation is smaller than
forecast and there is a deficit of wind-generated electricity. We
assume here (before considering the optimal joint operation of
electricity storage and conventional generation) that all deficits
of wind power will be met from the storage system if Q > 0.
The storage system will thus be partially discharged, and so
this region of X is termed the discharging region.

The discharge rate of the storage system is denoted by
Ld(X, Q) and is, in general, different from Lc(X, Q). The
required physical constraint is that the discharge rate must be
zero when the storage system is empty, Ld(X, 0) = 0. We
again assume a piecewise linear form for the discharge rate
in the X dimension, and the discharge rate is by convention
negative, to reflect the positive sign of X in the discharging
region:

Ld = −min{|X |, Xd, λdQ}. (6)

Here the positive constant Xd is the system’s power rating
(maximum rate) for charging, and λd is a positive constant
with dimensions of hours−1 which is used to adjust the point
at which the charge rate begins to decrease when the storage
device is nearly empty (in a manner analogous to the Lc → 0
limit as Q → Qmax in the charging region). The use of a
suitable value of λd in this region avoids an instantaneous
change of the (dis)charging rate from X or Xd to zero as
Q approaches its boundary (Q = 0), thereby avoiding both
physical unrealism and problems of numerical convergence. A
similar specification is also useful for Monte Carlo simulation
in the time domain (discussed below) where it helps to ensure
that randomly simulated realizations of Ld and Lc do not
violate the bounds on Q.

Figure 1 shows a surface plot of Lc and Ld (versus X
and Q), illustrating the various regimes (plateaus and linear
behaviors) of the (dis)charge rates. The topology of this func-
tion comprises plateau regions (Lc = 1, Ld = −1), connected
in a linear fashion to prescribed boundary values of zero (as
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Fig. 1. Variation of Ld(X), Lc(X), for Qmax = 5GWh, Xc = Xd = 1GW,
λc = λd = 1h−1

a result of the introduction of λc and λd) and to each other.
It should however be emphasised that the methodology in this
paper permits entirely arbitrary topology of these functions.

The dynamics of the quantity in the storage system, Q, in
the discharging region are then given by:

dQ = Lddt. (7)

We model the electrical efficiency of storage by the param-
eter k where 0 < k < 1. Whilst the system is discharging, any
previously input charge is being depleted at the rate Ld, but
the actual rate at which discharged electricity is available to
users is only k per unit (gigawatt-hour) discharged. Hence, the
system’s income during a small time interval dt of discharge
is the positive quantity −kLddt. The constant k reflects the
imperfect electrical efficiency of a single cycle into and out
of the storage unit, and is independent of time. This is an
arbitrarily chosen model of efficiency, in which losses occur
only during discharge, but we may note that a slightly higher
valuation results if the total efficiency of k per cycle is factored
into a product of efficiency on charging and efficiency on
discharging.

When valuing in the time domain, the NPV (as at time
t = 0) of the income generated from discharging during the
time interval dt (subject to X < 0) is therefore, if the time
increment ends at time t,

dV0 = −kLde−rtdt, (8)

where r denotes the interest rate (assumed constant) and the
subscript zero denotes that the present value is as at time t = 0.
The units of dV0 (and of V0) are taken to be gigawatt hours,
for reasons already given. V0 is simply the integral of the
expectation of the last expression, i.e.

E(−k

∫

∞

0

Lde−rtdt), (9)

where E() is the expectation operator. Because the above
integral cannot be evaluated explicitly, we next consider Monte
Carlo simulations of this integral in the time domain.

E. Monte Carlo simulations

It is conceptually straightforward to perform a Monte Carlo
simulation using the stochastic system given by equations (1)
– (8). The simulation calculates an estimate of the NPV of the
system, V0(X0, Q0), by repeatedly generating a realization of
a path through (X, Q) space in the time domain starting at
(X0, Q0) at time zero, and proceeding in prescribed (finite but
small) time increments dt out to a long time horizon. Equation
(1) is used to calculate the increment in X (dW is determined
from a standard library package) and the value of X is then
updated. If X > 0, dQ is evaluated using (4), and dV0 = dG0

follows from (5). If X < 0, dQ is evaluated from (7) and dV0

is calculated via (8). If λc > 1/dt or λd > 1/dt, then Q could
leave the domain 0 ≤ Q ≤ Qmax. If realized Q is predicted
to drop below zero during the time increment, then Q is set
to be zero at its end, whereas if Q is predicted to rise above
Qmax, its value is set to Qmax (this proved generally not to be
an issue).

For the parameter range of interest, it was found that time
horizons of the order of 200 years were necessary in order
to obtain a ‘steady state’ or terminal NPV for each sampled
path, and large numbers of sampled paths were required to
ensure stability of their mean. We defer discussion of detailed
numerical results thus obtained until section IV, and will first
describe the alternative (PDE) approach.

III. THE DIFFERENTIAL EQUATIONS FOR THE VALUE OF
THE STORAGE SYSTEM

The behavior of the value V (X, Q) of the storage system
differs between the charging and the discharging regions, so
we will define

V (X, Q) =

{

G(X, Q), charging region (X > 0),
F (X, Q), discharging region (X < 0).

Over the time increment dt there is stochastic fluctuation in
X , which in a deterministic way changes Q. These changes
in X and Q change the capital value of the system in two
ways. Firstly they change the capital value of the system’s
options to discharge and to recharge in future. Secondly
(in the discharging region only) they contribute income by
discharging stored electricity. Current income is a tiny fraction
of total capital value, which is dominated by the discounted
expectation of future income. Using Itô’s Lemma to determine
the approximate change in value of the stochastic terms, we
obtain

dG =
1

2
σ2 ∂2G

∂X2
dt +

∂G

∂X
dX +

∂G

∂Q
dQ, (10)

1

2
σ2 ∂2F

∂X2
dt +

∂F

∂X
dX +

∂F

∂Q
dQ − kLddt, (11)

where the term −kLddt is the income term in the discharging
region.

Note that the above forms of the expressions for dF and dG
are standard in the finance literature. An intuition for these is
that they resemble expansions by Taylor’s theorem, but with
the addition of terms of the order of dt. A simple explanation
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of how Itô’s Lemma produces these deterministic terms when
X is a BM variable can be found for example in [10].

A PDE for the value of the system can be derived from the
above in several ways, again using methods standard in the
finance literature (although the equation that results is novel).
It is essential to eliminate the stochastic term dX , which is
unknown. It is not sufficient merely to replace dX with its
expectation of zero, since it can be shown that any resulting
valuation is exposed to unknown and highly variable risks,
and would therefore require an unknown and highly variable
discount rate. The standard approach is to eliminate the effect
of dX over dt entirely, by constructing some kind of hedge
transaction. In the standard case the stochastic variable X is
a capital money value (such as a stock price), and the hedge
involves buying or selling ahead some fixed quantity of X .

Our system is subject to a stochastic X which is physical
(and dX is a rate of flow of value, rather than a stock of value).
To solve this non-standard problem, we construct a hedge
against a change in the physical flow rate itself, rather than
hedging against the changes in the value of a stock variable
(since the X alternates between negative and positive, it has
no useful natural equivalent as a stock). Note in this model,
physical capital value changes in response to changes in a
physical rate of flow of stock, holding price fixed, whereas in
standard financial option and real option models capital value
changes due to a fluctuating price for a fixed physical quantity
(one unit) of stock. The mathematical formalism is identical
in either case, provided we can define a meaningful hedge
transaction, with (in theory) a negligible implementation cost.

Clearly it is reasonable to assume that any form of energy
can be traded. To achieve the required hedge of the physical
flow rate X we can take an ownership position, long or short
as needed, over the time increment dt, in the physical resource
which the storage system is itself intended to hedge, namely
the instantaneous wind power output. For example we can sell,
for the time dt ahead (some fraction ∆ of) the forecast quantity
of wind-generated energy, and we buy ahead (the same fraction
of) the actual physical quantity of wind-generated energy that
will be generated. This portfolio gives a surplus or deficit of
electricity supply rate at the end of dt proportional to dX ,
whose sign and magnitude can be selected to offset the change
in capital value which the storage unit will have undergone due
to dX .

We therefore consider a portfolio of the following form
(illustrating the discharge region, where X < 0)

Π = G + ∆X.

In order for the stochastic terms to balance, ∆ = ∂G/∂X ,
when X > 0 and ∆ = ∂F/∂X , when X < 0, so

1

2
σ2 ∂2G

∂X2
dt +

∂G

∂Q
dQ = rGdt, X > 0,

1

2
σ2 ∂2F

∂X2
dt +

∂F

∂Q
dQ − kLddt = rFdt, X < 0.

We use the expressions (4) and (7) for dQ in the appropriate

regions and divide the equations by dt to obtain:

1

2
σ2 ∂2G

∂X2
+ Lc

∂G

∂Q
− rG = 0, X > 0, (12)

1

2
σ2 ∂2F

∂X2
+ Ld

∂F

∂Q
− rF − kLd = 0, X < 0. (13)

At the boundary between the charge and discharge regions,
where X = 0, we require continuity of the values F and G
and their derivatives in the X-direction (value matching and
smooth pasting):

G(0, Q) = F (0, Q), (14)

∂F

∂X
(0, Q) =

∂G

∂X
(0, Q). (15)

Equations (12) and (13) are somewhat novel. The form of
the equation for each region resembles a diffusion, but the first
order partial differential term is w.r.t. Q rather than w.r.t. time
(which does not appear). Also the boundary values for value
along Q = Qmax and Q = 0 are not specified by the problem,
as they are in standard Black-Scholes derivations. The only
externally verifiable input to the system’s economic value, in
either region, is the income term −kLddt which exists only
in the discharging region as a deterministic payment, and then
only over the current time increment dt. All the remaining
dynamics describe the diffusion of value towards or away from
the various (X, Q) states where deterministic income can be
earned. The entire value in the charging region, G in (12),
arises from diffusion terms, describing the diffusion of G itself,
from G = 0 at X = ∞ to the smooth pasting condition at X =
0 where G = F . More simply, the system’s value G in the
charging region is purely the value of its option to move into
the discharging region, F , starting from the present values of Q
and X . The system’s value F in the discharging region in (13)
is driven, in addition, by a deterministic income term as well
as by the diffusion of F itself. The latter diffusion represents
(most importantly) the ‘option’ which a discharging system
has, to move into the charging region when X next becomes
positive. In both equation (12) and (13) the first term is the
contribution to total option value from the future stochastic
diffusion of X , and the second terms arise from the locally
deterministic changes to capital value that Lc and Ld make to
option value by respectively increasing and decreasing Q. The
third term in each equation ensures that in every state of X
and Q, and over every time increment dt, the combined effects
of the system’s capital gain (or loss) on its future options,
together with any current income, will generate the risk free
rate of return r.

A. Equivalence between the PDE solution and solution by
simulation in the time domain

An informal explanation of why the PDE solution is equiv-
alent to a sufficiently detailed simulation in the time domain
is as follows: the PDE is a model of events over a general
time increment dt (recalling that in its derivation we extract a
common factor dt). Consider (13) and restrict attention to the
last two terms on the left-hand-side. This is simply the ODE
whose solution is the present value at the beginning of dt of
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a deterministic payment −kLddt received at the end of the
time increment dt. Clearly if this deterministic payment were
known to arrive after a larger number of time increments dt,
this ODE will correctly discount its present value over all of
them. However in the present model, all income payments
arising after the current time increment dt are stochastic.
The presence of the first two terms (diffusion terms) in the
equations (12) and (13), allows for stochastic diffusion, in
addition to the accrual of a rate of return over time, for any
payments that may arise after dt. In effect therefore the joint
solution to the PDEs for F and G replaces all stochastic
payments after the end of dt with the discounted value of
the future distribution over their expected value.

However because the option is a perpetual one, the PDE
solution at any given pair of X, Q values holds for every dt.
Since there is an infinite sequence of possible time increments
dt, the solution must hold, as a discounted expected value,
for all of them, and therefore holds over any and every path
of infinite length starting from a given pair of X, Q values,
at any time t. A special case of this is when the values
X and Q are observed at some specific time t = 0. The
resulting value is what is estimated by Monte Carlo simulation
in the time domain: there is no explicit calculation of the
future distribution of expected values, just a random drawing
of many paths of income over a long time horizon, and at
a high frequency of sampling. Convergence with the PDE
solution occurs if the sample size, time horizon and sampling
rate are sufficiently high. The PDE solution simultaneously
calculates the solution at every point in the chosen (X, Q)
domain, whereas the simulation result holds only at a single
chosen (X, Q) starting point. The PDE approach therefore has
significant practical advantages.

B. Practical stages in solving the PDE

Since the units of F and G are both gigawatt hours, for
consistency in applications the volatility σ and interest rates
must be expressed hourly. An adjustment for the selling price
of electricity could easily be incorporated by multiplying the
income term kLd by the appropriate price, i.e. there is a linear
relationship between the capital value of the system and the
electricity price (and indeed with the efficiency k).

Consider a numerical solution procedure for the PDE system
(12) - (15). From the mathematical point of view, the intriguing
feature is that the overall system is forwards/upwards (in-
creasing Q) parabolic if X < 0, but backwards/downwards
(decreasing Q) parabolic if X > 0. The difference is a
consequence of the different signs of Ld and Lc, which
crucially multiply the ∂F

∂Q
and ∂G

∂Q
terms, respectively, and it

must be reflected in the solution procedure.
Initially, a preliminary guess was made, typically

F (X, Q) = kQ and G(X, Q) = 0, or, if available, the
converged results from a previous neighboring calculation. A
standard Crank-Nicolson marching procedure was adopted,
with a rectangular set of mesh points in X, Q space, coupled
with line relaxation. Typically 3201 X points and 101
Q points were employed. For a numerical solution, the X
domain must be truncated to a finite range, [−Xmax, Xmax] and

appropriate conditions should be applied on the boundaries
X = ±Xmax. The behavior of the solution as |X | → ∞
is discussed in detail in the Appendix, and is used to
formulate the (Robin-type) boundary conditions applied at
these boundaries, namely equations (20), (21), (23). These
were found to work extremely effectively, and enabled the
computational task to be significantly reduced through the
use of very modest values of Xmax.

The physical constraints on Ld when Q = 0 and Lc when
Q = Qmax, imply that the Q-derivative terms vanish on
these boundaries and equations (12) and (13) may be solved
explicitly (to within an arbitrary constant). The procedure
begins with an arbitrary explicit solution of (13) in the region
−Xmax ≤ X < 0 (where Xmax was taken to be suitably
large, typically 10). The effect of grid spacing was routinely
checked to confirm the integrity of the results. The solution
was extended upwards in Q towards Q = Qmax, with (14)
imposed at X = 0 and (20) and (21) at X = −Xmax. Along
each line of grid points Q = constant > 0, the resulting
algebraic system (for −Xmax ≤ X ≤ 0), may be written in
tridiagonal form, and hence routinely solved (using Gaussian
elimination, for example). Upon reaching Q = Qmax, the
procedure switches to the X > 0 zone. Along this line, the
explicit solution of (12) provides starting data for a Crank-
Nicolson procedure that marches downwards towards Q = 0,
in an analogous manner to than adopted for the upwards march
in X < 0. For the X = 0 condition, (15) was used, together
with (21) at the truncated domain location X = +Xmax).
The procedure was then repeated, marching upwards in Q for
X < 0 and downwards in Q for X > 0 until the maximum
change in values between successive iterates was less than
some prescribed tolerance (typically 1 × 10−6). Overall, the
adopted procedure is analogous to that of [11].

IV. DISCUSSION OF TYPICAL SOLUTION DYNAMICS

A. Comparison of Monte Carlo and PDE results

In order to illustrate the developed methodology we analyse
a case with some 10GW of aggregate wind power capacity.
It is assumed that the reserved requirements will be driven
by the assumption time horizons longer than say 3-4 hours
will be managed by additional units (which is well within the
dynamic capabilities of modern gas-fired technologies). Over
that time horizon, the unpredicted changes in wind output
could be about 25% to 30% of the installed wind capacity

[2], [9], and a value of volatility of σ = 113 per annum
1

2

(this was converted for the computations into hours
1

2 ) was
generally adopted for the purpose of this paper; a sensitivity
analysis on σ is presented later in this section. We first consider
simulations made in the time domain. Figure 2 shows the time
development of the mean NPV for successively lengthening
time horizons up to 200 years, for 11 choices of initial X0 (as
indicated), all with Q0 = Qmax = 5. r = 0.04 (per annum),
Xd = Xc = 1GW, λc = λd = 1h−1, k = 0.7. All these
computations involved 2000 independent path simulations,
each with a timestep of approximately 315 seconds (0.0875
hours, i.e. 10−5 years) - simulation trials suggested that an
acceptable approximation to the fully continuous PDE solution
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for these parameter values would require a sample size of
several tens of thousands, using a time horizon and sampling
interval similar to those above. Computations were rather
lengthy - each (X0) case took approximately 3.5 hours on
a 2412MHz AMD Athlon processor to progress the desired
2000 path simulations over 200 years. The figure shows an
appreciable gain in NPV over horizons up to about 75 years,
and thereafter a slight but detectable increase in NPV. Such
qualitative behavior is expected of any income-earning asset,
but it appears that the valuations which result when X0 is
farther from X = 0 not only have lower limiting NPVs,
but take proportionately longer to approach these limits. The
reason seems to be that a stochastic storage unit most easily
earns income when X is in the neighborhood of X = 0,
which gives is a high probability of rapid alternation between
charging and discharging. Paths for which X0 is far from
X = 0 are expected to take a considerable time before first
reaching the neighborhood of X = 0, but then to linger
there for some time. The expected non-discounted value of
income per unit of time along a path starting from X = 0
declines exponentially, but the expected non-discounted value
of income along a path starting far from X = 0 (which is
dominated by income earned when the path eventually nears
X = 0) is a delayed, low, but long-lasting pulse - a similar
effect is well known from heat diffusion.

Figure 3 shows a comparison of the Monte Carlo simulation
results after 200 years (indicated by circles and error bars),
as presented in figure 2, and the PDE results, in both cases
starting from a full store Q = Qmax. The error bars for
the simulation results indicate the 95% confidence intervals,
and strongly encompass the PDE values. We also applied
Hotelling’s multivariate T Squared test, which confirmed that
the 11 means of simulated points did not differ significantly
from the PDE solution when tested jointly (detail omitted).
Typical PDE calculations take approximately 6 hours (de-
pending on the initial guess) on a 2412MHz AMD Athlon
processor (but note this procedure gives the solution across
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Fig. 3. Comparison of Monte Carlo results (points) and PDE results, param-
eters as for figure 2

the entire (X, Q) domain, which is some 30,000 points). The
agreement between the results obtained from the two quite
disparate approaches is excellent (and indicates the high degree
of robustness of both solution methods). Figure 3 clearly
reveals for both methods the limiting exponential behavior of
the ‘tails’ of the distribution as |X | → ∞ (see the Appendix),
along with a sharp peak in the value close to X = 0. However
it is quite clear that in order to obtain detailed and accurate
results the PDE approach is the superior method (by far),
since it captures the entire solution domain, at a level of
precision and detail which would take in excess of 106 hours
by simulation.

It should be noted that totally unrealistic values of X have
been deliberately taken for the comparison of the two methods,
in order to thoroughly validate two, very distinct method-
ologies. Now that this has been convincingly confirmed, all
further results will focus exclusively on practically interesting
and viable choices of parameter. Further, the Monte Carlo
simulation is impractically slow, so that sensitivity analysis
is only feasible by using the PDE approach; results follow.

B. Sensitivity to variations in volatility, σ

Figure 4 shows a magnified view of the figure 3 results along
Q = Qmax (together with the results along Q = 0), close to
X = 0. This reveals a generic feature of the results, namely,
a maximum value at (slightly) negative values of X along
Q = Qmax, whilst along Q = 0 the maximum value occurs at
slightly positive values of X . Clearly if the system starts full,
the most profitable initial state is discharging. If, on the other
hand the store starts empty, the most profitable initial state is to
be charging - the usefulness of the PDE solution is that it tells
us the optimal quantity in either case. An interesting feature is
that that whether the store is full or empty, value is maximized
when the initial X saturates the power rating by a considerable
margin e.g. in the discharge region the value-maximising X is
near −3GW, which greatly violates the discharge power rating
Xd = −1GW. An explanation of this property, which seems
to be generic, is that a random walk which starts at the larger
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details as for figure 3

deficit of X = −3GW has the same initial discharge rate of
−1GW, but optimally increases the delay before firstly, the
discharge rate falls below −1GW and secondly the sign of X
changes to begin recharging.

For the parameters used here, and over a wide range of
X from −600GW to 600GW , the total value of the system
is dominated by movement in the X dimension; intuitively,
total supply must be close enough to total demand, even when
storage is used. However in the region of maximum value,
where we want the system to operate (near X = 0) the value-
maximizing sign of X is reversed, depending on whether the
storage is full or empty (Q = Qmax or Q = 0). Hence optimum
decision rules are functions of both X (rate) and Q (level).
Visual inspection of figure 4 suggests that between X = −5
and X = 5, control in X and control in Q are roughly equally
important in maximizing system value.

A further readily observable, and indeed generic feature of
the PDE solution, is that as positive X increases, the results
become virtually independent of Q. This is consistent with the
observation found by the authors that the asymptotic (|X | →
∞) results, as described in the Appendix, are achieved at
remarkably modest values of X (taking just the n = 0 term in
each series, corresponding to the slowest decaying component
of the solution as |X | → ∞, with the corresponding coefficient
(A0, D0) ‘measured’ from the numerical results of the PDE).

Inspection of figure 4 reveals that the region of dynamic
and economic interest is approximately -5GW < X < 5GW.
Only inside this range is there an appreciable chance of
gaining sustained high income in the near future, through
alternating between charge and discharge, due to sign reversals
of X . Nonetheless the income over this range of interest is
remarkably insensitive to X in this range, and equally, perhaps
surprisingly (but also confirmed in the Appendix), in the
discharging zone, the difference between the fully discharged
(Q = 0) and fully charged (Q = Qmax) states is generally
kQmax.

The behavior shown in figure 4 was found to be canonical
in shape, only the magnitudes of F and G were found to
vary with changes in the various system parameters. Figure 5
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shows how volatility variations affect the peak values along
both Q = 0 and Q = Qmax, for both Qmax = 5GWh
and Qmax = 10GWh. Each such pair of points, for a given
volatility and Qmax, proxies the complete solution domain for
the given values of error volatility and storage capacity. This
suggests diminishing returns to both volatility and capacity.
For example, when compared with the base case value (σ =
113), the cases σ = 50 and 10 only reduce the maximum
system values to respectively about 81% and 50% of the base
case value. These results imply that for any volatility, much of
the system’s value is generated by small and brief excursions
of X around X = 0. Hence a storage system could have
significant capital value even if the levels of wind forecasting
error are fairly low - a result which conflicts with industry
intuition.

C. Variations in capacity, Qmax

In figure 6 we present a 3D plot of the (PDE) solution
across the entire (X, Q) domain for the very large capacity
Qmax = 50GWh (other details as for figure 3). This type of
picture is quite universal - note in particular the positive slope
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in the Q direction for X < 0 and the zero slope for Q > 0.
They are relatively easily observed in this case, due to the
largeness of Qmax. However very large excursions of X indeed
are required to approach the boundary conditions, where the G
solution for very large X tends to the flat plane G(X, Q) = 0,
and the solution for large negative X tends to the sloping plane
F (X, Q) = kQ. These (and other) results indicate that again
there are diminishing returns to increases in capacity, implying
that most of the system’s value is generated by cumulatively
small and therefore perhaps also short-lived, excursions about
X = 0.

D. Sensitivity to variations in charging/discharging power
rating

The maximum rates at which electricity can be
charged/discharged are set by parameters Xc and Xd;
the effect of varying these parameters in a correlated manner
is shown in figure 7, depicting results for Xc = Xd = 0.5
GW. Comparing these results with the base results (figure
4), we see that reducing the power ratings (Xc, Xd) has
remarkably little effect on the value of the storage: 50% of
the base case power rating gives 84% of the system’s value.
This suggests again that small excursions around X = 0
(slow in- and out-flows, which presumably alternate rapidly)
contribute a large fraction of the system’s total value. This
has implications for storage system design.

V. CONCLUSIONS

In this paper we developed a novel technique to assess the
value of a generic, fully flexible, energy storage technology
when used to absorb random fluctuation of wind power in
real time. Based on standard techniques from financial and real
option modeling, we have suggested a new class of PDE for
modeling stochastic storage systems, together with a numerical
method for solving it.

The innovations are to treat the stochastic storage system
as a perpetual option (thus eliminating time from the model
when realistic to do so), to treat it as an Asian option (thus
eliminating the future level of inventory as an explicit variable
in the model), and to regard the system as an instrument
whose only source of value is a stochastic flow of income,

which arises from the successive expiry of an infinite sequence
of mutually interacting options to charge and discharge. We
have shown that there is close agreement between the PDE
solution and simulation results, but the PDE numerical solution
is several orders of magnitude faster than simulation. The
paper contributes a systematic framework for applying PDEs
to many problems of stochastic storage which are analytically
intractable, and which could not be solved within a practically
acceptable time by simulation methods.

Our results indicate that there are diminishing returns to
increases in capacity of such a storage system, implying
that most of the system’s value is generated by cumulatively
small and therefore short-lived excursions. This is important
for the design of storage systems for managing wind-power
fluctuations. We have illustrated the method for purely physical
storage systems, subject to linear Brownian motion of only one
physical variable. The method can clearly be generalized to
systems with multiple physical and/or price variables, and with
considerably more complex stochastic and physical dynamics
than we have assumed. If we use the present model to value
a stochastic storage system at several fossil fuel prices, the
result would be the payoff function for a real call option to
build such a unit. Conventional real option methods could then
be used to calculate how high the fossil fuel price has to rise
to justify building the unit.

Although the presented model is mathematically fundamen-
tal, an important limitation of the results which we presented
here is that we have modeled and solved only the value of
the uncontrolled state of a stochastic storage system. Future
progress towards optimal control will fall into two main areas,
stochastic and economic. In stochastic methods, it will be
necessary to generalize some existing regimes of optimal
stochastic control. It will be necessary to specify regimes
which are simultaneously optimal for a stochastic rate variable
Lc (a modified function of the Brownian motion X variable)
and a stochastic level variable Q (a heavily modified form
of the integral of Lc). In economics, it will be necessary to
adapt more detailed economics of a particular generation mix
and more realistic modeling of storage. For example, in order
to capture the cost performance of fossil fuel generation it
will be necessary to model the costs and time delays involved
in warming up the units, the fuel penalties of operating
part loaded, the existence of minimum stable generation etc.
Furthermore, more realistic modeling of electricity storage
(and many other possible applications of stochastic storage)
may require generalizations of the stochastic and physical
dynamics of our present model.

APPENDIX

APPENDIX : DETAILS OF |X| → ∞ BEHAVIOR OF THE
SOLUTION

In the limit X → −∞, Ld = −min{Xd, λdQ} and
governing equation (13) takes one of two forms, depending
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on the value of Q:

1

2
σ2 ∂2F

∂X2
− λdQ

∂F

∂Q
− rF + kλdQ = 0, Q < Xd/λd,

(16)
1

2
σ2 ∂2F

∂X2
− Xd

∂F

∂Q
− rF + kXd = 0, Q > Xd/λd.

(17)

Arbitrage arguments lead us to insist that F is continuous
along Q = Xd/λd.

For Q < Xd/λd, the governing equation is (16) and we are
then able to write the solution as a Taylor series expansion
about Q = 0,

F− =

∞
∑

n=0

QnF−

n (X) =
kλdQ

λd + r
+

∞
∑

n=0

AnQne

�
2(nλd+r)

σ2 X ,

(18)
where the An are constants.

In order to properly connect with (18) at Q = Xd/λd, the
solution to (17) for Q > Xd/λd must have the form

F = e
r

λd
−

rQ

Xd

(

kXd

λd + r
−

kXd

r

)

+
kXd

r

+

∞
∑

n=0

An

(

Xd

λd

)n

e
−n+

nλdQ

Xd e

�
2(nλd+r)

σ2 X . (19)

Note that (18) and (19) indicate that not only is F continuous
at Q = Xd/λd, but so too is ∂F

∂Q
.

Although the An terms in (18) and (19) all decay expo-
nentially as X → −∞, the decay rates can be quite slow
in practice. Neglecting these terms can lead to significant and
spurious domain truncation effects. The dominant (i.e. slowest)
exponential decay arises from the n = 0 terms. Therefore, in
order to impose the X → −∞ conditions at a finite (and
reasonable) value of X (say X = −Xmax), we construct a
Robin-type condition that eliminates A0 and follows directly
from (18) and (19), namely

∂F

∂X
−

√

2r

σ2
F = −

kXd

r

√

2r

σ2

(

e
r

λd
−

rQ

Xd

(

r

λd + r
− 1

)

+ 1

)

,

(20)

∂F

∂X
−

√

2r

σ2
F = −

√

2r

σ2

kλdQ

λd + r
, (21)

for Q > Xd/λd and Q < Xd/λd respectively. This is
equivalent to taking (just) the n = 0 terms in (18) and (19);
in practice, computationally this approximation was found to
work exceedingly well.

The solution for X → ∞ is a little simpler — the lack of
any forcing terms implies that only exponentially decaying (in
X) terms are present,

G =
∞
∑

n=0

Dn(Q)e
−

�
2(nλc+r)

σ2 X
. (22)

Again, the condition as X → ∞ is imposed at a finite distance
X = Xmax using a (Robin-type) condition that takes into
account the dominant exponential decay:

∂G

∂X
+

√

2r

σ2
G = 0. (23)

Again, this is tantamount to taking just the n = 0 term in (22),
a procedure that nonetheless proved to be numerically very
accurate. Finally, it is worth noting that the solution becomes
predominantly independent of Q as X → ∞.
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